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Conventional data/Symbolic Data:
o Each object is characterised by several variables

@ Data is organized as an n x p matrix: rows correspond to objects,
columns to variables

X11 e le X11 e le

Xn1 e an Xn1 e an

For example,

x11 = real number x11 = interval [a, b] of real numbers
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Conventional data/Symbolic Data:

Data matrix Data matrix
X1 ot Xip X1 ot Xip
Xnl  *t Xnp Xnl  ct Xnp
X1 Xl
random vector X = | : | — RP random vector X = | : | —IR"
X, X,

Random vector

[x11 - x1p] T € RP is a realisation of X

Interval-valued random vector

[x11---x1p] " € IRP is a realisation of X




WHY INTERVALS?



Detecting Internet traffic redirection attacks
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in A. Subtil, M.R. Oliveira, R. Valadas, A. Pacheco, and P. Salvador “Internet-Scale
Traffic Redirection Attacks Using Latent Class Models”, Intelligent Systems and
Computing, 2020
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Conventional data:
@ Each object is characterised by several variables

o Data is organized as an n X p matrix: rows correspond to objects,
columns to variables

X11 ot Xip X1
Data matrix | : . random vector X = | ! | = R”
Xpl ot Xnp Xp
T . L
Example: [xll le} € RP is a realisation of X.
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Work with these blue data instead!
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Principal Component Analysis (PCA)

covariance matrix % = [cov(Xj, X;)] ij=1,...,p

r=xT ¥ is symmetric
A= 2 ) < eigenvalues of 2
T = [yi|v2|. .. |7p] + eigenvectors I'TT =/ =T'T
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MM X2> 2 <+ eigenvalues of X

= [yi|72]... |’)’p] <+ eigenvectors in RP

ITYT =diag(A1, A2, .-, \p) = 4/ Zy=X, i=1...,p.

Y1 = arg max|,| =1 yTsy

vj = argmax, =17 2y
7T7i:07 Izlavj_la J>1

principal components of X € R”

Yi=vX, Ya=v X, ..., Yo,=9/X
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Symbolic data:

How to reduce dimensionality/How to find an SPCA?

@ Data is organized as an n x p matrix, where rows correspond to objects,
columns to interval-valued variables:

X11 e le
Data matrix R e.g., X11 = [311, b11]
Xn1 ‘e an
X1
random vector X = | ! | —IR”
Xp
T . o
Example: [x11 -+ Xxip] € IR is a realisation of X.
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What do we need?

IRP Principal components of X
Vi=v X, Ya=v X, ..., Yo=v]X
X1 [a1, b1]
Vi=yX=~ || =7 :
Xp [ap, bp]
@ Define IRP

@ interval arithmetic, linear combinations of intervals

© ‘orthogonality”
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@ Definition of IRP

Let
IR = {[a,b] : a,b € R,a < b}

be the set of all real closed and bounded intervals,

[a, b] seen as a point (C,R) in R?

a+b
2

R=b-—a range of [a, b]

C= centre of [a, b]
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@ Definition of IRP

Let
IRP =IR x IR x --- x IR

be the cartesian product of p copies of ITR.

IR +— R?
Let X = (X1, ..., X,)" be an interval-valued random vector J
Xl d (C17R1)7 ey Xp 4 (Cp,Rp)
G Ry
G R>
c=| . R=| .
C, R,

15/19



@ Definition of TRP = TR x IR x - -- x TR «— R2P

Let X = (X1,....,X,)T = (CT,RT)T = {g} be an interval-valued random

vector with realisations in R2P

X1 R d (C17R1), ey Xp 4 (CPﬂRP)
Cl 1 dal b1 1
c=|:|= > o = 5(A + B) random vector of centres
Cy ap by
R1
R=|:|=B-A random vector of ranges
Ry
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@ Moore’s interval arithmetic
For X =[a,b] = (C,R), Y =[c,d]=(C',R’)inIR, define

X+Y=(C+C,R+R) ={x+y:xeX,yeY}

aX = (aC,|a|R)

Linear combination
For X € IRP and «« € RP, define

a’X =) aXj=(a"C,|o|"R)T Zac,,Zm,m
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The p orthogonal-pcs of X are Yi,---,Y, with Y; = 'y,-TX, where
~vi € RP s

Vi =argmax;_y  op ('Y,-/Tzcc‘yi/ + ’Y,-/TMRR’Y,'/> )

and vy, | =1,...,2P, solves a subproblem:

- arg maxy iy =1 (Y Eccy + ;] Mrryir)
' YTy =0,j=1,...,i=1 if i>1
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Importance of Maths Topics Needed For Machine Learning

(by Wale Akinfaderin, https://tinyurl.com/ythQshS)
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