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14 March 2024

1 / 10



Algorithmic game theory

I many problems in computer science involve interactions
between multiple self-interested agents;
I traffic and vehicle routing;
I resource allocation;
I online advertising;

I economics and game theory: useful models, analytical study;
I algorithmic game theory: brings a computational perspective.
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Algorithmic game theory

Can we predict the behaviour of complex systems composed of
many self-interested agents?

Contributions from Computer Science:
I worst-case guarantees;
I approximation bounds;
I computational complexity.
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Games and equilibria

I a set of players N: each i ∈ N has a strategy set Si ;
I costs Ci (si , s−i ) depending on the joint strategy of all players;
I Pure Nash equilibrium (PNE): a strategy profile where no

player gains by deviating.

Ci (si , s−i ) ≤ Ci (s ′i , s−i ) for all i ∈ N, s ′i ∈ Si .
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Example: Congestion games
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Results for congestion games

I in the unweighted case, PNE always exist and can be found
by best-response sequences [Ros73].

I when players have weights, PNE need not exist
[LO01, GMV05, FKS05].

I a more general notion: α-approximate equilibrium (α-PNE),
for α ≥ 1;

Ci (si , s−i ) ≤ α · Ci (s ′i , s−i ) for all i ∈ N, s ′i ∈ Si .
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State of the art

I polynomial congestion games: costs are polynomials of
degree d .

I nonexistence of exact or α-equilibria for low α.
[FKS05, HKS14, CGG+23]

I NP-hardness of the exact or α-approximate decision problem
for low α. [CGG+23]

I existence of α-equilibria for large α. [CF19]
I efficient computation of α-equilibria for even larger α.

[CFGS11]
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Future directions

I can we narrow the existence gap between
√

d and d?
I what about the complexity of finding approximate equilibria

when we know they exist?
I PLS = Polynomial Local Search problems.
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Future directions [Rou16]

*20.3 PPAD: A Syntactic Subclass of T FNP 285

Complexity Class Informal Definition
FP Polynomial-time solvable search problems

FNP Polynomial-time verifiable witnesses
T FNP Witnesses guaranteed to exist
PLS Solvable by local search

PPAD Solvable by directed path-following
(a) Recap of complexity classes

FP

TFNP

PPADPLS

FNP

(b) Suspected relationships

Figure 20.2: Summary of complexity classes. The inclusions PLS ∪
PPAD ⊆ T FNP ⊆ FNP follow from the definitions. Every problem
in FP can be viewed as a degenerate type of PLS or PPAD problem
by treating the transcript of a correct computation as a legitimate (and
efficiently verifiable) witness.

on the definition of and intuition behind the complexity class PPAD,
and explains why computing a MNE of a bimatrix game is a PPAD
problem.

*20.3 PPAD: A Syntactic Subclass of T FNP

Our goal is to provide evidence of the computational intractability of
the problem of computing a MNE of a bimatrix game by proving that
it is complete for a suitable complexity class C, where C is plausibly a
strict superset of FP . Section 20.2 argues that C needs to be a subset
of T FNP that also has complete problems. Roughly equivalently,
the class C should have a “syntactic” definition, in the form of a
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Considering random perturbations on the costs:
I What is the average-case complexity of best-responses?
I What is the smoothed complexity of best-responses?
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Considering random perturbations on the costs:
I What is the average-case complexity of best-responses?
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Conclusion

I Congestion games: a natural framework to study competition.
I Game theory: Nash equilibria as a predictive concept.
I When does a game have Nash equilibria?
I How to compute Nash equilibria?

Thank you for your attention!
https://diogopocas1991.gitlab.io
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