The Sphere Packing Problem

Diogo Oliveira e Silva

MMAC Day 2024 *π*-day 2024

D. Oliveira e Silva The Sphere Packing Problem

The Sphere Packing Problem

What fraction of Euclidean space \mathbb{R}^d can be covered by congruent balls with disjoint interiors?

D. Oliveira e Silva

The Sphere Packing Problem

Precise formulation

A sphere packing is a union of the form

$$\mathcal{P} = \bigcup_{x \in X} B_1^d(x)$$

The **upper density** of \mathcal{P} is

$$\Delta_{\mathcal{P}} := \limsup_{R o \infty} rac{\mathsf{Vol}(\mathcal{P} \cap B_R^d)}{\mathsf{Vol}(B_R^d)}$$

The number we are looking for is

$$\Delta_d := \sup_{\substack{\mathcal{P} \subset \mathbb{R}^d \ ext{sphere packing}}} \Delta_\mathcal{P}$$

Two special cases: lattice packing, periodic packing.

What is known?

•
$$d = 1$$
: $\Delta_1 = 1$, trivial
• $d = 2$: Thue* (1892), Fejes Tóth (1942)
 $\Delta_2 = \frac{\pi}{\sqrt{12}} \approx 0.90690...$

$$\Delta_3 = \frac{\pi}{\sqrt{18}} \approx 0.74048...$$

- *d* = 8: Viazovska (*π*-day 2016, Fields Medal 2022)
- *d* = 24: Cohn–Kumar–Miller–Radchenko–Viazovska (2016)
- Upper bounds
 - Kabatyanskii–Levenshtein (1978): $\Delta_d \leq 2^{(-0.599...+o(1))d}$
- Lower bounds after Minkowski (1905): $\Delta_d \ge 2 \cdot 2^{-d}$
 - Ball (1992): $\Delta_d \geq 2d \cdot 2^{-d}$
 - Venkatesh (2013): $\Delta_d\gtrsim d\log\log d\cdot 2^{-d}$
 - Campos–Jenssen–Michelin–Sahasrabudhe (<u>Dec 2023</u>): $\Delta_d \gtrsim d \log d \cdot 2^{-d}$

Low dimensions $(1 \le d \le 36)$

Theorem (Cohn–Elkies, 2003)

Let $f : \mathbb{R}^d \to \mathbb{R}$ be a Schwartz function, and r > 0 be such that:

• $f(0) = \hat{f}(0) > 0;$

•
$$\widehat{f}(\xi) \geq 0$$
 for every $\xi \in \mathbb{R}^d$;

• $f(x) \le 0$ for $|x| \ge r$.

Then the following upper bound for the sphere packing constant holds:

$$\Delta_d \leq \operatorname{Vol}(B^d_{r/2})$$

Proof. (For lattice packings only) Density equals $\frac{\operatorname{Vol}(B_{r/2}^d)}{\operatorname{Vol}(\mathbb{R}^d/\Lambda)}$, so enough to show denominator is at least 1. This follows from Poisson:

$$f(0) \ge \sum_{x \in \Lambda} f(x) = \frac{1}{\operatorname{Vol}(\mathbb{R}^d/\Lambda)} \sum_{\xi \in \Lambda^*} \widehat{f}(\xi) \ge \frac{\widehat{f}(0)}{\operatorname{Vol}(\mathbb{R}^d/\Lambda)}$$

How does the magic function look like in \mathbb{R}^8 ?

- $f: \mathbb{R}^8 \to \mathbb{R}$ radial, Schwartz
- $f(0) = \hat{f}(0) = 1$
- $\widehat{f}(\xi) \geq 0$ for all $\xi \in \mathbb{R}^8$
- $f(x) \leq 0$ for $|x| \geq \sqrt{2}$
- The values f(r) and $\widehat{f}(r)$ vanish whenever $r^2 \in 2\mathbb{Z}_{>0}$

The Cohn–Elkies optimisation problem is easy to solve if d = 1, but the "luck" seemed to stop there...

Modular forms $(E_4, E_6, \operatorname{Re} \Delta)$

The magic function in \mathbb{R}^8

$$f(x) = \frac{\pi i}{8640}a(x) + \frac{i}{240\pi}b(x)$$

+1 eigenfunction is

$$a(r) = -4\sin^2(\frac{\pi r^2}{2}) \int_0^{i\infty} \phi_0(\frac{-1}{z}) z^2 e^{\pi i r^2 z} dz,$$
$$\phi_0 = \frac{(E_2 E_4 - E_6)^2}{\Delta}$$

-1 eigenfunction is

$$b(r) = -4\sin^2(\frac{\pi r^2}{2}) \int_0^{i\infty} \psi_I(z) e^{\pi i r^2 z} dz,$$
$$\psi_I = 128 \frac{\theta_{00}^4 + \theta_{01}^4}{\theta_{10}^8} + 128 \frac{\theta_{01}^4 - \theta_{10}^4}{\theta_{00}^8}$$

Theorem (Viazovska, 2016)

No packing of unit balls in Euclidean space \mathbb{R}^8 has density greater than that of the Λ_8 -lattice packing.

$$\Lambda_8 = \left\{ (x_i) \in \mathbb{Z}^8 \cup \left(\mathbb{Z} + \frac{1}{2}\right)^8 : \sum_{j=1}^8 x_j \equiv 0 \pmod{2} \right\}$$