The Sphere Packing Problem

Diogo Oliveira e Silva

MMAC Day 2024

$$
\pi \text {-day } 2024
$$

The Sphere Packing Problem

What fraction of Euclidean space \mathbb{R}^{d} can be covered by congruent balls with disjoint interiors?

Precise formulation

A sphere packing is a union of the form

$$
\mathcal{P}=\bigcup_{x \in X} B_{1}^{d}(x)
$$

The upper density of \mathcal{P} is

$$
\Delta_{\mathcal{P}}:=\limsup _{R \rightarrow \infty} \frac{\operatorname{Vol}\left(\mathcal{P} \cap B_{R}^{d}\right)}{\operatorname{Vol}\left(B_{R}^{d}\right)}
$$

The number we are looking for is

$$
\Delta_{d}:=\sup _{\substack{\mathcal{P} \subset \mathbb{R}^{d} \\ \text { sphere packing }}} \Delta_{\mathcal{P}}
$$

Two special cases: lattice packing, periodic packing.

What is known?

- $d=1: \Delta_{1}=1$, trivial
- $d=2$: Thue* (1892), Fejes Tóth (1942)

$$
\Delta_{2}=\frac{\pi}{\sqrt{12}} \approx 0.90690 \ldots
$$

- $d=3$: Hales (1998)

$$
\Delta_{3}=\frac{\pi}{\sqrt{18}} \approx 0.74048 \ldots
$$

- $d=8$: Viazovska (π-day 2016, Fields Medal 2022)
- $d=24$: Cohn-Kumar-Miller-Radchenko-Viazovska (2016)
- Upper bounds
- Kabatyanskii-Levenshtein (1978): $\Delta_{d} \leq 2^{(-0.599 \ldots+o(1)) d}$
- Lower bounds after Minkowski (1905): $\Delta_{d} \geq 2 \cdot 2^{-d}$
- Ball (1992): $\Delta_{d} \geq 2 d \cdot 2^{-d}$
- Venkatesh (2013): $\Delta_{d} \gtrsim d \log \log d \cdot 2^{-d}$
- Campos-Jenssen-Michelin-Sahasrabudhe (Dec 2023): $\Delta_{d} \gtrsim d \log d \cdot 2^{-d}$

Low dimensions $(1 \leq d \leq 36)$

Upper bounds on Sphere Packings

Theorem (Cohn-Elkies, 2003)

Let $f: \mathbb{R}^{d} \rightarrow \mathbb{R}$ be a Schwartz function, and $r>0$ be such that:

- $f(0)=\widehat{f}(0)>0$;
- $\widehat{f}(\xi) \geq 0$ for every $\xi \in \mathbb{R}^{d}$;
- $f(x) \leq 0$ for $|x| \geq r$.

Then the following upper bound for the sphere packing constant holds:

$$
\Delta_{d} \leq \operatorname{Vol}\left(B_{r / 2}^{d}\right)
$$

Proof. (For lattice packings only) Density equals $\frac{\mathrm{Vol}^{(}\left(B_{r / 2}^{d}\right)}{\mathrm{Vol}^{d}\left(\mathbb{R}^{d} / \Lambda\right)}$, so enough to show denominator is at least 1. This follows from Poisson:

$$
f(0) \geq \sum_{x \in \Lambda} f(x)=\frac{1}{\operatorname{Vol}\left(\mathbb{R}^{d} / \Lambda\right)} \sum_{\xi \in \Lambda^{*}} \widehat{f}(\xi) \geq \frac{\widehat{f}(0)}{\operatorname{Vol}\left(\mathbb{R}^{d} / \Lambda\right)}
$$

How does the magic function look like in \mathbb{R}^{8} ?

- $f: \mathbb{R}^{8} \rightarrow \mathbb{R}$ radial, Schwartz
- $f(0)=\widehat{f}(0)=1$
- $\widehat{f}(\xi) \geq 0$ for all $\xi \in \mathbb{R}^{8}$
- $f(x) \leq 0$ for $|x| \geq \sqrt{2}$
- The values $f(r)$ and $\widehat{f}(r)$ vanish whenever $r^{2} \in 2 \mathbb{Z}_{>0}$

The Cohn-Elkies optimisation problem is easy to solve if $d=1$, but the "luck" seemed to stop there...

Modular forms $\left(E_{4}, E_{6}, \operatorname{Re} \Delta\right)$

The magic function in \mathbb{R}^{8}

$$
f(x)=\frac{\pi i}{8640} a(x)+\frac{i}{240 \pi} b(x)
$$

+1 eigenfunction is

$$
\begin{gathered}
a(r)=-4 \sin ^{2}\left(\frac{\pi r^{2}}{2}\right) \int_{0}^{i \infty} \phi_{0}\left(\frac{-1}{z}\right) z^{2} e^{\pi i r^{2} z} \mathrm{~d} z \\
\phi_{0}=\frac{\left(E_{2} E_{4}-E_{6}\right)^{2}}{\Delta}
\end{gathered}
$$

-1 eigenfunction is

$$
\begin{aligned}
b(r) & =-4 \sin ^{2}\left(\frac{\pi r^{2}}{2}\right) \int_{0}^{i \infty} \psi_{l}(z) e^{\pi i r^{2} z} \mathrm{~d} z \\
\psi_{I} & =128 \frac{\theta_{00}^{4}+\theta_{01}^{4}}{\theta_{10}^{8}}+128 \frac{\theta_{01}^{4}-\theta_{10}^{4}}{\theta_{00}^{8}}
\end{aligned}
$$

The Sphere Packing Problem in dimension 8

Theorem (Viazovska, 2016)

No packing of unit balls in Euclidean space \mathbb{R}^{8} has density greater than that of the Λ_{8}-lattice packing.

$$
\Lambda_{8}=\left\{\left(x_{i}\right) \in \mathbb{Z}^{8} \cup\left(\mathbb{Z}+\frac{1}{2}\right)^{8}: \sum_{j=1}^{8} x_{j} \equiv 0(\bmod 2)\right\}
$$

