## Optimizing shapes and partitions

## MMAC day, 14 March 2024

We all understand the importance of minimizing/maximizing

## functions of real variables

$$
f: D \subseteq \mathbb{R}^{n} \rightarrow \mathbb{R}
$$





But not every problem fits into these formalisms. A famous example:
From all sets with a given fixed perimeter, which one has the largest area?

## $\max \left\{\operatorname{area}(A): A \subset \mathbb{R}^{2}, \operatorname{per}(A)=a\right\}$.



Dido's problem (IX b.C.) Dido is a legendary figure associated with Ancient Carthage (Tunisia). According to the legend, she was a refugee from a power struggle with her brother in Lebanon. She arrived with her entourage and asked a piece of land. The locals offered her as much land as could be enclosed by the hide of a bull.

But not every problem fits into these formalisms. A famous example:
From all sets with a given fixed perimeter, which one has the largest area?
$\max \left\{\operatorname{area}(A): A \subset \mathbb{R}^{2}, \operatorname{per}(A)=a\right\}$.

R:

## Another example:

The honeycomb conjecture: among all subdivisions of the plane into regions of equal area, the regular hexagon grid is the one with least total perimeter


Another problem: fundamental frequencies of vibration
Of all the drums with a certain area, which one has the smallest fundamental frequency?

## Wave equation:

$$
\frac{\partial^{2} u}{\partial t^{2}}=c^{2}\left(\frac{\partial^{2} u}{\partial x^{2}}+\frac{\partial^{2} u}{\partial y^{2}}\right)
$$

## Fourier series:

$$
u(x, y)=\sum_{n \in \mathbb{N}}\left(a_{n} \cos \left(\sqrt{\lambda_{n}} c t\right)+b_{n} \sin \left(\sqrt{\lambda_{n}} c t\right)\right) \varphi_{n}(x)
$$

Another problem: fundamental frequencies of vibration
Of all the drums with a certain area, which one has the smallest fundamental frequency?

Given a region $\omega \subset \mathbb{R}^{2}$ (drum's surface), is frequencies correspond to the real numbers $\lambda$ for which the following problem has a nontrivial solution
$\left\{\begin{array}{cl}-\Delta u(x, y)=\lambda u(x, y), & (x, y) \in \omega, \\ u(x, y)=0, & (x, y) \in \partial \omega\end{array}\right.$


$$
\min \left\{\lambda_{1}(\omega): \omega \subset \mathbb{R}^{2}, \operatorname{area}(\omega)=a\right\}
$$

Now let us add a box $D$, and force the set to be inside $D$

$$
\min \left\{\lambda_{1}(\omega): \omega \subset D, \operatorname{area}(\omega)=a\right\}
$$

## Natural questions:

- Is there a solution? In which sense it depends on the box?
- Are the solutions explicit? Is there any pattern emerging?
- How regular are the solutions?
- In which sense are the results depending on the fact that we are minimising $\lambda_{1}$ ?


## $\min \left\{\lambda_{1}(\omega): \omega \subset D, \operatorname{vol}(\omega)=a\right\}$







Simulations by Pedro Antunes (DMIST)


Recent theoretical results (2005-...): all solutions are smooth, they intersect the boundary of the box, there are no arcs of circunference (!), ...


Up to this point: problems with the structure:

$$
\min \{\Phi(\omega): \omega \subseteq D+\text { constraints }\}
$$

Harder: optimal partition problems

$$
\min \left\{\Phi\left(\omega_{1}, \ldots, \omega_{\ell}\right): \omega_{i} \subseteq D, \omega_{i} \cap \omega_{j}=\varnothing \forall i \neq j\right\}
$$



Example:

$$
\Phi\left(\omega_{1}, \ldots, \omega_{\ell}\right)=\sum_{i=1}^{\ell} \lambda_{1}\left(\omega_{i}\right)
$$

(Ramos-Tavares-Terracini 2016)

## Hexagons again as $\ell \rightarrow \infty$ ? Open problem!



Simulations by Bourdin, Bucur, Oudet (2009)

## Even more recent result: restrictions on the area

$$
\min \left\{\sum_{i=1}^{\ell} \lambda_{1}\left(\omega_{i}\right) \mid \omega_{i} \subset D, \omega_{i} \cap \omega_{j}=\varnothing \forall i \neq j \text { and } \sum_{i=1}^{\ell} \operatorname{area}\left(\omega_{i}\right) \leq a\right\}
$$



Andrade-Moreira dos Santos-Santos-Tavares 2023







Simulations by Pedro Antunes (DMIST)

## Take home message

- In several contexts, it makes sense to minimize shapes
- In general: no explicit solution. One tries to obtain qualitative properties.
- Conjectures, open problems




## Do you want to know more?

https://sites.google.com/site/hugotavaresmath/
hugo.n.tavares@tecnico.ulisboa.pt

