Smooth symmetries of spheres

Pedro Boavida de Brito

MMAC Day
March 2024

Isometries of the sphere

n-sphere $S^{n}=\left\{x \in \mathbb{R}^{n+1}:\|x\|=1\right\}$

Definition

An isometry is a bijection $f: S^{n} \rightarrow S^{n}$ which preserves distances.
$n=1$: rotation by an angle θ (and reflection)
$n=2$: rotation about an axis in \mathbb{R}^{3} by an angle θ (and reflection).

Isometries of the sphere

n-sphere $S^{n}=\left\{x \in \mathbb{R}^{n+1}:\|x\|=1\right\}$

Definition

An isometry is a bijection $f: S^{n} \rightarrow S^{n}$ which preserves distances.
$n=1$: rotation by an angle θ (and reflection)
$n=2$: rotation about a line in \mathbb{R}^{3} by an angle θ (and reflection).
Any isometry $f: S^{n} \rightarrow S^{n}$ can be extended to a linear isometry

$$
F: \mathbb{R}^{n+1} \rightarrow \mathbb{R}^{n+1} \quad, \quad F(x)=f(x /\|x\|)\|x\|
$$

i.e. an orthogonal transformation. That is,

$$
\operatorname{Isom}\left(S^{n}\right) \cong O(n+1)
$$

Smooth symmetries of the sphere

isometries \subset smooth symmetries
A smooth symmetry - aka diffeomorphism - is a smooth map $S^{n} \rightarrow S^{n}$ with smooth inverse.

$$
O(n+1) \subset \operatorname{Diff}\left(S^{n}\right)
$$

\rightsquigarrow "Most" smooth symmetries aren't isometries.

Smooth symmetries of the circle

$$
\begin{aligned}
& \delta: S^{1} \longrightarrow S^{1} \\
& {[0,1] / 0 \sim 1}
\end{aligned}
$$

Therefore, $\operatorname{Diff}\left(S^{1}\right) \simeq O(2)$, i.e. the inclusion has an inverse up to deformation (= homotopy equivalence).

Smooth symmetries \simeq isometries?

```
\(\operatorname{Diff}\left(S^{1}\right) \simeq O(2)\)
\(\operatorname{Diff}\left(S^{2}\right) \simeq O(3)(\) Smale '50s)
```


DIFFEOMORPHISMS OF THE 2-SPHERE

STEPHEN SMALE ${ }^{1}$
The object of this paper is to prove the theorem.
Theorem A. The space Ω of all orientation preserving C^{∞} diffeomorphisms of S^{2} has as a strong deformation retract the rotation group SO(3).

Here S^{2} is the unit sphere in Euclidean 3-space, the topology on Ω is the C^{r} topology $\infty \geqq r>1$ (see [4]) and a diffeomorphism is a differentiable homeomorphism with differentiable inverse.

Smooth symmetries \simeq isometries?

```
\(\operatorname{Diff}\left(S^{1}\right) \simeq O(2)\)
\(\operatorname{Diff}\left(S^{2}\right) \simeq O(3)\) (Smale '50s)
\(\operatorname{Diff}\left(S^{3}\right) \simeq O(4)\) (Hatcher '80s)
```

Annals of Mathematics, 117 (1983), 553-607

A proof of the Smale Conjecture, $\operatorname{Diff}\left(\mathbf{S}^{3}\right) \simeq O(4)$

By Allen E. Hatcher

The Smale Conjecture [9] is the assertion that the inclusion of the orthogonal group $O(4)$ into $\operatorname{Diff}\left(S^{3}\right)$, the diffeomorphism group of the 3 -sphere with the C^{∞} topology, is a homotopy equivalence. There are many equivalent forms of this

$\operatorname{Diff}\left(S^{4}\right) \not 千 O(5)$ (Watanabe 2018, arXiv)

SOME EXOTIC NONTRIVIAL ELEMENTS OF THE RATIONAL HOMOTOPY GROUPS OF $\operatorname{Diff}\left(S^{4}\right)$

TADAYUKI WATANABE

Abstract

This paper studies the rational homotopy groups of the group Diff $\left(S^{4}\right)$ of self-diffeomorphisms of S^{4} with the C^{∞}-topology. We present a method to prove that there are many 'exotic' non-trivial elements in $\pi_{*} \operatorname{Diff}\left(S^{4}\right) \otimes$ Q parametrized by trivalent graphs. As a corollary of the main result, the 4dimensional Smale conjecture is disproved. The proof utilizes Kontsevich's characteristic classes for smooth disk bundles and a version of clasper surgery for families. In fact, these are analogues of Chern-Simons perturbation theory in 3 -dimension and clasper theory due to Goussarov and Habiro.

1. Introduction

The homotopy type of $\operatorname{Diff}\left(S^{4}\right)$ is an important object in topology, whereas almost nothing was known about its homotopy groups except that they include those coming from the orthogonal group O_{5} (e.g., recent surveys in [Hat2, Kup]). Let $\operatorname{Diff}\left(D^{d}, \partial\right)$ denote the group of self-diffeomorphisms of D^{d} which fix a neighbor-

Exotic smooth bundles

$$
\operatorname{Diff}\left(S^{n}\right) \simeq O(n+1) \times \operatorname{Diff}_{*}\left(S^{n}\right)
$$

So Watanabe's result is equivalent to

$$
\operatorname{Diff}_{*}\left(S^{4}\right) \not \nsim *
$$

Strategy: Test with spheres,
$\left\{S^{k-1} \rightarrow \operatorname{Diff}_{*}\left(S^{4}\right)\right\} \leftrightarrows\left\{\right.$ smooth S^{k}-families of (pointed) 4-spheres $\}$

If $\operatorname{Diff}_{*}\left(S^{4}\right) \simeq *$, then every smooth S^{k}-family of 4-spheres is trivial, i.e. a product $S^{k} \times S^{4}$

Configuration space integrals

Watanabe constructs exotic S^{k} families of 4-spheres (many! for $k=2,5,9, \ldots$).To check non-triviality, he uses an algebraic invariant. For each trivalent graph Γ with $2 k$-vertices:

$$
\left\{\text { smooth } S^{k} \text {-families of (pointed) 4-spheres }\right\} \rightarrow \mathbb{R}
$$

$$
\left(S^{4} \rightarrow E \rightarrow S^{k}\right) \mapsto \int_{C_{k}(E)} \omega_{\Gamma}
$$

Many questions ...e.g. does \int depend on the smooth structure of the fibers? (Lin-Xie '23) It depends on less. But word is: it may depend on even less.

