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FEATURE 
SELECTION: 
Only the “right” 
features
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More data is not necessarily 

more information…

Feature Selection: 
• Extract from the data useful and valuable 

knowledge for real problem solving 
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FEATURE SELECTION:
THE RIGHT DATA



• Select a small subset of the original 
features

• Such that we remove irrelevant and 
redundant features

• In order to:
• Reduce computational complexity

• Improve model accuracy

• Increase model interpretability
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FEATURE SELECTION:
THE RIGHT DATA
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Feature Selection Methods
(classification)

Classifier dependent

Wrapper Embedded

Classifier 
independent

Filter



• Idea: search  for feature subsets, using the 
classifier accuracy as the measure of utility for a 
candidate subset

• Disadvantages: 

• computational cost

• selected features are classifier 
specific

• Example: 
• Stepwise regression
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WRAPPER 
METHODS



• Idea: Classifier estimations and feature 
selection are not separated and interact

• Disadvantages: 

• Selected features are classifier 
specific

• Regularized_OF=OF+λregularization_penalty

• Example: 
• Regularization methods
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EMBEDDED 
METHODS



• Idea: Classifier’s estimation and feature 
selection are separated and depend on a 
specific measure of benefit

• Most popular ones: rely on Mutual 
Information (MI) and Entropy

• Mutual Information: measures linear and 
non-linear associations among features

• Example: 
• Forward feature selection methods 

based on MI
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FILTER METHODS

regularization_penalty 



ENTROPY,
MUTUAL 
INFORMATION
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Motivated by problems in the 
field of telecommunications

• A measure of uncertainty 

• One formula that changed 
the world…

• Does not depend on the values 
of X, only on its prob.

• H(a)=0

• H(X)≥0, Non-negative

• H(X)=ln(n), X~Unif{a1,…,an}, 
is maximum

• Does not depend on the 
values of X, only on its pdf

• Can be negative

• h(X)=ln(a), X~Unif(0,a), 

• a=1,    h(X)=0

• a<1,    h(X)<0

Entropy
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Entropy
Entropy

Discrete rv
Differential Entropy 

Continous rv

(1948)



Measures linear and non-linear 
ass

ociations between  X and Y

• MI(X,Y) ≥ 0

• Symmetric

• MI(X,Y)=0 iff X ∐ Y

• MI(X,X)=H(X)

Measures linear and non-linear 
ass

ociations between  X and Y

• All properties hold, except

• MI(X,X)=+∞

M
u

tu
al
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rm
at

io
n
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Mutual Information
Discrete rv

Mutual Information
Continuous rv

• Measures linear and non-linear associations between  X and Y



FORWARD 
FEATURE 
SELECTION
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C= Class-variable

Goal: Select a small subset of the original features, excluding                                               

          irrelevant and redundant features

FORWARD FEATURE SELECTION

S= Selected featuresF= Candidate features



FORWARD FEATURE SELECTION

Calculation / Estimation

Problem:



OBJECTIVE FUNCTIONS: INTERPRETABILITY

max

min

min max

>0



OBJECTIVE FUNCTIONS: INTERPRETABILITY

Inter-feature
redundance

Class-relevant
Redundancy

Relevance



FEATURE SELECTION 
METHODS
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Third Group of Methods

• Class-relevant redundancy: contribution of a 
candidate feature to the explanation of the 
class, when taken together with already 
selected features
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FORWARD FEATURE 
SELECTION 
METHODS

3RD GROUP



THEORETICAL 
COMPARISON
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How comparisons are usually done:
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NUMERICAL 
COMPARISON:



Theoretical Setup:

Class-Variable: C=Sgn(X+kY)

 Candidate Features: X, X-k’Y, XDisc, Z
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2. THEORETICAL 
COMPARISON:

USING A DISTRIBUTIONAL SETTING

X

Y X+kY

X-k’YXDisc

C=1

C=0



FEATURE (RELEVANCE)TYPES

• Class-Variable: C=Sgn(X+kY)
• Candidate Features: X, X-k’Y, XDisc, Z

Features Categories:
• Irrelevant: Z

• Relevant: X, X-k’Y, XDisc

• Fully Relevant: X-k’Y

• Redundant: 
• If we chose X then XDisc is redundant

• If we chose XDisc then X is redundant

X

Y
X+kY

X-k’YXDisc

C=1

C=0



Features Order: OF were calculated 
theoretically assuming  X, Y, and Z are indep. 
N(0,1)

Performance Measure:
Bayes Risk and Bayes Classifier 

=
min{ Total Probability of Misclassifiction}
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2. THEORETICAL 
COMPARISON:

USING A DISTRIBUTIONAL SETTING



THEORETICAL COMPARISON 
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CONCLUSIONS

JMI, CMIM or even 

better: DMIM 

MIM, MIFS, mRMR, maxMIFS:
Ignore complementary
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