What is relevant and what is redundant?

M. ROSÁRIO OLIVEIRA

CEMAT AND DEPT. MATEMÁTICA, IST-ULISBOA

FEATURE SELECTION: Only the "*right"* features

More data is not necessarily more information...

TURE SELECTION: THE RIGHT DATA

Feature Selection:

• Extract from the data **useful** and **valuable** knowledge for **real problem solving**

- Select a small subset of the original features
- Such that we remove irrelevant and redundant features
- In order to:
 - Reduce computational complexity
 - Improve model accuracy
 - Increase model interpretability

Idea: search for feature subsets, using the classifier accuracy as the measure of utility for a candidate subset

Disadvantages:

- computational cost
- selected features are classifier specific

• Example:

• Stepwise regression

Idea: Classifier estimations and feature selection are not separated and interact

Disadvantages:

- Selected features are classifier specific
- Regularized_OF=OF+λregularization_penalty

• Example:

• Regularization methods

FILTER METHODS

- **Idea:** Classifier's estimation and feature selection are separated and depend on a specific measure of benefit
- Most popular ones: rely on Mutual Information (MI) and Entropy
- Mutual Information: measures linear and non-linear associations among features

Example:

• Forward feature selection methods based on MI

ENTROPY, MUTUAL INFORMATION

Entropy

Entropy

Motivated by problems in the field of telecommunications

A Mathematical Theory of Communication*

C. E. Shannon (1948)

- A measure of uncertainty
- One formula that changed the world...

$$H(\boldsymbol{X}) = -\sum_{\boldsymbol{x} \in \mathcal{X}} P(\boldsymbol{X} = \boldsymbol{x}) \ln P(\boldsymbol{X} = \boldsymbol{x}).$$

Entropy

Discrete rv

- Does not depend on the values of X, only on its prob.
- H(a)=0
- H(X)≥0, Non-negative
- H(X)=ln(n), X~Unif{a₁,...,a_n}, is maximum

Differential Entropy Continous rv

$$h(\boldsymbol{X}) = -\int_{\boldsymbol{x}\in\mathcal{X}} f_{\boldsymbol{X}}(\boldsymbol{x}) \ln f_{\boldsymbol{X}}(\boldsymbol{x}) d\boldsymbol{x}.$$

- Does not depend on the values of X, only on its pdf
- Can be negative
- h(X)=ln(a), X~Unif(0,a),
 - a=1, h(X)=0
 - a<1, h(X)<0

Mutual Information Discrete rv

Mutual Information Continuous rv

$$\mathsf{MI}(X,Y) = \sum_{\mathbf{x}\in\mathcal{X}}\sum_{\mathbf{y}\in\mathcal{Y}}P(\mathbf{X}=\mathbf{x},\mathbf{Y}=\mathbf{y})\ln\frac{P(\mathbf{X}=\mathbf{x},\mathbf{Y}=\mathbf{y})}{P(\mathbf{X}=\mathbf{x})P(\mathbf{Y}=\mathbf{y})}.$$
$$\mathsf{MI}(X,Y) = -\int_{\mathbf{y}\in\mathcal{Y}}\int_{\mathbf{x}\in\mathcal{X}}f_{X,Y}(\mathbf{x},\mathbf{y})\ln\frac{f_{X,Y}(\mathbf{x},\mathbf{y})}{f_X(\mathbf{x})f_Y(\mathbf{y})}d\mathbf{x}d\mathbf{y}.$$

• Measures linear and non-linear associations between **X** and **Y**

- $MI(\mathbf{X},\mathbf{Y}) \ge 0$
- Symmetric
- MI(X,Y)=0 iff $X \coprod Y$
- MI(**X**,**X**)=H(**X**)

- All properties hold, except
- MI(**X**,**X)**=+∞

FORWARD FEATURE SELECTION

FORWARD FEATURE SELECTION

Goal: Select a **small subset** of the original features, excluding **irrelevant** and **redundant** features

FORWARD FEATURE SELECTION

 $OF(X_i) = MI(C, S) + MI(C, X_i | S)$ = MI(C, S) + MI(C, X_i) - TMI(C, X_i, S) = MI(C, S) + MI(C, X_i) - MI(X_i, S) + MI(X_i, S | C).

OBJECTIVE FUNCTIONS: INTERPRETABILITY

 $X_j = \arg \max_{X_i \in F} MI(C, S \cup \{X_i\}).$

$$\mathsf{Max} \quad \mathsf{OF}(X_i) = \mathsf{MI}(C, S) + \mathsf{MI}(C, X_i | S)$$

$$OF(X_i) = H(C) - H(C|X_i, S)$$
, min

$$OF(X_i) = MI(C, S) + MI(C, X_i|S) = MI(C, S) + MI(C, X_i) - TMI(C, X_i, S)$$
$$= MI(C, S) + MI(C, X_i) - MI(X_i, S) + MI(X_i, S|C).$$

OBJECTIVE FUNCTIONS: INTERPRETABILITY

 $X_j = \arg \max_{X_i \in \mathbf{F}} \operatorname{MI}(C, \mathbf{S} \cup \{X_i\}).$

 $OF(X_i) = MI(C, S) + MI(C, X_i|S)$ = MI(C, S) + MI(C, X_i) - TMI(C, X_i, S) = MI(C, S) + MI(C, X_i) - MI(X_i, S) - MI(X_i, S|C).

RelevanceInter-featureClass-relevantredundanceRedundancy••••••

FEATURE SELECTION METHODS

FORWARD FEATURE SELECTION METHODS JRD GROUP

Third Group of Methods

Method	Objective function evaluated at X_{i}
CIFE	$MI(C, X_i) - \sum_{X_s \in S} (MI(X_i, X_s) - MI(X_i, X_s C))$
JMI	$MI(C, X_i) = \frac{1}{ S } \sum_{X_i \in S} (MI(X_i, X_s) - MI(X_i, X_s C))$
CMIM	$MI(C, X_i) = \max_{X_s \in S} \{MI(X_i, X_s) = MI(X_i, X_s C)\}$
JMIM	$MI(C, X_i) = \max_{X_i \in S} \{MI(X_i, X_s) = MI(X_i, X_s C) = MI(C, X_s)\}$
OFD	$MM(X_i) = MI(X_i, C) - max MI(X_i, X_i) + max MI(X_i, X_i)C$

 Class-relevant redundancy: contribution of a candidate feature to the explanation of the class, when taken together with already selected features

THEORETICAL COMPARISON

NUMERICAL COMPARISON:

How comparisons are usually done:

2. THEORETICAL COMPARISON:

USING A DISTRIBUTIONAL SETTING

Theoretical Setup:

Class-Variable:
$$C_k = \begin{cases} 0, & X + kY < 0 \\ 1, & X + kY \ge 0 \end{cases}$$

Candidate Features: X, X-k'Y, X_{Disc}, Z

FEATURE (RELEVANCE) TYPES

- **Class-Variable**: $C_k = \begin{cases} 0, & X + kY < 0 \\ 1, & X + kY \ge 0 \end{cases}$
- Candidate Features: X, X-k'Y, X_{Disc}, Z

Features Categories:

- Irrelevant: Z
- *Relevant:* X, X-k'Y, X_{Disc}
 - Fully Relevant: X-k'Y
- Redundant:
 - If we chose X then X_{Disc} is redundant
 - If we chose X_{Disc} then X is redundant

Features Order: OF were calculated theoretically assuming X, Y, and Z are indep. N(0,1)

Performance Measure:

Bayes Risk and Bayes Classifier = min{Total Probability of Misclassifiction}

THEORETICAL COMPARISON

Α	$MI(C_k,A)$				The desired probability density function is	$= \int_{-\frac{k}{2}}^{+\infty} \phi(z)\phi(v + k'z)dz;$	functions. In the case of $v \ge 0$, it is simply 0 = pendency on v. As for $v < 0$,
X X - k'Y Z	$\frac{\frac{1}{2}\ln(2\pi e)}{\frac{1}{2}\ln(2\pi e)}$	$ (1+k^{\prime 2}) - \frac{1}{2} \sum_{j=0}^{1} \int_{\mathbb{R}} f_{X C_{k}=j}(u) (1+k^{\prime 2}) - \frac{1}{2} \sum_{j=0}^{1} \int_{\mathbb{R}} f_{X C_{k}=j}(u) $	$\ln f_{X C_k=j}(u)du$ $f_{X-k'Y C_k=j}(u)\ln f_{X-k'Y}$	$_{Y C_k=j}(u)du$	$f_{X-k'Y X_{mx}=1,\zeta_k=0}(\nu) = \begin{cases} \frac{2\pi}{\pi-\arctan k} \int_{-\frac{\nu}{k'}}^{\frac{\nu}{k'+k'}} \phi(z)\phi(\nu+k'z)dz, & \nu \ge 0\\ 0, & \nu < 0 \end{cases}$	while, for $v < 0$, $d \left[\int_{-\infty}^{+\infty} dv v dv v dv v dv dv dv dv v dv dv v dv d$	$\frac{d}{d\nu} \left[\int_{-\frac{\nu}{\nu',k}}^{-\frac{\nu}{\nu',k}} \phi(z) \Phi(\nu + k'z) dz + \frac{1}{2} F_{SN(0,1,-k)} \right] \left(-\frac{1}{2} \int_{-\frac{\nu}{\nu',k}}^{-\frac{\nu}{\nu',k}} \phi(z) \Phi(\nu + k'z) dz + \frac{1}{2} \int_{-\frac{\nu}{\nu',k}}^{-\frac{\nu}{\nu',k}} \phi(z) \Phi(\nu + k'z) dz + \frac{1}$
X _{disc}	$2\ln(2) +$	$\frac{\arctan k}{\pi} \ln(\frac{\arctan k}{2\pi}) + (1 + 1)$	$-\frac{\arctan k}{\pi}$) $\ln(\frac{1}{2}-\frac{\arctan k}{2\pi})$	$\frac{\operatorname{an} k}{\pi}$) ^b	We finally consider $u = 0$ and $i = 0$. For $v > 0$	$\frac{dv}{dv} \left[\int_{-\frac{1}{V}} \phi(z) \phi(v + k^2) dz - \frac{1}{2} \phi(k^2) \right]$	$= \int_{-\frac{\pi}{k',k}} \phi(z)\phi(\nu + k'z)dz + \frac{1}{2}f_{SN(0,1,-k)} \left(-\right)$
^a $X C_k = j$	~ SN(0, 1,	$\frac{(-1)^{j+1}}{k}$, $j = 0, 1.$	1.14		$P(X - kY \le v, X_{disc} = 0, C_k = 0)$	$= \int_{-\frac{\nu}{\nu}}^{+\infty} \phi(z)\phi(\nu + k'z)dz + \frac{1}{2}\phi(\frac{\nu}{k'})\frac{1}{k'} - \frac{1}{2}\phi(\frac{\nu}{k'})\frac{1}{k'}$	$-\frac{1}{2}\phi\left(\frac{\nu}{k'}\right)\frac{1}{k'}-\frac{1}{2}f_{SN(0,1,-k)}\left(-\frac{\nu}{k'+k}\right)\frac{1}{k'}$
$^{D} X - k'Y 0$	$C_k = j \sim SN$	$N(0, \sqrt{1 + k^2}, (-1)^{j+1})$	$(\frac{1-kk'}{k+k'})), \ j=0,1.$		$= \int_{-\infty}^{0} \int_{-\infty}^{+\infty} dy (y) dy(z) dy dz = \int_{-\infty}^{+\infty} \int_{-\infty}^{0} dy (y) dy(z) dz dy$	$= \int_{-r}^{+\infty} \phi(z)\phi(v+k'z)dz.$	$= \int_{-\infty}^{-\frac{x}{\nu}} \phi(z)\phi(\nu + k'z)dz.$
Table 8					$= \int_{-\infty} \int_{-\infty} \varphi(n) \varphi(z) u n u z = \int_{0} \int_{-kz} \varphi(n) \varphi(z) u z u n$	Note that the following important result [5]. Ch. 3] was required	d-1/12
MI between	n pairs of	input features.			$-\int_{-\infty}^{k'}\int_{y+kz}^{z}\phi(w)\phi(z)dzdw$	in order to obtain both final expressions above:	Once again, (A.4) was applied, in this case k'r)dr.
<u>A</u>	B	$MI(\cdot, \cdot)$			$=\frac{1}{2}-\int_{0}^{0}\phi(z)\left[\Phi(-kz)-\frac{1}{2}\right]dz-\int_{0}^{-\frac{1}{p}}\left[\frac{1}{2}-\Phi(y+k'z)\right]\phi(z)dz$	$\frac{d}{dx} \int_{a(x)}^{b(x)} g(x, y) dy$	The desired probability density function is
X X X - k'Y	X - KY X_{disc} X_{disc}	$\frac{\frac{1}{2}\ln(1+\frac{1}{k^2})}{\ln(2)}$ $\frac{1}{2}\ln(2\pi e) - \frac{1}{2}\sum_{i=1}^{1}$	$\int_{\mathbb{R}} \int_{\mathbb{R}} f_{X C_{i,i}=j}(u) \ln f_{X C_{i}}$	u_=j(u)du ³	$= \frac{3}{4} - \frac{1}{2}F_{SN(0,1-k)}(0) - \frac{1}{2}\Phi\left(-\frac{\nu}{\nu}\right) + \int^{-\frac{\nu}{k'}} \Phi(\nu + k'z)\phi(z)dz.$	$= \int_{a(x)}^{b(x)} \frac{dg(x,y)}{dx} dy + g(x,b(x))b'(x) - g(x,a(x))a'(x). (A.4)$	$f_{X-kY X_{like}=0,f_k=1}(\nu) = \begin{cases} 0, \\ \frac{2\pi}{\pi \tau \tan k} \int_{-\frac{\pi}{k',k}}^{-\frac{\pi}{k'}} \phi(z) \phi(\nu) \end{cases}$
Ζ	В	$\tilde{0}, B \in \{X, X - k'Y, X\}$	(disc)	× -	4 2 $K = J_{-\infty}$	This result was applied to $\frac{d}{d\nu}\int_{-\frac{1}{k'-k}}^{+\infty}\phi(z)\Phi(\nu+k'z)\mathrm{d}z,$ in the ex-	We now consider $u = 1$ and $j = 0$. For $v \ge 0$
^a $X C_{k'} =$	$j \sim SN(0,$	$1, \frac{(-1)^{j+1}}{k'}), \ j = 0, 1.$			$P(X - kY \le v X_{ex} = 0, C = 0)$	pression for $v \ge 0$, and also to $\frac{d}{dv} \int_{-\frac{1}{k'}}^{+\frac{v}{v}} \phi(z) \Phi(v + k'z) dz$, concerning	$P(X - k'Y \le v, X_{disc} = 1, C_k = 0)$
Α		В	$MI(\cdot, \cdot C_k)$		$\int \frac{1}{ t ^2} \int \frac{1}{ t ^2} $	The desired probability density function is	$= \int_{-\frac{p}{p^2}} \int_{0} \phi(w)\phi(z)dw dz + \int_{-\frac{p}{p^2}} \int_{0} \int_{0} \phi(w)\phi(z)dw dz + \int_{-\frac{p}{p^2}} \int_{0} \phi(w)\phi(z)dw dz + \int_{0} \phi(w)\phi(w)\phi(z)dw dz + \int_{0} \phi(w)\phi(w)\phi(z)dw dz + \int_{0} \phi(w)\phi(w)\phi(w)\phi(w)\phi(w)\phi(w)\phi(w)\phi(w)\phi(w)\phi(w)$
X		X - k'Y	$1 \Sigma^1$ (f)	$(u) \ln f$	$-\int_{-\infty}\int_{-\infty}\phi(w)\phi(z)dwdz + \int_{-\frac{v}{v-v}}\int_{-\infty}\phi(w)\phi(z)dzdw$	$\int_{X-bYK_{d_{2}}-1,f_{k-1}}(v) = \begin{cases} \frac{2\pi}{\pi-\arctan}\int_{-\infty}^{+\infty}\phi(x)\phi(v+k'x)dx, & v \ge 0\\ \frac{2\pi}{\pi-\arctan}\int_{-\infty}^{+\infty}\phi(x)\phi(v+k'x)dx, & v \ge 0 \end{cases}$	$= \int_{-\frac{\pi}{2}}^{-\frac{\pi}{2}/3} \phi(z) \left[\Phi(v + k'z) - \frac{1}{2} \right] dz$
			$\frac{1}{2} \sum_{j=0}^{2} \int_{\mathbb{R}} f_{X-k'Y }$ $\frac{1}{2} \sum_{j=0}^{1} \int_{\mathbb{R}} f_{X-k'Y }$ $(1 + \ln \pi + \ln k')$	$ C_{k=j}(u) \ln \int X_{ C }$	$=\int_{-\infty}^{-\frac{p}{k'+k}}\Phi(v+k'z)\phi(z)dwdz+\int_{-\frac{p}{k'+k}}^{+\infty}\Phi(-kz)\phi(z)dz$	$\frac{1}{\pi - \operatorname{arcunk}} \int_{-\frac{\pi}{T}} \phi(z) \phi(v + \kappa z) dz, v < 0$ We now consider $u = 0$ and $j = 1$. We have to split again in two	$+\int_{-\frac{1}{k^{2}}}^{0}\phi(z)\left[\Phi(-kz)-\frac{1}{2}\right]dzdw$
X		X _{disc}	$\frac{-\frac{\arctan k}{\pi}}{\frac{\arctan k}{\pi}}\ln(\frac{\arctan k}{\pi})$	$-(1-\frac{ar}{a})$	$= \int_{-\infty}^{-\frac{\nu}{k'+k}} \Phi(\nu + k'z) \phi(z) dz + \frac{1}{2} - \frac{1}{2} F_{SN(0,1,-k)} \left(-\frac{\nu}{k'+k} \right).$	cases. For $v \ge 0$, $P(X - kY \le v, X_{disc} = 0, C_k = 1) = \int_{-\infty}^{+\infty} \int_{-\infty}^{0} \phi(w)\phi(z)dz dw$	$= \int_{-\frac{1}{k'+1}}^{-\frac{1}{k'+1}} \phi(z)\Phi(v+k'z)dz - \frac{1}{2} \left[\Phi\left(-\frac{v}{k'+k'+1}\right) + \frac{1}{k'+1} \right] \Phi(v+k'z)dz$
X - k'Y		X _{disc}	$\frac{1}{2}\sum_{i=1}^{1}\int_{Y_{i}}f_{Y_{i}}$ is a first second	(u) In fy	We again need to take the derivative of the two expressions with respect to a to obtain the corresponding conditional density	$-\int_{-\infty}^{+\infty} \phi(z) \left[\frac{1}{2} - \phi(-iz)\right] dz$	+ $\frac{1}{2} \left[F_{SN(0,1,-k)}(0) - F_{SN(0,1,-k)} \left(- \frac{\nu}{k'+k} \right) \right]$
			$2 \sum_{J=0} \int \mathbb{R} \int X - k' Y C_k = h(X - k'Y X_{\text{disc}}, C_k)$	$)^{b,c}$	functions. In the case of $\nu \ge 0$,	$-J_0 \qquad (2 - \sqrt{2})$	$= \int_{-\infty}^{-\frac{\nu}{\nu_{th}}} \phi(z) \Phi(\nu + k'z) dz - \frac{1}{2} \Phi\left(\frac{\nu}{k' + k}\right)$
Ζ		В	$0, B \in \{X, X - k'Y, \ldots, k'Y, $	X _{disc} }	$\frac{d}{d} \left[\frac{1}{2} + \frac{1}{E_{r}} \exp(\theta) - \frac{1}{2} \Phi(-\frac{\nu}{2}) + \int_{-\frac{\nu}{2}}^{\frac{1}{\nu}} \Phi(\nu + k'_{2}) \phi(z) dz \right]$	$=\frac{1}{2} r_{SN(0,1,-k)}(0) - \frac{1}{4}$	$+\frac{1}{2}F_{0(0,1-2)}(0) - \frac{1}{2}F_{0(0,1-2)}(-\frac{\nu}{1-1-1}).$
^a $X C_{k'} =$	$j \sim SN(0)$	$(1, \frac{(-1)^{j+1}}{k'}), \ j = 0, 1.$	A 4	R	$\frac{dv}{dv} \begin{bmatrix} 4 & 2^{-SN(0,1,k)} \\ 2 & 2 \end{bmatrix} \begin{bmatrix} k \\ k \end{bmatrix} + \int_{-\infty}^{\infty} e^{i(t+k-1)t} e^{i(t$	For v < 0,	$\sum_{k=1}^{n} \sum_{k=1}^{n} \sum_{k$
b X - k'Y	$ C_k = j \sim$	$SN(0, \sqrt{1 + k^2}, (-1)^3)$	J+1 71	D	Wi((', ')	$P(X - kY \le v, X_{disc} = 0, C_k = 1)$ $e^{-\frac{1}{2}} e^{v+k^2} e^{-\frac{1}{2}} e^{v-k^2}$	We now need to take the derivative with
$\sim n(X - K)$	$\frac{1}{2} \frac{1}{2}$	$\frac{k}{k^{2}} = \frac{k^{2}}{k^{2}}$	X	X - k'Y	$\frac{1}{2}\ln(1+\frac{1}{k^2})$	$= \int_{-\frac{w}{y+k}}^{w} \int_{-kx}^{-kx} \phi(w)\phi(z)dw dz + \int_{-\frac{w}{y-k}}^{w} \int_{-kx}^{-kx} \phi(w)\phi(z)dz dw$	expression obtained for $v \ge 0$ (the derivative o 0) to obtain the corresponding conditional d
/7	(1	X	X _{disc}	$\ln(2)$ $1\ln(2\pi a) = 1\sum_{i=1}^{n} \int f_{i} f_{i}(x) \ln f_{i}(x) dx dx$	$= \int_{-\frac{1}{2}}^{-\frac{1}{2}} \phi(z) [\Phi(v + k'z) - \Phi(-kz)] dz$	have director in the matrix
$=\frac{\sqrt{2}}{\sqrt{1+1}}$	$\frac{1}{k^2}$	$\sqrt{2\pi}\sqrt{1+k^2}(k+k)$	$\frac{\kappa}{1} e^{-\kappa r}$	Adisc R	$\frac{1}{2} \prod (2\pi e) - \frac{1}{2} \sum_{j=0} \int_{\mathbb{R}} J_X _{C_{k'}=j}(u) \prod J_X _{C_{k'}=j}(u) du$	$\int_{-\frac{1}{2}}^{+\infty} dx = \begin{bmatrix} 1 & dx & b \end{bmatrix} dx dx$	$\frac{d}{d\nu} \left[\int_{-\frac{1}{\nu}}^{\frac{1}{\nu}} \phi(z) \Phi(\nu + k'z) dz - \frac{1}{2} \Phi\left(-\frac{\nu}{k'+1} \right) \right]$
	(1	-kk')z			$(1)^{j+1}$	$+\int_{-\frac{1}{2}} \varphi(z) \left[\frac{1}{2} - \varphi(-kz)\right] dz dw$	$-\frac{1}{2}F_{3N(0,1,-k)}\left(-\frac{\nu}{k'+k}\right)$
× Ф((k-k)	$(\sqrt{1+k'^2})^{dz}$	^a $X C_{k'}=j$	$\sim SN(0,$	$1, \frac{(-1)}{k'}, j = 0, 1.$	$= \int_{-\frac{k}{k'x}}^{-\frac{k}{k'x}} \phi(z) \Phi(v + k'z) dz - \frac{1}{2} \left[F_{2N(0,1,-k)} \left(-\frac{v}{k'} \right) \right]$	$= \int_{-\pi}^{\frac{\pi}{\nu+k}} \phi(z)\phi(\nu+k'z)dz - \frac{1}{2}\phi\left(-\frac{\nu}{k'+k}\right)$

 $P(X - k'Y \le v, X_{disc} = 1, C_k =$ tions. In the case of $v \ge 0$, it is simply 0 since there is no de- $=\int_{-\frac{w}{w',z}}^{0}\int_{-kz}^{w+k'z}\phi(w)\phi(z)dw$ $\int_{-\frac{\nu}{k'}}^{-\frac{\nu}{k'}} \phi(z) \Phi(\nu + k'z) dz + \frac{1}{2} F_{2N(0,1,-k)} \left(-\frac{\nu}{k'+k}\right) + \frac{1}{2} \Phi\left(\frac{\nu}{k'}\right)$ $\frac{-\frac{\nu}{\nu}}{r^{2}}\phi(z)\phi(\nu+k'z)dz + \frac{1}{2}f_{SN(0,1,-k)}\left(-\frac{\nu}{k'+k}\right)\frac{1}{k'+k}$ $=\int_{-\frac{z}{2}}^{0}\phi(z)[\Phi(v+k'z) \frac{1}{2}\phi\binom{\nu}{k'}\frac{1}{k'} - \frac{1}{2}f_{\text{SN}(0,1,-k)}\left(-\frac{\nu}{k'+k}\right)\frac{1}{k'+k} + \frac{1}{2}\phi\binom{\nu}{k'}\frac{1}{k'}$ $+\int_{0}^{+\infty}\phi(z)\left[\Phi(v+k'z)-\right]$ $= \int_{-\frac{\nu}{2}}^{0} \phi(z) \Phi(\nu + k'z) dz$ again, (A.4) was applied, in this case to $\int_{-\frac{\pi}{1-\mu}}^{-\frac{\pi}{1-\mu}} \phi(z) \Phi(\nu +$ $-F_{SN(0,1,-k)}\left(-\frac{v}{k'+k}\right) +$ $_{kY|K_{line}=0, f_{k}=1}^{}(\nu) = \begin{cases} 0, & \nu \ge 0\\ \frac{2\pi}{n \text{ transk}} \int_{-\frac{1}{\nu/\lambda}}^{-\frac{\nu}{\nu}} \phi(z) \phi(\nu + k'z) dz, & \nu < 0 \end{cases}$ **(**^{+∞} . $\int_{-\frac{v}{k' z^{2}}}^{+\infty} \frac{2\pi}{\pi - \arctan k} \zeta(z, v) dz \bigg)$ Ve now consider u = 1 and j = 0. For $v \ge 0$, $\frac{2\pi}{\frac{\nu}{r'+k}}\frac{2\pi}{\pi-\arctan k}\zeta(z,\nu)dz\Big)d\nu$ $\int_{-\frac{\pi}{2}}^{\frac{\pi}{2}+k'z} \int_{0}^{\nu+k'z} \phi(w)\phi(z)dw \, dz + \int_{-\frac{\pi}{2}+k}^{0} \int_{0}^{-kz} \phi(w)\phi(z)dz \, dw$ $\int_{-\infty}^{\frac{y}{k'+k}} \frac{2\pi}{\pi - \arctan k} \zeta(z, v) dz$ $\sum_{v=1}^{\frac{v}{r+k}} \frac{2\pi}{\pi - \arctan k} \zeta(z, v) dz dv$ $\int_{\frac{w}{2}}^{\frac{w}{2}+1} \phi(z) \Phi(v+k'z) dz - \frac{1}{2} \left[\Phi\left(-\frac{v}{k'+k}\right) - \Phi\left(-\frac{v}{k'}\right) \right]$ $\int_{-\infty}^{\frac{\nu}{k'}} \frac{2\pi}{\pi - \arctan k} \zeta(z, \nu) dz \right)$ $\frac{1}{2} \left[F_{SN(0,1,-k)}(0) - F_{SN(0,1,-k)} \left(-\frac{\nu}{k'+k} \right) \right] - \frac{1}{2} \Phi \left(\frac{\nu}{k'+k} \right)$ $\left(\frac{2\pi}{\pi - \arctan k}\zeta(z, v)dz\right)dv$ $\frac{2\pi}{\arctan k}\zeta(z,v)dz)$ or the case v < 0, $P(X - k'Y \le v, X_{disc} = 1, C_k = 0) = 0$. need to take the derivative with respect to v of the $\frac{\partial \psi}{\partial v_{+k}} \frac{2\pi}{\arctan k} \zeta(z, v) dz dv$ ession obtained for $v \ge 0$ (the derivative of the one for v < 0 is obtain the corresponding conditional density functions. We $\int_{-\frac{1}{2}}^{\frac{1}{2}} \phi(z) \Phi(\nu + k'z) dz - \frac{1}{2} \Phi\left(-\frac{\nu}{k' + k}\right) + \frac{1}{2} F_{SN(0,1,-k)}(0)$ -<u>V</u> k'+k $\frac{2\pi}{\arctan k}\zeta(z,v)dz$ 1) k'+k $\frac{2\pi}{\arctan k}\zeta(z,v)dz\Big)dv\Big),$ $\int_{-\infty}^{\frac{\nu}{1+k}} \phi(z)\phi(\nu+k'z)dz - \frac{1}{2}\phi\left(-\frac{\nu}{k'+k}\right)$

CONCLUSIONS

- Theoretical framework for the comparison of feature selection methods.
- Derivation of <u>upper and lower bounds</u> for the target objective functions.
- Distributional setting to highlight deficiencies of feature selection methods.
- Identification of feature selection methods to be avoided and preferred.

MIM, MIFS, mRMR, maxMIFS: Ignore complementary

Main References

	Neurocomputing 513 (2022) 215–232	
	Contents lists available at ScienceDirect	
	Neurocomputing	
LSEVIER	journal homepage: www.elsevier.com/locate/neucom	Compared States one Functional States

Feature selection using Decomposed Mutual Information Maximization

Francisco Macedo^a, Rui Valadas^{b,c,*}, Eunice Carrasquinha^{a,b}, M. Rosário Oliveira^a, António Pacheco^a

Theoretical foundations of forward feature selection methods based on mutual information

Francisco Macedo^{a,b}, M. Rosário Oliveira^{a,*}, António Pacheco^a, Rui Valadas^c

^a CEMAT and Department of Mathematics, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, Lisboa 1049–001, Portugal ^b EPF Lausanne, SB-MATHICSE-ANCHP, Station 8, Lausanne CH-1015, Switzerland

^c IT and Departament of Electrical and Computer Engineering, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, Lisboa 1049–001, Portugal

Theoretical evaluation of feature selection methods based on mutual information

Cláudia Pascoal^a, M. Rosário Oliveira^{a,*}, António Pacheco^a, Rui Valadas^b

^a CEMAT and Dep. Mathematics, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal
 ^b IT and Dep. Electrical and Computer Engineering, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal