RESOLUTION OF SINGULARITIES OF AN ALGEBRAIC VARIETY OVER A FIELD OF CHARACTERISTIC ZERO: II

BY HEISUKE HIRONAKA

(Part I appeared in the preceding issue of this Journal)

CHAPTER III. EFFECTS OF PERMISSIBLE MONOIDAL TRANSFORMATIONS ON SINGULARITIES.

1. The numerical characters $\nu^*(J)$ and $\nu(J)$ of a local ideal J, and a standard base of J

Let R be a regular local ring and J an ideal in R. Let M be the maximal ideal of R. We have defined the homogeneous ideal $gr_M(J, R)$ in the graded R/M-algebra $gr_M(R)$.

DEFINITION 1. Given R and J as above, we define $\nu^{(i)}(J)$, (a non-negative integer or infinity, ∞ in symbol) for every positive integer i as follows: $\nu^{(i)}(J)$ is the maximal integer ν , if it exists, such that there exists a system of homogeneous elements $(\varphi_1, \varphi_2, \cdots, \varphi_{i-1})$ in $gr_M(J, R)$ having the property that

$$(\varphi_1, \dots, \varphi_{i-1}) \operatorname{gr}_{\mathbf{M}}(\mathbf{R}) \cap \operatorname{gr}_{\mathbf{M}}^{\mu}(\mathbf{R}) = \operatorname{gr}_{\mathbf{M}}^{\mu}(\mathbf{J}, \mathbf{R})$$

for all $\mu < \nu$; and, if such ν does not exist, we set $\nu^{(i)}(\mathbf{J}) = \infty$. (An empty system of elements generates the zero ideal.)

LEMMA 1. Let $(\varphi_1, \dots, \varphi_m)$ be a system of homogeneous elements of $gr_M(J, R)$ such that

- (i) $\operatorname{gr}_{\mathbf{M}}(\mathbf{J}, \mathbf{R}) = (\varphi_1, \dots, \varphi_m) \operatorname{gr}_{\mathbf{M}}(\mathbf{R}),$
- (ii) if $\nu_i = \deg \varphi_i (1 \le i \le m)$, then $\nu_1 \le \nu_2 \le \cdots \le \nu_m$, and
- (iii) for every $i \geq 1$, $\varphi_i \notin (\varphi_1, \cdots, \varphi_{i-1}) \operatorname{gr}_M(R)$ (where the empty system of elements generates the zero ideal). Then we have $\nu^{(i)}(J) = \nu_i$ for $1 \leq i \leq m$ and $\nu^{(i)}(J) = \infty$ for all i > m.

PROOF. Let $\mu_i = \nu^{(i)}(\mathbf{J})$. In view of (i) and (ii), it is clear from Definition 1 that $\nu_i \leq \mu_i$ for all i $(1 \leq i \leq m)$, and also that $\mu_i = \infty$ for all i > m. Suppose we have i $(1 \leq i \leq m)$ such that $\mu_i > \nu_i$. Let i be the smallest integer with this property. By Definition 1, we have homogeneous elements $\psi_1, \dots, \psi_{i-1}$ such that

$$(\psi_{\scriptscriptstyle 1},\, \cdots,\, \psi_{\scriptscriptstyle i-1})\, {
m gr}_{
m M}({
m R}) \cap {
m gr}_{
m M}^{\mu}({
m R}) = {
m gr}_{
m M}^{\mu}({
m J},\, {
m R})$$

for all $\mu < \mu_i$. We may assume that $\deg \psi_i \leq \cdots \leq \deg \psi_{i-1}$. Then, for every j < i, we have

$$(\psi_{\scriptscriptstyle 1},\,\cdots,\,\psi_{\scriptscriptstyle j-1})\, {
m gr}_{
m M}({
m R})\cap {
m gr}_{
m M}^{\scriptscriptstyle\mu}({
m R})={
m gr}_{
m M}^{\scriptscriptstyle\mu}({
m J},\,{
m R})$$

¹ cf. \$2, Chap. II.