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Big fiber theorems

Any map in a suitable category has a big fiber.

Example

X ,Y = finite sets, |X | > |Y | ⇒ any f : X → Y has a fiber containing at
least two elements (a.k.a. Dirichlet’s principle).

f : Sn+d → Rn continuous ⇒ f has a fiber of d-volume at least that of Sd

(Gromov 2003).

(M, ω) closed symplectic manifold, π: M → Rd involutive ⇒ π has a
nondisplaceable fiber (Entov–Polterovich 2005).

f : Tp(d+1) → Rd continuous ⇒ there is y0 ∈ Rd with
rk
(
H∗(Tp(d+1))→ H∗(f −1(y0))

)
≥ 2p (Gromov 2009).

f : ∆p(d+1) → Rd continuous ⇒ f has a fiber intersecting all pd-dimensional
faces (Karasev 2012). For affine f proved by Rado and Neumann circa 1945.
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Ideal-valued measures

A = associative skew-commutative unital Z2k -graded algebra, k ≥ 0 (e.g. H∗(X ))
I(A) = graded ideals of A (e.g. ker f ∗ ⊂ H∗(X ) for continuous f : Y → X )
X = compact Hausdorff space.

Definition

An A-ideal-valued measure on X (A-IVM) is a map µ: O(X )→ I(A), where
O(X ) = open sets of X , such that

(normalization): µ(∅) = 0 and µ(X ) = A;

(monotonicity): U ⊂ U ′ ⇒ µ(U) ⊂ µ(U ′);

(continuity): if U1 ⊂ U2 ⊂ . . . and U =
⋃

i Ui , then µ(U) =
⋃

i µ(Ui );

(multiplicativity): µ(U) ∗ µ(U ′) ⊂ µ(U ∩ U ′);

(intersection): if X = U ∪ U ′, then µ(U ∩ U ′) = µ(U) ∩ µ(U ′).

IVMs can be extended to compact subsets by µ(K ) =
⋂

U⊃K µ(U); this
satisfies analogous properties.
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The cohomology IVM

X = compact metrizable space. The cohomology IVM on X is given by

µ(K ) =
⋂

U open⊃K

ker
(
H∗(X )→ H∗(X \ U)

)
for compact K ,

µ(U) =
⋃

K cpt⊂U

µ(K ) for open U .

Example

X = CPn. H∗(CPn;F) = F[h]/(hn+1). Let us compute µ(CPk):

µ(CPk) = ker
(
H∗(CPn)→ H∗(CPn \ CPk)

)
.

Now, CPn \ CPk deformation retracts onto a copy of CPn−k−1, and the resulting
map H∗(CPn)→ H∗(CPn−k−1) is just the truncation hn−k 7→ 0. Thus

µ(CPk) = (hn−k) ⊂ F[h]/(hn+1) .
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Abstract centerpoint theorem and pushforwards

Theorem (Karasev)

Let Y be a compact metrizable space of covering dimension d , and let ν be an
A-IVM on Y for some algebra A. If I ∈ I(A) satisfies I ∗(d+1) 6= 0, then the
collection of compact sets Z ⊂ Y with ν(Z ) ⊃ I has nonempty intersection.

A centerpoint of ν with respect to I is any point in the above intersection.
This cannot be applied directly to the cohomology IVM on either CPn (too high a
dimension) or ∆n (no topology).

Definition
Let f : X → Y be a continuous map, and let µ be an A-IVM on X for some algebra
A. The pushforward of µ by f is (f∗µ)(V ) = µ(f −1(V )) for open V ⊂ Y .

This defines an A-IVM on X . Passage to compacts commutes with pushforwards
for compact metrizable spaces.
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Proof of Karasev’s theorem for the simplex

Example

Consider Φ: CPn → Rn: Φ([z0 : · · · : zn]) = 1
|z|2 (|z1|2, . . . , |zn|2); Φ(CPn) = ∆n.

µ = coh. IVM on CPn ⇒ (Φ∗µ)(∆k) = µ(Φ−1(∆k)) = µ(CPk) = (hn−k).

Proof of Karasev’s simplex theorem.

Let f : ∆p(d+1) → Y be a continuous map, where Y is a metrizable space of
covering dimension d . Let ν = Φ∗µ be the H∗(CPp(d+1))-IVM on ∆p(d+1). Let
I = (hp) ∈ I(H∗(CPp(d+1))). Then I^(d+1) = (hp(d+1)) 6= 0. The abstract
centerpoint theorem applies to f∗ν and yields y0 ∈ Y such that Z ⊂ Y compact,
I ⊂ (f∗ν)(Z ) ⇒ y0 ∈ Z . Let D ⊂ ∆p(d+1) be a pd-dimensional face and let
Z = f (D). Then ν(D) = (hp) = I , and thus

(f∗ν)(Z ) = ν(f −1(Z )) = ν(f −1(f (D))) ⊃ ν(D) = I ,

by monotonicity and since f −1(f (D)) ⊃ D. It follows that y0 ∈ Z = f (D), or
equivalently D ∩ f −1(y0) 6= 0.
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Symplectic geometry I: basics

Symplectic manifold = (M2n, ω), ω a closed 2-form: ω∧n is a volume form. For
a Hamiltonian H: [0, 1]×M → R have its Hamiltonian vector field X t

H :
ω(X t

H , ·) = −dHt and the Hamiltonian flow φtH . The Hamiltonian group
Ham(M, ω) is the set of φ1

H . Have the symplectomorphism group
Symp(M, ω) = {φ ∈ Diff(M) |φ∗ω = ω} and its identity component
Symp0(M, ω). Basic fact: Ham(M, ω) ⊂ Symp0(M, ω).

Example

R2n(x1, . . . , xn, y1, . . . , yn), ωstd =
∑

i dxi ∧ dyi .

T2n = R2n/Z2n, ω descends from R2n.

Surfaces with area forms;

(CPn, ωFS): Cn+1 ⊃ S2n+1 π−→ CPn, π∗ωFS = ωstd|S2n+1 .

Products.
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Symplectic geometry II: special maps and size

The Poisson bracket of f , g ∈ C∞(M) is {f , g} = ω(Xg ,Xf ) = df (Xg ). A
smooth map π: M → B is involutive if for f , g ∈ C∞(B) have {π∗f , π∗g} ≡ 0.

Example

π = (f1, . . . , fd): M → Rd is involutive if and only if {fi , fj} ≡ 0.

Φ: CPn → Rn is involutive.

T2n = Tn(p)× Tn(q)→ Tn(p) is involutive for ω =
∑

i dpi ∧ dqi .

A set S ⊂ M is displaceable if ∃φ ∈ Ham(M, ω): φ(S) ∩ S = ∅.

Example

Any compact in R2n is displaceable.

In S2, any open hemisphere is displaceable by a rotation. Any closed
hemisphere is nondisplaceable. The equator is nondisplaceable.

Φ: CPn → ∆n: let p0 = ( 1
n+1 , . . . ,

1
n+1 ). Since Sn+1 ⊂ PU(n) ⊂ Ham(CPn),

for any p 6= p0, Φ−1(p) is displaceable.
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Big fibers in symplectic geometry

Theorem (Entov–Polterovich)

Let (M, ω) be a closed symplectic manifold. Then any involutive map M → B has
a nondisplaceable fiber.

Example

Φ: CPn → ∆n: since for p 6= p0, Φ−1(p) is displaceable, it follows that
Φ−1(p0), a.k.a. the Clifford torus, is nondisplaceable.

For n = 1, we obtain the equator in S2 = CP1.

T2n → Tn must have a nondisplaceable fiber. Any fiber here is a linear
Lagrangian torus, and they are all equivalent under Symp(T2n). Thus all of
them are nondisplaceable.

Let Γ1, . . . , Γk ⊂ S2 be graphs such that each connected component of
S2 \ Γi is a disk of area ≤ 1

2 . Then Γ1 × · · · × Γk is nondisplaceable. Indeed,

if fi ∈ C∞(S2): Γi = f −1
i (0), then f1 × · · · × fk : (S2)k → Rk is involutive and

all fibers but 0 are displaceable.
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Ideal-valued quasi-measures

Two closed (respectively, open) subsets A,A′ of a closed symplectic manifold
(M, ω) commute if there is an involutive map π: M → B and closed
(respectively, open) sets C ,C ′ ⊂ B such that A = π−1(C ), A′ = π−1(C ′).

Definition

An A-ideal-valued quasi-measure (A-IVQM) on a closed symplectic manifold
(M, ω) is a map τ : O(M)→ I(A) satisfying all the axioms of an A-IVM, except
multiplicativity, which is replaced by

(quasi-multiplicativity): τ(U) ∗ τ(U ′) ⊂ τ(U ∩ U ′) if U,U ′ commute.

Two further properties:

(invariance): τ is Symp0(M, ω)-invariant;

(vanishing): if K ⊂ M is a displaceable compact, then τ(M \ K ) = A, and
there is open U ⊃ K with τ(U) = 0.
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Main result

Given a closed symplectic manifold (M, ω), its quantum cohomology QH∗(M) is
a unital associative skew-commutative algebra, which is Z2NM

-graded, where NM

is the minimal Chern number of M. Additively, QH∗(M) is just a regrading of
H∗(M; Λ), the singular cohomology of M with coefficients in the so-called Novikov
field. The product is deformed by a count of holomorphic spheres in M.

Theorem (DGPZ 2021)

Any closed symplectic manifold (M, ω) carries a QH∗(M)-IVQM which also
satisfies invariance and vanishing.

This is referred to as the quantum cohomology IVQM.

Example

On S2, the quantum cohomology IVQM τ can be described as follows: for an
open set U ⊂ S2, τ(U) = 0 if for every compact connected smooth subsurface
Q ⊂ U there exists a smooth closed disk of area < 1

2 containing Q. Otherwise
τ(U) = QH∗(S2).
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IVQMs and involutive maps

The power of IVQMs comes from the following.

Lemma

If τ is an A-IVQM on (M, ω) and π: M → B is involutive, then π∗τ is an A-IVM.

Corollary

Let (M, ω) be a closed symplectic manifold, let τ be an A-IVQM on M, and
assume that π: M → B is an involutive map, where dimB = d . If I ∈ I(A)
satisfies I ∗(d+1) 6= 0, then there is b0 ∈ B such that π−1(b0) intersects each
compact Z ⊂ M with I ⊂ τ(Z ).

Proof.
The abstract centerpoint theorem applied to the A-IVM π∗τ , yields b0 ∈ B such
that for each compact C ⊂ B with I ⊂ (π∗τ)(C ) satisfies b0 ∈ C . If Z ⊂ M is
compact and I ⊂ τ(Z ), then π−1(π(Z )) ⊃ Z and thus
(π∗τ)(π(Z )) = τ(π−1(π(Z ))) ⊃ τ(Z ) ⊃ I ⇒ b0 ∈ π(Z )⇒ π−1(b0) ∩ Z 6= ∅.
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New example of symplectic rigidity

For a, b, c ∈ T2 define subsets T1(a),T2(b),T3(c) ⊂ T6:

T1(a) = {(p, q) ∈ T6 | (p1, p2) = a} ,

T2(b) = {(p, q) ∈ T6 | (q1, q3) = b} ,

T3(c) = {(p, q) ∈ T6 | (p3, q2) = c} .

Put T (a, b, c) = T1(a) ∪ T2(b) ∪ T3(c).

Theorem (DGPZ 2021)

Any involutive map π: T6 × S2 → B, where B is a surface, has a fiber which
intersects all sets of the form T (a, b, c)× equator.

Idea: QH∗(T6 × S2) = QH∗(T6)⊗ QH∗(S2). The ideal
I = ([dp1 ∧ dp2]⊗ 1, [dq1 ∧ dq3]⊗ 1, [dp3 ∧ dq2]⊗ 1) ∈ I(QH∗(T6 × S2)) satisfies
[dp1 ∧ dp2 ∧ dp3 ∧ dq1 ∧ dq2 ∧ dq3]⊗ 1 ∈ I ∗3, in particular I ∗3 6= 0. Thus π has a
fiber which intersects each Z ⊂ T6 × S2 with I ⊂ τ(Z ), where τ is the quantum
cohomology IVQM. It remains to compute that I ⊂ τ(T (a, b, c)× equator).
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Relative symplectic cohomology and IVQMs

• Umut Varolgüneş defined the relative symplectic cohomology SH∗M for a closed
symplectic manifold (M, ω), as a presheaf of Z2NM

-graded unital associative
skew-commutative algebras (over the Novikov field) on the category of compacts
in M (the product is due to Tonkonog–Varolgüneş), such that
SH∗M(M) = QH∗(M). A new and crucial property is the Mayer–Vietoris
sequence for pairs of commuting sets.

SH∗M(K ) = H
(

l̂im−→
i→∞

CF ∗(Hi )
)
⊗ Λ ,

where Hi is a sequence of Hamiltonians satisfying Hi |K < 0 and converging
pointwise to 0 on K and to +∞ on M \ K , CF ∗(Hi ) is the Floer complex of Hi

over the Novikov ring, which is roughly the Morse complex of the action
functional associated to Hi on the loop space of M. The hat denotes completion.
• The quantum cohomology IVQM is defined as follows:

τ(K ) =
⋂

U open⊃K

ker
(
QH∗(M)

res−→ SH∗(M \ U)
)
, τ(U) =

⋃
K cpt⊂U

τ(K ) .
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OBRIGADO!
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