Big fiber theorems and symplectic rigidity Geometria em Lisboa

Frol Zapolsky (University of Haifa & MISANU)

February 27, 2024

Based on joint work together with Adi Dickstein, Yaniv Ganor, Leonid Polterovich

A D M A B M A B M

Frol Zapolsky (University of Haifa & MISANU)

・ロト ・四ト ・ヨト ・ヨト

メロト メタト メヨト メヨ

Example

• $X, Y = \text{finite sets}, |X| > |Y| \Rightarrow \text{any } f: X \to Y \text{ has a fiber containing at least two elements (a.k.a. Dirichlet's principle).}$

Example

- $X, Y = \text{finite sets}, |X| > |Y| \Rightarrow \text{any } f: X \to Y \text{ has a fiber containing at least two elements (a.k.a. Dirichlet's principle).}$
- $f: S^{n+d} \to \mathbb{R}^n$ continuous $\Rightarrow f$ has a fiber of *d*-volume at least that of S^d (Gromov 2003).

Image: A matching of the second se

Example

- $X, Y = \text{finite sets}, |X| > |Y| \Rightarrow \text{any } f: X \to Y \text{ has a fiber containing at least two elements (a.k.a. Dirichlet's principle).}$
- $f: S^{n+d} \to \mathbb{R}^n$ continuous $\Rightarrow f$ has a fiber of *d*-volume at least that of S^d (Gromov 2003).
- (M,ω) closed symplectic manifold, π: M → ℝ^d involutive ⇒ π has a nondisplaceable fiber (Entov-Polterovich 2005).

Image: A matching of the second se

Example

- $X, Y = \text{finite sets}, |X| > |Y| \Rightarrow \text{any } f: X \to Y \text{ has a fiber containing at least two elements (a.k.a. Dirichlet's principle).}$
- $f: S^{n+d} \to \mathbb{R}^n$ continuous $\Rightarrow f$ has a fiber of *d*-volume at least that of S^d (Gromov 2003).
- (M, ω) closed symplectic manifold, $\pi: M \to \mathbb{R}^d$ involutive $\Rightarrow \pi$ has a nondisplaceable fiber (Entov–Polterovich 2005).
- $f: \mathbb{T}^{p(d+1)} \to \mathbb{R}^d$ continuous \Rightarrow there is $y_0 \in \mathbb{R}^d$ with $\mathsf{rk}\left(H^*(\mathbb{T}^{p(d+1)}) \to H^*(f^{-1}(y_0))\right) \ge 2^p$ (Gromov 2009).

< □ > < 同 > < 回 > < Ξ > < Ξ

Example

- X, Y = finite sets, $|X| > |Y| \Rightarrow$ any $f: X \rightarrow Y$ has a fiber containing at least two elements (a.k.a. Dirichlet's principle).
- $f: S^{n+d} \to \mathbb{R}^n$ continuous $\Rightarrow f$ has a fiber of *d*-volume at least that of S^d (Gromov 2003).
- (M, ω) closed symplectic manifold, $\pi: M \to \mathbb{R}^d$ involutive $\Rightarrow \pi$ has a nondisplaceable fiber (Entov–Polterovich 2005).
- $f: \mathbb{T}^{p(d+1)} \to \mathbb{R}^d$ continuous \Rightarrow there is $y_0 \in \mathbb{R}^d$ with $\mathsf{rk}\left(H^*(\mathbb{T}^{p(d+1)}) \to H^*(f^{-1}(y_0))\right) \ge 2^p$ (Gromov 2009).
- $f: \Delta^{p(d+1)} \to \mathbb{R}^d$ continuous $\Rightarrow f$ has a fiber intersecting all *pd*-dimensional faces (Karasev 2012). For affine *f* proved by Rado and Neumann circa 1945.

< □ > < □ > < □ > < □ > < □ >

Ideal-valued measures

Frol Zapolsky (University of Haifa & MISANU)

メロト メタト メヨト メヨト

A =associative skew-commutative unital \mathbb{Z}_{2k} -graded algebra, $k \ge 0$ (e.g. $H^*(X)$)

A D F A A F F A

Definition

An A-ideal-valued measure on X (A-IVM) is a map $\mu: \mathcal{O}(X) \to \mathcal{I}(A)$, where $\mathcal{O}(X) = \text{open sets of } X$, such that

Definition

An A-ideal-valued measure on X (A-IVM) is a map $\mu: \mathcal{O}(X) \to \mathcal{I}(A)$, where $\mathcal{O}(X) = \text{open sets of } X$, such that

• (normalization): $\mu(\varnothing) = 0$ and $\mu(X) = A$;

Definition

An A-ideal-valued measure on X (A-IVM) is a map $\mu: \mathcal{O}(X) \to \mathcal{I}(A)$, where $\mathcal{O}(X) = \text{open sets of } X$, such that

- (normalization): $\mu(\emptyset) = 0$ and $\mu(X) = A$;
- (monotonicity): $U \subset U' \Rightarrow \mu(U) \subset \mu(U');$

Image: A matching of the second se

Definition

An A-ideal-valued measure on X (A-IVM) is a map $\mu: \mathcal{O}(X) \to \mathcal{I}(A)$, where $\mathcal{O}(X) = \text{open sets of } X$, such that

- (normalization): $\mu(\varnothing) = 0$ and $\mu(X) = A$;
- (monotonicity): $U \subset U' \Rightarrow \mu(U) \subset \mu(U');$
- (continuity): if $U_1 \subset U_2 \subset \ldots$ and $U = \bigcup_i U_i$, then $\mu(U) = \bigcup_i \mu(U_i)$;

イロト イボト イヨト イヨ

Definition

An A-ideal-valued measure on X (A-IVM) is a map $\mu: \mathcal{O}(X) \to \mathcal{I}(A)$, where $\mathcal{O}(X) = \text{open sets of } X$, such that

- (normalization): $\mu(\varnothing) = 0$ and $\mu(X) = A$;
- (monotonicity): $U \subset U' \Rightarrow \mu(U) \subset \mu(U');$
- (continuity): if $U_1 \subset U_2 \subset \ldots$ and $U = \bigcup_i U_i$, then $\mu(U) = \bigcup_i \mu(U_i)$;
- (multiplicativity): $\mu(U) * \mu(U') \subset \mu(U \cap U')$;

Definition

An A-ideal-valued measure on X (A-IVM) is a map $\mu: \mathcal{O}(X) \to \mathcal{I}(A)$, where $\mathcal{O}(X) = \text{open sets of } X$, such that

- (normalization): $\mu(\varnothing) = 0$ and $\mu(X) = A$;
- (monotonicity): $U \subset U' \Rightarrow \mu(U) \subset \mu(U');$
- (continuity): if $U_1 \subset U_2 \subset \ldots$ and $U = \bigcup_i U_i$, then $\mu(U) = \bigcup_i \mu(U_i)$;
- (multiplicativity): $\mu(U) * \mu(U') \subset \mu(U \cap U');$
- (intersection): if $X = U \cup U'$, then $\mu(U \cap U') = \mu(U) \cap \mu(U')$.

Definition

An A-ideal-valued measure on X (A-IVM) is a map μ : $\mathcal{O}(X) \to \mathcal{I}(A)$, where $\mathcal{O}(X) =$ open sets of X, such that

- (normalization): $\mu(\varnothing) = 0$ and $\mu(X) = A$;
- (monotonicity): $U \subset U' \Rightarrow \mu(U) \subset \mu(U');$
- (continuity): if $U_1 \subset U_2 \subset \ldots$ and $U = \bigcup_i U_i$, then $\mu(U) = \bigcup_i \mu(U_i)$;
- (multiplicativity): $\mu(U) * \mu(U') \subset \mu(U \cap U');$
- (intersection): if $X = U \cup U'$, then $\mu(U \cap U') = \mu(U) \cap \mu(U')$.
- IVMs can be extended to compact subsets by $\mu(K) = \bigcap_{U \supset K} \mu(U)$; this satisfies analogous properties.

< □ > < □ > < □ > < □ > < □ >

メロト メタト メヨト メヨト

X = compact metrizable space. The **cohomology IVM** on X is given by

X = compact metrizable space. The **cohomology IVM** on X is given by

$$\mu(K) = \bigcap_{U \text{ open} \supset K} \ker \left(H^*(X) \to H^*(X \setminus U) \right) \quad \text{for compact } K \,,$$

X = compact metrizable space. The **cohomology IVM** on X is given by

$$\mu(K) = \bigcap_{U \text{ open} \supset K} \ker \left(H^*(X) \rightarrow H^*(X \setminus U) \right) \quad \text{for compact } K \,,$$

$$\mu(U) = \bigcup_{K \text{ cpt} \subset U} \mu(K) \text{ for open } U.$$

X = compact metrizable space. The **cohomology IVM** on X is given by

$$\mu(K) = \bigcap_{U \text{ open} \supset K} \ker \left(H^*(X) \to H^*(X \setminus U) \right) \text{ for compact } K \,,$$

$$\mu(U) = \bigcup_{K \text{ cpt} \subset U} \mu(K) \text{ for open } U.$$

Example

$$X = \mathbb{C}P^n$$
. $H^*(\mathbb{C}P^n; \mathbb{F}) = \mathbb{F}[h]/(h^{n+1})$.

X = compact metrizable space. The **cohomology IVM** on X is given by

$$\mu(K) = \bigcap_{U \text{ open} \supset K} \ker \left(H^*(X) \to H^*(X \setminus U) \right) \text{ for compact } K \,,$$

$$\mu(U) = \bigcup_{K \text{ cpt} \subset U} \mu(K) \text{ for open } U.$$

Example

 $X = \mathbb{C}P^n$. $H^*(\mathbb{C}P^n; \mathbb{F}) = \mathbb{F}[h]/(h^{n+1})$. Let us compute $\mu(\mathbb{C}P^k)$:

X = compact metrizable space. The **cohomology IVM** on X is given by

$$\mu(K) = \bigcap_{U \text{ open} \supset K} \ker \left(H^*(X) \to H^*(X \setminus U) \right) \text{ for compact } K \,,$$

$$\mu(U) = \bigcup_{K \text{ cpt} \subset U} \mu(K) \text{ for open } U.$$

Example

$$X = \mathbb{C}P^n$$
. $H^*(\mathbb{C}P^n; \mathbb{F}) = \mathbb{F}[h]/(h^{n+1})$. Let us compute $\mu(\mathbb{C}P^k)$:

$$\mu(\mathbb{C}P^k) = \ker\left(H^*(\mathbb{C}P^n) \to H^*(\mathbb{C}P^n \setminus \mathbb{C}P^k)\right).$$

Frol Zapolsky (University of Haifa & MISANU)

.∃⇒ ⇒

X =compact metrizable space. The **cohomology IVM** on X is given by

$$\mu(K) = \bigcap_{U \text{ open} \supset K} \ker \left(H^*(X) \to H^*(X \setminus U) \right) \text{ for compact } K \,,$$

$$\mu(U) = \bigcup_{K \text{ cpt} \subset U} \mu(K) \text{ for open } U.$$

Example

$$X = \mathbb{C}P^n$$
. $H^*(\mathbb{C}P^n; \mathbb{F}) = \mathbb{F}[h]/(h^{n+1})$. Let us compute $\mu(\mathbb{C}P^k)$:

$$\mu(\mathbb{C}P^k) = \ker \left(H^*(\mathbb{C}P^n) \to H^*(\mathbb{C}P^n \setminus \mathbb{C}P^k) \right).$$

Now, $\mathbb{C}P^n \setminus \mathbb{C}P^k$ deformation retracts onto a copy of $\mathbb{C}P^{n-k-1}$, and the resulting map $H^*(\mathbb{C}P^n) \to H^*(\mathbb{C}P^{n-k-1})$ is just the truncation $h^{n-k} \mapsto 0$.

X =compact metrizable space. The **cohomology IVM** on X is given by

$$\mu(K) = \bigcap_{U \text{ open} \supset K} \ker \left(H^*(X) \to H^*(X \setminus U) \right) \text{ for compact } K \,,$$

$$\mu(U) = \bigcup_{K \text{ cpt} \subset U} \mu(K) \text{ for open } U.$$

Example

$$X = \mathbb{C}P^n$$
. $H^*(\mathbb{C}P^n; \mathbb{F}) = \mathbb{F}[h]/(h^{n+1})$. Let us compute $\mu(\mathbb{C}P^k)$:

$$\mu(\mathbb{C}P^k) = \ker\left(H^*(\mathbb{C}P^n) \to H^*(\mathbb{C}P^n \setminus \mathbb{C}P^k)\right).$$

Now, $\mathbb{C}P^n \setminus \mathbb{C}P^k$ deformation retracts onto a copy of $\mathbb{C}P^{n-k-1}$, and the resulting map $H^*(\mathbb{C}P^n) \to H^*(\mathbb{C}P^{n-k-1})$ is just the truncation $h^{n-k} \mapsto 0$. Thus

$$\mu(\mathbb{C}P^k) = (h^{n-k}) \subset \mathbb{F}[h]/(h^{n+1}).$$

Abstract centerpoint theorem and pushforwards

Let Y be a compact metrizable space of covering dimension d, and let ν be an A-IVM on Y for some algebra A.

< D > < A > < B > <</p>

Let Y be a compact metrizable space of covering dimension d, and let ν be an A-IVM on Y for some algebra A. If $I \in \mathcal{I}(A)$ satisfies $I^{*(d+1)} \neq 0$, then the collection of compact sets $Z \subset Y$ with $\nu(Z) \supset I$ has nonempty intersection.

Let Y be a compact metrizable space of covering dimension d, and let ν be an A-IVM on Y for some algebra A. If $I \in \mathcal{I}(A)$ satisfies $I^{*(d+1)} \neq 0$, then the collection of compact sets $Z \subset Y$ with $\nu(Z) \supset I$ has nonempty intersection.

A **centerpoint** of ν with respect to I is any point in the above intersection.

Let Y be a compact metrizable space of covering dimension d, and let ν be an A-IVM on Y for some algebra A. If $I \in \mathcal{I}(A)$ satisfies $I^{*(d+1)} \neq 0$, then the collection of compact sets $Z \subset Y$ with $\nu(Z) \supset I$ has nonempty intersection.

A **centerpoint** of ν with respect to I is any point in the above intersection. This cannot be applied directly to the cohomology IVM on either $\mathbb{C}P^n$ (too high a dimension) or Δ^n (no topology).

A D F A A F F A

Let Y be a compact metrizable space of covering dimension d, and let ν be an A-IVM on Y for some algebra A. If $I \in \mathcal{I}(A)$ satisfies $I^{*(d+1)} \neq 0$, then the collection of compact sets $Z \subset Y$ with $\nu(Z) \supset I$ has nonempty intersection.

A **centerpoint** of ν with respect to I is any point in the above intersection. This cannot be applied directly to the cohomology IVM on either $\mathbb{C}P^n$ (too high a dimension) or Δ^n (no topology).

Definition

Let $f: X \to Y$ be a continuous map, and let μ be an A-IVM on X for some algebra A. The **pushforward of** μ by f is $(f_*\mu)(V) = \mu(f^{-1}(V))$ for open $V \subset Y$.

Let Y be a compact metrizable space of covering dimension d, and let ν be an A-IVM on Y for some algebra A. If $I \in \mathcal{I}(A)$ satisfies $I^{*(d+1)} \neq 0$, then the collection of compact sets $Z \subset Y$ with $\nu(Z) \supset I$ has nonempty intersection.

A **centerpoint** of ν with respect to I is any point in the above intersection. This cannot be applied directly to the cohomology IVM on either $\mathbb{C}P^n$ (too high a dimension) or Δ^n (no topology).

Definition

Let $f: X \to Y$ be a continuous map, and let μ be an A-IVM on X for some algebra A. The **pushforward of** μ by f is $(f_*\mu)(V) = \mu(f^{-1}(V))$ for open $V \subset Y$.

This defines an A-IVM on X. Passage to compacts commutes with pushforwards for compact metrizable spaces.

< □ > < □ > < □ > < □ > < □ >

Proof of Karasev's theorem for the simplex

Example

Consider
$$\Phi: \mathbb{C}P^n \to \mathbb{R}^n$$
: $\Phi([z_0:\dots:z_n]) = \frac{1}{|z|^2}(|z_1|^2,\dots,|z_n|^2); \Phi(\mathbb{C}P^n) = \Delta^n$.
 $\mu = \operatorname{coh.} \operatorname{IVM} \operatorname{on} \mathbb{C}P^n \Rightarrow (\Phi_*\mu)(\Delta^k) = \mu(\Phi^{-1}(\Delta^k)) = \mu(\mathbb{C}P^k) = (h^{n-k}).$

・ロト ・日下・ ・ ヨト・

Example

Consider
$$\Phi: \mathbb{C}P^n \to \mathbb{R}^n$$
: $\Phi([z_0:\dots:z_n]) = \frac{1}{|z|^2}(|z_1|^2,\dots,|z_n|^2); \Phi(\mathbb{C}P^n) = \Delta^n$.
 $\mu = \operatorname{coh.} \operatorname{IVM} \operatorname{on} \mathbb{C}P^n \Rightarrow (\Phi_*\mu)(\Delta^k) = \mu(\Phi^{-1}(\Delta^k)) = \mu(\mathbb{C}P^k) = (h^{n-k}).$

Proof of Karasev's simplex theorem.

・ロット (日) ・ (日) ・

Example

Consider
$$\Phi: \mathbb{C}P^n \to \mathbb{R}^n$$
: $\Phi([z_0:\cdots:z_n]) = \frac{1}{|z|^2}(|z_1|^2,\ldots,|z_n|^2); \Phi(\mathbb{C}P^n) = \Delta^n$.
 $\mu = \operatorname{coh.} \operatorname{IVM} \operatorname{on} \mathbb{C}P^n \Rightarrow (\Phi_*\mu)(\Delta^k) = \mu(\Phi^{-1}(\Delta^k)) = \mu(\mathbb{C}P^k) = (h^{n-k}).$

Proof of Karasev's simplex theorem.

Let $f: \Delta^{p(d+1)} \to Y$ be a continuous map, where Y is a metrizable space of covering dimension d.

・ロット (日) ・ (日) ・

Example

Consider
$$\Phi: \mathbb{C}P^n \to \mathbb{R}^n$$
: $\Phi([z_0:\cdots:z_n]) = \frac{1}{|z|^2}(|z_1|^2,\ldots,|z_n|^2); \Phi(\mathbb{C}P^n) = \Delta^n$.
 $\mu = \operatorname{coh.} \operatorname{IVM} \operatorname{on} \mathbb{C}P^n \Rightarrow (\Phi_*\mu)(\Delta^k) = \mu(\Phi^{-1}(\Delta^k)) = \mu(\mathbb{C}P^k) = (h^{n-k}).$

Proof of Karasev's simplex theorem.

Let $f: \Delta^{p(d+1)} \to Y$ be a continuous map, where Y is a metrizable space of covering dimension d. Let $\nu = \Phi_* \mu$ be the $H^*(\mathbb{C}P^{p(d+1)})$ -IVM on $\Delta^{p(d+1)}$.

Example

Consider
$$\Phi: \mathbb{C}P^n \to \mathbb{R}^n$$
: $\Phi([z_0:\dots:z_n]) = \frac{1}{|z|^2}(|z_1|^2,\dots,|z_n|^2); \Phi(\mathbb{C}P^n) = \Delta^n$.
 $\mu = \operatorname{coh.} \operatorname{IVM} \operatorname{on} \mathbb{C}P^n \Rightarrow (\Phi_*\mu)(\Delta^k) = \mu(\Phi^{-1}(\Delta^k)) = \mu(\mathbb{C}P^k) = (h^{n-k}).$

Proof of Karasev's simplex theorem.

Let $f: \Delta^{p(d+1)} \to Y$ be a continuous map, where Y is a metrizable space of covering dimension d. Let $\nu = \Phi_* \mu$ be the $H^*(\mathbb{C}P^{p(d+1)})$ -IVM on $\Delta^{p(d+1)}$. Let $I = (h^p) \in \mathcal{I}(H^*(\mathbb{C}P^{p(d+1)}))$. Then $I^{\smile(d+1)} = (h^{p(d+1)}) \neq 0$.

Example

Consider
$$\Phi: \mathbb{C}P^n \to \mathbb{R}^n$$
: $\Phi([z_0:\cdots:z_n]) = \frac{1}{|z|^2}(|z_1|^2,\ldots,|z_n|^2); \Phi(\mathbb{C}P^n) = \Delta^n$.
 $\mu = \operatorname{coh.} \operatorname{IVM} \operatorname{on} \mathbb{C}P^n \Rightarrow (\Phi_*\mu)(\Delta^k) = \mu(\Phi^{-1}(\Delta^k)) = \mu(\mathbb{C}P^k) = (h^{n-k}).$

Proof of Karasev's simplex theorem.

Let $f: \Delta^{p(d+1)} \to Y$ be a continuous map, where Y is a metrizable space of covering dimension d. Let $\nu = \Phi_* \mu$ be the $H^*(\mathbb{C}P^{p(d+1)})$ -IVM on $\Delta^{p(d+1)}$. Let $I = (h^p) \in \mathcal{I}(H^*(\mathbb{C}P^{p(d+1)}))$. Then $I^{\smile (d+1)} = (h^{p(d+1)}) \neq 0$. The abstract centerpoint theorem applies to $f_*\nu$ and yields $y_0 \in Y$ such that $Z \subset Y$ compact, $I \subset (f_*\nu)(Z) \Rightarrow y_0 \in Z$.

Example

Consider
$$\Phi: \mathbb{C}P^n \to \mathbb{R}^n: \Phi([z_0:\cdots:z_n]) = \frac{1}{|z|^2}(|z_1|^2,\ldots,|z_n|^2); \Phi(\mathbb{C}P^n) = \Delta^n.$$

 $\mu = \operatorname{coh.} \operatorname{IVM} \operatorname{on} \mathbb{C}P^n \Rightarrow (\Phi_*\mu)(\Delta^k) = \mu(\Phi^{-1}(\Delta^k)) = \mu(\mathbb{C}P^k) = (h^{n-k}).$

Proof of Karasev's simplex theorem.

Let $f: \Delta^{p(d+1)} \to Y$ be a continuous map, where Y is a metrizable space of covering dimension d. Let $\nu = \Phi_* \mu$ be the $H^*(\mathbb{C}P^{p(d+1)})$ -IVM on $\Delta^{p(d+1)}$. Let $I = (h^p) \in \mathcal{I}(H^*(\mathbb{C}P^{p(d+1)}))$. Then $I^{\smile (d+1)} = (h^{p(d+1)}) \neq 0$. The abstract centerpoint theorem applies to $f_*\nu$ and yields $y_0 \in Y$ such that $Z \subset Y$ compact, $I \subset (f_*\nu)(Z) \Rightarrow y_0 \in Z$. Let $D \subset \Delta^{p(d+1)}$ be a *pd*-dimensional face and let Z = f(D). Then $\nu(D) = (h^p) = I$,

Example

Consider
$$\Phi: \mathbb{C}P^n \to \mathbb{R}^n: \Phi([z_0:\cdots:z_n]) = \frac{1}{|z|^2}(|z_1|^2,\ldots,|z_n|^2); \Phi(\mathbb{C}P^n) = \Delta^n.$$

 $\mu = \operatorname{coh.} \operatorname{IVM} \operatorname{on} \mathbb{C}P^n \Rightarrow (\Phi_*\mu)(\Delta^k) = \mu(\Phi^{-1}(\Delta^k)) = \mu(\mathbb{C}P^k) = (h^{n-k}).$

Proof of Karasev's simplex theorem.

Let $f: \Delta^{p(d+1)} \to Y$ be a continuous map, where Y is a metrizable space of covering dimension d. Let $\nu = \Phi_* \mu$ be the $H^*(\mathbb{C}P^{p(d+1)})$ -IVM on $\Delta^{p(d+1)}$. Let $I = (h^p) \in \mathcal{I}(H^*(\mathbb{C}P^{p(d+1)}))$. Then $I^{\smile (d+1)} = (h^{p(d+1)}) \neq 0$. The abstract centerpoint theorem applies to $f_*\nu$ and yields $y_0 \in Y$ such that $Z \subset Y$ compact, $I \subset (f_*\nu)(Z) \Rightarrow y_0 \in Z$. Let $D \subset \Delta^{p(d+1)}$ be a *pd*-dimensional face and let Z = f(D). Then $\nu(D) = (h^p) = I$, and thus

$$(f_*\nu)(Z) = \nu(f^{-1}(Z)) = \nu(f^{-1}(f(D))) \supset \nu(D) = I,$$

by monotonicity and since $f^{-1}(f(D)) \supset D$.

Example

Consider
$$\Phi: \mathbb{C}P^n \to \mathbb{R}^n: \Phi([z_0:\cdots:z_n]) = \frac{1}{|z|^2}(|z_1|^2,\ldots,|z_n|^2); \Phi(\mathbb{C}P^n) = \Delta^n.$$

 $\mu = \operatorname{coh.} \operatorname{IVM} \operatorname{on} \mathbb{C}P^n \Rightarrow (\Phi_*\mu)(\Delta^k) = \mu(\Phi^{-1}(\Delta^k)) = \mu(\mathbb{C}P^k) = (h^{n-k}).$

Proof of Karasev's simplex theorem.

Let $f: \Delta^{p(d+1)} \to Y$ be a continuous map, where Y is a metrizable space of covering dimension d. Let $\nu = \Phi_* \mu$ be the $H^*(\mathbb{C}P^{p(d+1)})$ -IVM on $\Delta^{p(d+1)}$. Let $I = (h^p) \in \mathcal{I}(H^*(\mathbb{C}P^{p(d+1)}))$. Then $I^{\smile (d+1)} = (h^{p(d+1)}) \neq 0$. The abstract centerpoint theorem applies to $f_*\nu$ and yields $y_0 \in Y$ such that $Z \subset Y$ compact, $I \subset (f_*\nu)(Z) \Rightarrow y_0 \in Z$. Let $D \subset \Delta^{p(d+1)}$ be a *pd*-dimensional face and let Z = f(D). Then $\nu(D) = (h^p) = I$, and thus

$$(f_*\nu)(Z) = \nu(f^{-1}(Z)) = \nu(f^{-1}(f(D))) \supset \nu(D) = I$$

by monotonicity and since $f^{-1}(f(D)) \supset D$. It follows that $y_0 \in Z = f(D)$, or equivalently $D \cap f^{-1}(y_0) \neq 0$.

Frol Zapolsky (University of Haifa & MISANU)

メロト メタト メヨト メヨト

Symplectic geometry I: basics

Symplectic manifold = (M^{2n}, ω) , ω a closed 2-form: $\omega^{\wedge n}$ is a volume form.

イロト イヨト イヨト イ

Symplectic manifold = (M^{2n}, ω) , ω a closed 2-form: $\omega^{\wedge n}$ is a volume form. For a Hamiltonian H: $[0,1] \times M \to \mathbb{R}$ have its Hamiltonian vector field X_H^t : $\omega(X_H^t, \cdot) = -dH_t$ and the Hamiltonian flow ϕ_H^t .

イロト 不得 トイヨト イヨト

Symplectic manifold = (M^{2n}, ω) , ω a closed 2-form: $\omega^{\wedge n}$ is a volume form. For a Hamiltonian H: $[0, 1] \times M \to \mathbb{R}$ have its Hamiltonian vector field X_H^t : $\omega(X_H^t, \cdot) = -dH_t$ and the Hamiltonian flow ϕ_H^t . The Hamiltonian group Ham (M, ω) is the set of ϕ_H^1 .

イロト イボト イヨト イヨ

Symplectic manifold = (M^{2n}, ω) , ω a closed 2-form: $\omega^{\wedge n}$ is a volume form. For a Hamiltonian H: $[0,1] \times M \to \mathbb{R}$ have its Hamiltonian vector field X_H^t : $\omega(X_H^t, \cdot) = -dH_t$ and the Hamiltonian flow ϕ_H^t . The Hamiltonian group Ham (M, ω) is the set of ϕ_H^1 . Have the symplectomorphism group Symp $(M, \omega) = \{\phi \in \text{Diff}(M) \mid \phi^* \omega = \omega\}$ and its identity component Symp $_0(M, \omega)$.

Symplectic manifold = (M^{2n}, ω) , ω a closed 2-form: $\omega^{\wedge n}$ is a volume form. For a Hamiltonian H: $[0,1] \times M \to \mathbb{R}$ have its Hamiltonian vector field X_{H}^{t} : $\omega(X_{H}^{t}, \cdot) = -dH_{t}$ and the Hamiltonian flow ϕ_{H}^{t} . The Hamiltonian group Ham (M, ω) is the set of ϕ_{H}^{1} . Have the symplectomorphism group Symp $(M, \omega) = \{\phi \in \text{Diff}(M) | \phi^{*}\omega = \omega\}$ and its identity component Symp₀ (M, ω) . Basic fact: Ham $(M, \omega) \subset \text{Symp}_{0}(M, \omega)$.

Symplectic manifold = (M^{2n}, ω) , ω a closed 2-form: $\omega^{\wedge n}$ is a volume form. For a Hamiltonian H: $[0,1] \times M \to \mathbb{R}$ have its Hamiltonian vector field X_H^t : $\omega(X_H^t, \cdot) = -dH_t$ and the Hamiltonian flow ϕ_H^t . The Hamiltonian group Ham (M, ω) is the set of ϕ_H^1 . Have the symplectomorphism group Symp $(M, \omega) = \{\phi \in \text{Diff}(M) \mid \phi^* \omega = \omega\}$ and its identity component Symp $_0(M, \omega)$. Basic fact: Ham $(M, \omega) \subset \text{Symp}_0(M, \omega)$.

Example

イロト イボト イヨト イヨ

Symplectic manifold = (M^{2n}, ω) , ω a closed 2-form: $\omega^{\wedge n}$ is a volume form. For a Hamiltonian H: $[0,1] \times M \to \mathbb{R}$ have its Hamiltonian vector field X_H^t : $\omega(X_H^t, \cdot) = -dH_t$ and the Hamiltonian flow ϕ_H^t . The Hamiltonian group Ham (M, ω) is the set of ϕ_H^1 . Have the symplectomorphism group Symp $(M, \omega) = \{\phi \in \text{Diff}(M) \mid \phi^* \omega = \omega\}$ and its identity component Symp $_0(M, \omega)$. Basic fact: Ham $(M, \omega) \subset \text{Symp}_0(M, \omega)$.

Example

•
$$\mathbb{R}^{2n}(x_1,\ldots,x_n,y_1,\ldots,y_n)$$
, $\omega_{\text{std}}=\sum_i dx_i \wedge dy_i$.

イロト イボト イヨト イヨ

Symplectic manifold = (M^{2n}, ω) , ω a closed 2-form: $\omega^{\wedge n}$ is a volume form. For a Hamiltonian H: $[0, 1] \times M \to \mathbb{R}$ have its Hamiltonian vector field X_H^t : $\omega(X_H^t, \cdot) = -dH_t$ and the Hamiltonian flow ϕ_H^t . The Hamiltonian group Ham (M, ω) is the set of ϕ_H^1 . Have the symplectomorphism group Symp $(M, \omega) = \{\phi \in \text{Diff}(M) | \phi^* \omega = \omega\}$ and its identity component Symp $_0(M, \omega)$. Basic fact: Ham $(M, \omega) \subset \text{Symp}_0(M, \omega)$.

Example

•
$$\mathbb{R}^{2n}(x_1,\ldots,x_n,y_1,\ldots,y_n)$$
, $\omega_{\mathrm{std}}=\sum_i dx_i \wedge dy_i$.

• $\mathbb{T}^{2n} = \mathbb{R}^{2n}/\mathbb{Z}^{2n}$, ω descends from \mathbb{R}^{2n} .

Symplectic manifold = (M^{2n}, ω) , ω a closed 2-form: $\omega^{\wedge n}$ is a volume form. For a Hamiltonian H: $[0,1] \times M \to \mathbb{R}$ have its Hamiltonian vector field X_H^t : $\omega(X_H^t, \cdot) = -dH_t$ and the Hamiltonian flow ϕ_H^t . The Hamiltonian group Ham (M, ω) is the set of ϕ_H^1 . Have the symplectomorphism group Symp $(M, \omega) = \{\phi \in \text{Diff}(M) \mid \phi^* \omega = \omega\}$ and its identity component Symp $_0(M, \omega)$. Basic fact: Ham $(M, \omega) \subset \text{Symp}_0(M, \omega)$.

Example

- $\mathbb{R}^{2n}(x_1,\ldots,x_n,y_1,\ldots,y_n)$, $\omega_{\text{std}} = \sum_i dx_i \wedge dy_i$.
- $\mathbb{T}^{2n} = \mathbb{R}^{2n} / \mathbb{Z}^{2n}$, ω descends from \mathbb{R}^{2n} .
- Surfaces with area forms;

Symplectic manifold = (M^{2n}, ω) , ω a closed 2-form: $\omega^{\wedge n}$ is a volume form. For a Hamiltonian H: $[0, 1] \times M \to \mathbb{R}$ have its Hamiltonian vector field X_H^t : $\omega(X_H^t, \cdot) = -dH_t$ and the Hamiltonian flow ϕ_H^t . The Hamiltonian group Ham (M, ω) is the set of ϕ_H^1 . Have the symplectomorphism group Symp $(M, \omega) = \{\phi \in \text{Diff}(M) | \phi^* \omega = \omega\}$ and its identity component Symp $_0(M, \omega)$. Basic fact: Ham $(M, \omega) \subset \text{Symp}_0(M, \omega)$.

Example

•
$$\mathbb{R}^{2n}(x_1,\ldots,x_n,y_1,\ldots,y_n)$$
, $\omega_{\text{std}}=\sum_i dx_i \wedge dy_i$.

- $\mathbb{T}^{2n} = \mathbb{R}^{2n}/\mathbb{Z}^{2n}$, ω descends from \mathbb{R}^{2n} .
- Surfaces with area forms;

•
$$(\mathbb{C}P^n, \omega_{\mathsf{FS}})$$
: $\mathbb{C}^{n+1} \supset S^{2n+1} \xrightarrow{\pi} \mathbb{C}P^n$, $\pi^* \omega_{\mathsf{FS}} = \omega_{\mathsf{std}}|_{S^{2n+1}}$.

Symplectic manifold = (M^{2n}, ω) , ω a closed 2-form: $\omega^{\wedge n}$ is a volume form. For a Hamiltonian H: $[0,1] \times M \to \mathbb{R}$ have its Hamiltonian vector field X_H^t : $\omega(X_H^t, \cdot) = -dH_t$ and the Hamiltonian flow ϕ_H^t . The Hamiltonian group Ham (M, ω) is the set of ϕ_H^1 . Have the symplectomorphism group Symp $(M, \omega) = \{\phi \in \text{Diff}(M) \mid \phi^* \omega = \omega\}$ and its identity component Symp $_0(M, \omega)$. Basic fact: Ham $(M, \omega) \subset \text{Symp}_0(M, \omega)$.

Example

•
$$\mathbb{R}^{2n}(x_1,\ldots,x_n,y_1,\ldots,y_n)$$
, $\omega_{\text{std}}=\sum_i dx_i \wedge dy_i$.

- $\mathbb{T}^{2n} = \mathbb{R}^{2n}/\mathbb{Z}^{2n}$, ω descends from \mathbb{R}^{2n} .
- Surfaces with area forms;

•
$$(\mathbb{C}P^n, \omega_{\mathsf{FS}})$$
: $\mathbb{C}^{n+1} \supset S^{2n+1} \xrightarrow{\pi} \mathbb{C}P^n$, $\pi^* \omega_{\mathsf{FS}} = \omega_{\mathsf{std}}|_{S^{2n+1}}$.

• Products.

メロト メロト メヨトメ

The **Poisson bracket** of $f, g \in C^{\infty}(M)$ is $\{f, g\} = \omega(X_g, X_f) = df(X_g)$.

メロト メロト メヨト・

The **Poisson bracket** of $f, g \in C^{\infty}(M)$ is $\{f, g\} = \omega(X_g, X_f) = df(X_g)$. A smooth map $\pi: M \to B$ is **involutive** if for $f, g \in C^{\infty}(B)$ have $\{\pi^*f, \pi^*g\} \equiv 0$.

Image: A marked and A marked

The **Poisson bracket** of $f, g \in C^{\infty}(M)$ is $\{f, g\} = \omega(X_g, X_f) = df(X_g)$. A smooth map $\pi: M \to B$ is **involutive** if for $f, g \in C^{\infty}(B)$ have $\{\pi^*f, \pi^*g\} \equiv 0$.

Example

•
$$\pi = (f_1, \ldots, f_d)$$
: $M \to \mathbb{R}^d$ is involutive if and only if $\{f_i, f_j\} \equiv 0$.

Image: A marked and A marked

The **Poisson bracket** of $f, g \in C^{\infty}(M)$ is $\{f, g\} = \omega(X_g, X_f) = df(X_g)$. A smooth map $\pi: M \to B$ is **involutive** if for $f, g \in C^{\infty}(B)$ have $\{\pi^*f, \pi^*g\} \equiv 0$.

Example

- $\pi = (f_1, \ldots, f_d)$: $M \to \mathbb{R}^d$ is involutive if and only if $\{f_i, f_j\} \equiv 0$.
- $\Phi: \mathbb{C}P^n \to \mathbb{R}^n$ is involutive.

Image: A marked and A marked

The **Poisson bracket** of $f, g \in C^{\infty}(M)$ is $\{f, g\} = \omega(X_g, X_f) = df(X_g)$. A smooth map $\pi: M \to B$ is **involutive** if for $f, g \in C^{\infty}(B)$ have $\{\pi^*f, \pi^*g\} \equiv 0$.

Example

- $\pi = (f_1, \ldots, f_d)$: $M \to \mathbb{R}^d$ is involutive if and only if $\{f_i, f_j\} \equiv 0$.
- $\Phi: \mathbb{C}P^n \to \mathbb{R}^n$ is involutive.
- $\mathbb{T}^{2n} = \mathbb{T}^n(p) \times \mathbb{T}^n(q) \to \mathbb{T}^n(p)$ is involutive for $\omega = \sum_i dp_i \wedge dq_i$.

A D > A B > A B > A

The **Poisson bracket** of $f, g \in C^{\infty}(M)$ is $\{f, g\} = \omega(X_g, X_f) = df(X_g)$. A smooth map $\pi: M \to B$ is **involutive** if for $f, g \in C^{\infty}(B)$ have $\{\pi^*f, \pi^*g\} \equiv 0$.

Example

- $\pi = (f_1, \ldots, f_d)$: $M \to \mathbb{R}^d$ is involutive if and only if $\{f_i, f_j\} \equiv 0$.
- $\Phi: \mathbb{C}P^n \to \mathbb{R}^n$ is involutive.

• $\mathbb{T}^{2n} = \mathbb{T}^n(p) \times \mathbb{T}^n(q) \to \mathbb{T}^n(p)$ is involutive for $\omega = \sum_i dp_i \wedge dq_i$.

A set $S \subset M$ is **displaceable** if $\exists \phi \in \operatorname{Ham}(M, \omega)$: $\phi(S) \cap \overline{S} = \emptyset$.

A D F A A F F A

The **Poisson bracket** of $f, g \in C^{\infty}(M)$ is $\{f, g\} = \omega(X_g, X_f) = df(X_g)$. A smooth map $\pi: M \to B$ is **involutive** if for $f, g \in C^{\infty}(B)$ have $\{\pi^*f, \pi^*g\} \equiv 0$.

Example

- $\pi = (f_1, \ldots, f_d)$: $M \to \mathbb{R}^d$ is involutive if and only if $\{f_i, f_j\} \equiv 0$.
- $\Phi: \mathbb{C}P^n \to \mathbb{R}^n$ is involutive.

• $\mathbb{T}^{2n} = \mathbb{T}^n(p) \times \mathbb{T}^n(q) \to \mathbb{T}^n(p)$ is involutive for $\omega = \sum_i dp_i \wedge dq_i$.

A set $S \subset M$ is **displaceable** if $\exists \phi \in \operatorname{Ham}(M, \omega)$: $\phi(S) \cap \overline{S} = \emptyset$.

Example

• Any compact in \mathbb{R}^{2n} is displaceable.

イロト イヨト イヨト イヨ

The **Poisson bracket** of $f, g \in C^{\infty}(M)$ is $\{f, g\} = \omega(X_g, X_f) = df(X_g)$. A smooth map $\pi: M \to B$ is **involutive** if for $f, g \in C^{\infty}(B)$ have $\{\pi^*f, \pi^*g\} \equiv 0$.

Example

- $\pi = (f_1, \ldots, f_d)$: $M \to \mathbb{R}^d$ is involutive if and only if $\{f_i, f_j\} \equiv 0$.
- $\Phi: \mathbb{C}P^n \to \mathbb{R}^n$ is involutive.

• $\mathbb{T}^{2n} = \mathbb{T}^n(p) \times \mathbb{T}^n(q) \to \mathbb{T}^n(p)$ is involutive for $\omega = \sum_i dp_i \wedge dq_i$.

A set $S \subset M$ is **displaceable** if $\exists \phi \in \operatorname{Ham}(M, \omega)$: $\phi(S) \cap \overline{S} = \emptyset$.

Example

- Any compact in \mathbb{R}^{2n} is displaceable.
- In S^2 , any open hemisphere is displaceable by a rotation. Any closed hemisphere is nondisplaceable. The equator is nondisplaceable.

イロト イヨト イヨト イヨト

The **Poisson bracket** of $f, g \in C^{\infty}(M)$ is $\{f, g\} = \omega(X_g, X_f) = df(X_g)$. A smooth map $\pi: M \to B$ is **involutive** if for $f, g \in C^{\infty}(B)$ have $\{\pi^*f, \pi^*g\} \equiv 0$.

Example

- $\pi = (f_1, \ldots, f_d)$: $M \to \mathbb{R}^d$ is involutive if and only if $\{f_i, f_j\} \equiv 0$.
- $\Phi: \mathbb{C}P^n \to \mathbb{R}^n$ is involutive.

• $\mathbb{T}^{2n} = \mathbb{T}^n(p) \times \mathbb{T}^n(q) \to \mathbb{T}^n(p)$ is involutive for $\omega = \sum_i dp_i \wedge dq_i$.

A set $S \subset M$ is displaceable if $\exists \phi \in \operatorname{Ham}(M, \omega)$: $\phi(S) \cap \overline{S} = \emptyset$.

Example

- Any compact in \mathbb{R}^{2n} is displaceable.
- In S², any open hemisphere is displaceable by a rotation. Any closed hemisphere is nondisplaceable. The equator is nondisplaceable.
- $\Phi: \mathbb{C}P^n \to \Delta^n$: let $p_0 = (\frac{1}{n+1}, \dots, \frac{1}{n+1})$. Since $S_{n+1} \subset \mathsf{PU}(n) \subset \mathsf{Ham}(\mathbb{C}P^n)$, for any $p \neq p_0$, $\Phi^{-1}(p)$ is displaceable.

< □ > < □ > < □ > < □ > < □ >

Big fibers in symplectic geometry

メロト メポト メヨト メヨト

Let (M, ω) be a closed symplectic manifold. Then any involutive map $M \to B$ has a nondisplaceable fiber.

・ロト ・日下・ ・ ヨト・

Let (M, ω) be a closed symplectic manifold. Then any involutive map $M \to B$ has a nondisplaceable fiber.

Example

• $\Phi: \mathbb{C}P^n \to \Delta^n$: since for $p \neq p_0$, $\Phi^{-1}(p)$ is displaceable, it follows that $\Phi^{-1}(p_0)$, a.k.a. the Clifford torus, is nondisplaceable.

イロト イロト イヨト イ

Let (M, ω) be a closed symplectic manifold. Then any involutive map $M \to B$ has a nondisplaceable fiber.

Example

- $\Phi: \mathbb{C}P^n \to \Delta^n$: since for $p \neq p_0$, $\Phi^{-1}(p)$ is displaceable, it follows that $\Phi^{-1}(p_0)$, a.k.a. the Clifford torus, is nondisplaceable.
- For n = 1, we obtain the equator in $S^2 = \mathbb{C}P^1$.

イロト イヨト イヨト イ

Let (M, ω) be a closed symplectic manifold. Then any involutive map $M \to B$ has a nondisplaceable fiber.

Example

- $\Phi: \mathbb{C}P^n \to \Delta^n$: since for $p \neq p_0$, $\Phi^{-1}(p)$ is displaceable, it follows that $\Phi^{-1}(p_0)$, a.k.a. the Clifford torus, is nondisplaceable.
- For n = 1, we obtain the equator in $S^2 = \mathbb{C}P^1$.
- T²ⁿ → Tⁿ must have a nondisplaceable fiber. Any fiber here is a linear Lagrangian torus, and they are all equivalent under Symp(T²ⁿ). Thus all of them are nondisplaceable.

イロト イ団ト イヨト イヨ

Theorem (Entov–Polterovich)

Let (M, ω) be a closed symplectic manifold. Then any involutive map $M \to B$ has a nondisplaceable fiber.

Example

- $\Phi: \mathbb{C}P^n \to \Delta^n$: since for $p \neq p_0$, $\Phi^{-1}(p)$ is displaceable, it follows that $\Phi^{-1}(p_0)$, a.k.a. the Clifford torus, is nondisplaceable.
- For n = 1, we obtain the equator in $S^2 = \mathbb{C}P^1$.
- T²ⁿ → Tⁿ must have a nondisplaceable fiber. Any fiber here is a linear Lagrangian torus, and they are all equivalent under Symp(T²ⁿ). Thus all of them are nondisplaceable.
- Let $\Gamma_1, \ldots, \Gamma_k \subset S^2$ be graphs such that each connected component of $S^2 \setminus \Gamma_i$ is a disk of area $\leq \frac{1}{2}$. Then $\Gamma_1 \times \cdots \times \Gamma_k$ is nondisplaceable.

*ロト *個ト * ヨト * ヨ

Theorem (Entov–Polterovich)

Let (M, ω) be a closed symplectic manifold. Then any involutive map $M \to B$ has a nondisplaceable fiber.

Example

- $\Phi: \mathbb{C}P^n \to \Delta^n$: since for $p \neq p_0$, $\Phi^{-1}(p)$ is displaceable, it follows that $\Phi^{-1}(p_0)$, a.k.a. the Clifford torus, is nondisplaceable.
- For n = 1, we obtain the equator in $S^2 = \mathbb{C}P^1$.
- T²ⁿ → Tⁿ must have a nondisplaceable fiber. Any fiber here is a linear Lagrangian torus, and they are all equivalent under Symp(T²ⁿ). Thus all of them are nondisplaceable.
- Let $\Gamma_1, \ldots, \Gamma_k \subset S^2$ be graphs such that each connected component of $S^2 \setminus \Gamma_i$ is a disk of area $\leq \frac{1}{2}$. Then $\Gamma_1 \times \cdots \times \Gamma_k$ is nondisplaceable. Indeed, if $f_i \in C^{\infty}(S^2)$: $\Gamma_i = f_i^{-1}(0)$, then $f_1 \times \cdots \times f_k$: $(S^2)^k \to \mathbb{R}^k$ is involutive and all fibers but 0 are displaceable.

Frol Zapolsky (University of Haifa & MISANU)

Image: A mathematical states and a mathem

Definition

An *A*-ideal-valued quasi-measure (*A*-IVQM) on a closed symplectic manifold (M, ω) is a map $\tau: \mathcal{O}(M) \to \mathcal{I}(A)$ satisfying all the axioms of an *A*-IVM,

Definition

An *A*-ideal-valued quasi-measure (*A*-IVQM) on a closed symplectic manifold (M, ω) is a map $\tau: \mathcal{O}(M) \to \mathcal{I}(A)$ satisfying all the axioms of an *A*-IVM, except multiplicativity, which is replaced by

(quasi-multiplicativity): τ(U) ∗ τ(U') ⊂ τ(U ∩ U') if U, U' commute.

A D F A A F F A

Definition

An *A*-ideal-valued quasi-measure (*A*-IVQM) on a closed symplectic manifold (M, ω) is a map $\tau: \mathcal{O}(M) \to \mathcal{I}(A)$ satisfying all the axioms of an *A*-IVM, except multiplicativity, which is replaced by

(quasi-multiplicativity): τ(U) ∗ τ(U') ⊂ τ(U ∩ U') if U, U' commute.

Two further properties:

A D > A B > A B > A

Definition

An *A*-**ideal-valued quasi-measure** (*A*-IVQM) on a closed symplectic manifold (M, ω) is a map $\tau: \mathcal{O}(M) \to \mathcal{I}(A)$ satisfying all the axioms of an *A*-IVM, *except multiplicativity*, which is replaced by

(quasi-multiplicativity): τ(U) * τ(U') ⊂ τ(U ∩ U') if U, U' commute.

Two further properties:

• (invariance): τ is Symp₀(M, ω)-invariant;

• • • • • • • • • • •

Definition

An *A*-**ideal-valued quasi-measure** (*A*-IVQM) on a closed symplectic manifold (M, ω) is a map $\tau: \mathcal{O}(M) \to \mathcal{I}(A)$ satisfying all the axioms of an *A*-IVM, *except multiplicativity*, which is replaced by

(quasi-multiplicativity): τ(U) * τ(U') ⊂ τ(U ∩ U') if U, U' commute.

Two further properties:

- (invariance): τ is Symp₀(M, ω)-invariant;
- (vanishing): if K ⊂ M is a displaceable compact, then τ(M \ K) = A, and there is open U ⊃ K with τ(U) = 0.

< □ > < □ > < □ > < □ > < □ >

Frol Zapolsky (University of Haifa & MISANU)

▲□▶ ▲圖▶ ▲国▶ ▲国▶

Given a closed symplectic manifold (M, ω) , its **quantum cohomology** $QH^*(M)$ is a unital associative skew-commutative algebra, which is \mathbb{Z}_{2N_M} -graded, where N_M is the minimal Chern number of M.

イロト イ団ト イヨト イヨ

Given a closed symplectic manifold (M, ω) , its **quantum cohomology** $QH^*(M)$ is a unital associative skew-commutative algebra, which is \mathbb{Z}_{2N_M} -graded, where N_M is the minimal Chern number of M. Additively, $QH^*(M)$ is just a regrading of $H^*(M; \Lambda)$, the singular cohomology of M with coefficients in the so-called Novikov field. The product is deformed by a count of holomorphic spheres in M.

• • • • • • • • • • • •

Given a closed symplectic manifold (M, ω) , its **quantum cohomology** $QH^*(M)$ is a unital associative skew-commutative algebra, which is \mathbb{Z}_{2N_M} -graded, where N_M is the minimal Chern number of M. Additively, $QH^*(M)$ is just a regrading of $H^*(M; \Lambda)$, the singular cohomology of M with coefficients in the so-called Novikov field. The product is deformed by a count of holomorphic spheres in M.

Theorem (DGPZ 2021)

Any closed symplectic manifold (M, ω) carries a $QH^*(M)$ -IVQM which also satisfies invariance and vanishing.

• • • • • • • • • • • •

Given a closed symplectic manifold (M, ω) , its **quantum cohomology** $QH^*(M)$ is a unital associative skew-commutative algebra, which is \mathbb{Z}_{2N_M} -graded, where N_M is the minimal Chern number of M. Additively, $QH^*(M)$ is just a regrading of $H^*(M; \Lambda)$, the singular cohomology of M with coefficients in the so-called Novikov field. The product is deformed by a count of holomorphic spheres in M.

Theorem (DGPZ 2021)

Any closed symplectic manifold (M, ω) carries a $QH^*(M)$ -IVQM which also satisfies invariance and vanishing.

This is referred to as the quantum cohomology IVQM.

< □ > < 同 > < 回 > < Ξ > < Ξ

Given a closed symplectic manifold (M, ω) , its **quantum cohomology** $QH^*(M)$ is a unital associative skew-commutative algebra, which is \mathbb{Z}_{2N_M} -graded, where N_M is the minimal Chern number of M. Additively, $QH^*(M)$ is just a regrading of $H^*(M; \Lambda)$, the singular cohomology of M with coefficients in the so-called Novikov field. The product is deformed by a count of holomorphic spheres in M.

Theorem (DGPZ 2021)

Any closed symplectic manifold (M, ω) carries a $QH^*(M)$ -IVQM which also satisfies invariance and vanishing.

This is referred to as the quantum cohomology IVQM.

Example

On S^2 , the quantum cohomology IVQM τ can be described as follows: for an open set $U \subset S^2$, $\tau(U) = 0$ if for every compact connected smooth subsurface $Q \subset U$ there exists a smooth closed disk of area $< \frac{1}{2}$ containing Q. Otherwise $\tau(U) = QH^*(S^2)$.

< □ > < □ > < □ > < □ > < □ >

メロト メタト メヨト メヨ

The power of IVQMs comes from the following.

・ロト ・日下・ ・ ヨト・

The power of IVQMs comes from the following.

Lemma

If τ is an A-IVQM on (M, ω) and $\pi: M \to B$ is involutive, then $\pi_* \tau$ is an A-IVM.

The power of IVQMs comes from the following.

Lemma

If τ is an A-IVQM on (M, ω) and $\pi: M \to B$ is involutive, then $\pi_* \tau$ is an A-IVM.

Corollary

Let (M, ω) be a closed symplectic manifold, let τ be an A-IVQM on M, and assume that $\pi: M \to B$ is an involutive map, where dim B = d.

Image: A math the second se

The power of IVQMs comes from the following.

Lemma

If τ is an A-IVQM on (M, ω) and $\pi: M \to B$ is involutive, then $\pi_* \tau$ is an A-IVM.

Corollary

Let (M, ω) be a closed symplectic manifold, let τ be an A-IVQM on M, and assume that π : $M \to B$ is an involutive map, where dim B = d. If $I \in \mathcal{I}(A)$ satisfies $I^{*(d+1)} \neq 0$, then there is $b_0 \in B$ such that $\pi^{-1}(b_0)$ intersects each compact $Z \subset M$ with $I \subset \tau(Z)$.

A D > A B > A B > A

The power of IVQMs comes from the following.

Lemma

If τ is an A-IVQM on (M, ω) and $\pi: M \to B$ is involutive, then $\pi_* \tau$ is an A-IVM.

Corollary

Let (M, ω) be a closed symplectic manifold, let τ be an A-IVQM on M, and assume that π : $M \to B$ is an involutive map, where dim B = d. If $I \in \mathcal{I}(A)$ satisfies $I^{*(d+1)} \neq 0$, then there is $b_0 \in B$ such that $\pi^{-1}(b_0)$ intersects each compact $Z \subset M$ with $I \subset \tau(Z)$.

Proof.

The abstract centerpoint theorem applied to the A-IVM $\pi_*\tau$, yields $b_0 \in B$ such that for each compact $C \subset B$ with $I \subset (\pi_*\tau)(C)$ satisfies $b_0 \in C$.

The power of IVQMs comes from the following.

Lemma

If τ is an A-IVQM on (M, ω) and $\pi: M \to B$ is involutive, then $\pi_* \tau$ is an A-IVM.

Corollary

Let (M, ω) be a closed symplectic manifold, let τ be an A-IVQM on M, and assume that π : $M \to B$ is an involutive map, where dim B = d. If $I \in \mathcal{I}(A)$ satisfies $I^{*(d+1)} \neq 0$, then there is $b_0 \in B$ such that $\pi^{-1}(b_0)$ intersects each compact $Z \subset M$ with $I \subset \tau(Z)$.

Proof.

The abstract centerpoint theorem applied to the A-IVM $\pi_*\tau$, yields $b_0 \in B$ such that for each compact $C \subset B$ with $I \subset (\pi_*\tau)(C)$ satisfies $b_0 \in C$. If $Z \subset M$ is compact and $I \subset \tau(Z)$, then $\pi^{-1}(\pi(Z)) \supset Z$ and thus

The power of IVQMs comes from the following.

Lemma

If τ is an A-IVQM on (M, ω) and $\pi: M \to B$ is involutive, then $\pi_* \tau$ is an A-IVM.

Corollary

Let (M, ω) be a closed symplectic manifold, let τ be an A-IVQM on M, and assume that π : $M \to B$ is an involutive map, where dim B = d. If $I \in \mathcal{I}(A)$ satisfies $I^{*(d+1)} \neq 0$, then there is $b_0 \in B$ such that $\pi^{-1}(b_0)$ intersects each compact $Z \subset M$ with $I \subset \tau(Z)$.

Proof.

The abstract centerpoint theorem applied to the A-IVM $\pi_*\tau$, yields $b_0 \in B$ such that for each compact $C \subset B$ with $I \subset (\pi_*\tau)(C)$ satisfies $b_0 \in C$. If $Z \subset M$ is compact and $I \subset \tau(Z)$, then $\pi^{-1}(\pi(Z)) \supset Z$ and thus $(\pi_*\tau)(\pi(Z)) = \tau(\pi^{-1}(\pi(Z))) \supset \tau(Z) \supset I \Rightarrow b_0 \in \pi(Z) \Rightarrow \pi^{-1}(b_0) \cap Z \neq \emptyset$.

メロト メロト メヨト メ

For $a, b, c \in \mathbb{T}^2$ define subsets $T_1(a), T_2(b), T_3(c) \subset \mathbb{T}^6$:

<ロト <回ト < 回ト

For $a, b, c \in \mathbb{T}^2$ define subsets $T_1(a), T_2(b), T_3(c) \subset \mathbb{T}^6$: $T_1(a) = \{(p,q) \in \mathbb{T}^6 \mid (p_1, p_2) = a\},$ $T_2(b) = \{(p,q) \in \mathbb{T}^6 \mid (q_1, q_3) = b\},$ $T_3(c) = \{(p,q) \in \mathbb{T}^6 \mid (p_3, q_2) = c\}.$

For $a, b, c \in \mathbb{T}^2$ define subsets $T_1(a), T_2(b), T_3(c) \subset \mathbb{T}^6$: $T_1(a) = \{(p,q) \in \mathbb{T}^6 \mid (p_1, p_2) = a\},$ $T_2(b) = \{(p,q) \in \mathbb{T}^6 \mid (q_1, q_3) = b\},$ $T_3(c) = \{(p,q) \in \mathbb{T}^6 \mid (p_3, q_2) = c\}.$ Put $T(a, b, c) = T_1(a) \cup T_2(b) \cup T_3(c).$

For $a, b, c \in \mathbb{T}^2$ define subsets $T_1(a), T_2(b), T_3(c) \subset \mathbb{T}^6$: $T_1(a) = \{(p,q) \in \mathbb{T}^6 \mid (p_1, p_2) = a\},$ $T_2(b) = \{(p,q) \in \mathbb{T}^6 \mid (q_1, q_3) = b\},$ $T_3(c) = \{(p,q) \in \mathbb{T}^6 \mid (p_3, q_2) = c\}.$

Put $T(a,b,c) = T_1(a) \cup T_2(b) \cup T_3(c)$.

Theorem (DGPZ 2021)

Any involutive map π : $\mathbb{T}^6 \times S^2 \to B$, where B is a surface, has a fiber which intersects all sets of the form $T(a, b, c) \times equator$.

For $a, b, c \in \mathbb{T}^2$ define subsets $T_1(a), T_2(b), T_3(c) \subset \mathbb{T}^6$: $T_1(a) = \{(p,q) \in \mathbb{T}^6 \mid (p_1, p_2) = a\},$ $T_2(b) = \{(p,q) \in \mathbb{T}^6 \mid (q_1, q_3) = b\},$ $T_3(c) = \{(p,q) \in \mathbb{T}^6 \mid (p_3, q_2) = c\}.$

Put $T(a,b,c) = T_1(a) \cup T_2(b) \cup T_3(c)$.

Theorem (DGPZ 2021)

Any involutive map π : $\mathbb{T}^6 \times S^2 \to B$, where B is a surface, has a fiber which intersects all sets of the form $T(a, b, c) \times$ equator.

Idea: $QH^*(\mathbb{T}^6 \times S^2) = QH^*(\mathbb{T}^6) \otimes QH^*(S^2).$

A D F A B F A B F

For $a, b, c \in \mathbb{T}^2$ define subsets $T_1(a), T_2(b), T_3(c) \subset \mathbb{T}^6$: $T_1(a) = \{(p,q) \in \mathbb{T}^6 \mid (p_1, p_2) = a\},$ $T_2(b) = \{(p,q) \in \mathbb{T}^6 \mid (q_1, q_3) = b\},$ $T_3(c) = \{(p,q) \in \mathbb{T}^6 \mid (p_3, q_2) = c\}.$

Put $T(a,b,c) = T_1(a) \cup T_2(b) \cup T_3(c)$.

Theorem (DGPZ 2021)

Any involutive map π : $\mathbb{T}^6 \times S^2 \to B$, where B is a surface, has a fiber which intersects all sets of the form $T(a, b, c) \times$ equator.

Idea: $QH^*(\mathbb{T}^6 \times S^2) = QH^*(\mathbb{T}^6) \otimes QH^*(S^2)$. The ideal $I = ([dp_1 \wedge dp_2] \otimes 1, [dq_1 \wedge dq_3] \otimes 1, [dp_3 \wedge dq_2] \otimes 1) \in \mathcal{I}(QH^*(\mathbb{T}^6 \times S^2))$ satisfies $[dp_1 \wedge dp_2 \wedge dp_3 \wedge dq_1 \wedge dq_2 \wedge dq_3] \otimes 1 \in I^{*3}$, in particular $I^{*3} \neq 0$.

< □ > < 同 > < 回 > < Ξ > < Ξ

For $a, b, c \in \mathbb{T}^2$ define subsets $T_1(a), T_2(b), T_3(c) \subset \mathbb{T}^6$: $T_1(a) = \{(p,q) \in \mathbb{T}^6 \mid (p_1, p_2) = a\},$ $T_2(b) = \{(p,q) \in \mathbb{T}^6 \mid (q_1, q_3) = b\},$ $T_3(c) = \{(p,q) \in \mathbb{T}^6 \mid (p_3, q_2) = c\}.$

Put $T(a,b,c) = T_1(a) \cup T_2(b) \cup T_3(c)$.

Theorem (DGPZ 2021)

Any involutive map π : $\mathbb{T}^6 \times S^2 \to B$, where B is a surface, has a fiber which intersects all sets of the form $T(a, b, c) \times$ equator.

Idea: $QH^*(\mathbb{T}^6 \times S^2) = QH^*(\mathbb{T}^6) \otimes QH^*(S^2)$. The ideal $I = ([dp_1 \wedge dp_2] \otimes 1, [dq_1 \wedge dq_3] \otimes 1, [dp_3 \wedge dq_2] \otimes 1) \in \mathcal{I}(QH^*(\mathbb{T}^6 \times S^2))$ satisfies $[dp_1 \wedge dp_2 \wedge dp_3 \wedge dq_1 \wedge dq_2 \wedge dq_3] \otimes 1 \in I^{*3}$, in particular $I^{*3} \neq 0$. Thus π has a fiber which intersects each $Z \subset \mathbb{T}^6 \times S^2$ with $I \subset \tau(Z)$, where τ is the quantum cohomology IVQM.

< □ > < 同 > < 回 > < 回 >

For $a, b, c \in \mathbb{T}^2$ define subsets $T_1(a), T_2(b), T_3(c) \subset \mathbb{T}^6$: $T_1(a) = \{(p,q) \in \mathbb{T}^6 \mid (p_1, p_2) = a\},$ $T_2(b) = \{(p,q) \in \mathbb{T}^6 \mid (q_1, q_3) = b\},$ $T_3(c) = \{(p,q) \in \mathbb{T}^6 \mid (p_3, q_2) = c\}.$

Put $T(a,b,c) = T_1(a) \cup T_2(b) \cup T_3(c)$.

Theorem (DGPZ 2021)

Any involutive map π : $\mathbb{T}^6 \times S^2 \to B$, where B is a surface, has a fiber which intersects all sets of the form $T(a, b, c) \times$ equator.

Idea: $QH^*(\mathbb{T}^6 \times S^2) = QH^*(\mathbb{T}^6) \otimes QH^*(S^2)$. The ideal $I = ([dp_1 \wedge dp_2] \otimes 1, [dq_1 \wedge dq_3] \otimes 1, [dp_3 \wedge dq_2] \otimes 1) \in \mathcal{I}(QH^*(\mathbb{T}^6 \times S^2))$ satisfies $[dp_1 \wedge dp_2 \wedge dp_3 \wedge dq_1 \wedge dq_2 \wedge dq_3] \otimes 1 \in I^{*3}$, in particular $I^{*3} \neq 0$. Thus π has a fiber which intersects each $Z \subset \mathbb{T}^6 \times S^2$ with $I \subset \tau(Z)$, where τ is the quantum cohomology IVQM. It remains to compute that $I \subset \tau(T(a, b, c) \times equator)$.

イロン イロン イヨン イヨン

・ロト ・日下・ ・ ヨト・

• Umut Varolgüneş defined the relative symplectic cohomology SH_M^* for a closed symplectic manifold (M, ω) ,

• Umut Varolgüneş defined the relative symplectic cohomology SH_M^* for a closed symplectic manifold (M, ω) , as a presheaf of \mathbb{Z}_{2N_M} -graded unital associative skew-commutative algebras (over the Novikov field) on the category of compacts in M (the product is due to Tonkonog–Varolgüneş)

A D > A B > A B > A

• Umut Varolgüneş defined the relative symplectic cohomology SH_M^* for a closed symplectic manifold (M, ω) , as a presheaf of \mathbb{Z}_{2N_M} -graded unital associative skew-commutative algebras (over the Novikov field) on the category of compacts in M (the product is due to Tonkonog–Varolgüneş), such that $SH_M^*(M) = QH^*(M)$. A new and crucial property is the **Mayer–Vietoris sequence** for pairs of commuting sets.

< □ > < 同 > < 回 > < Ξ > < Ξ

• Umut Varolgüneş defined the relative symplectic cohomology SH_M^* for a closed symplectic manifold (M, ω) , as a presheaf of \mathbb{Z}_{2N_M} -graded unital associative skew-commutative algebras (over the Novikov field) on the category of compacts in M (the product is due to Tonkonog–Varolgüneş), such that $SH_M^*(M) = QH^*(M)$. A new and crucial property is the **Mayer–Vietoris sequence** for pairs of commuting sets.

$$SH^*_M(K) = H\left(\widehat{\varinjlim_{i \to \infty}} CF^*(H_i)\right) \otimes \Lambda$$

イロト イヨト イヨト

• Umut Varolgüneş defined the relative symplectic cohomology SH_M^* for a closed symplectic manifold (M, ω) , as a presheaf of \mathbb{Z}_{2N_M} -graded unital associative skew-commutative algebras (over the Novikov field) on the category of compacts in M (the product is due to Tonkonog–Varolgüneş), such that $SH_M^*(M) = QH^*(M)$. A new and crucial property is the **Mayer–Vietoris sequence** for pairs of commuting sets.

$$SH^*_M(K) = H\left(\widehat{\lim_{i\to\infty}} CF^*(H_i)\right) \otimes \Lambda,$$

where H_i is a sequence of Hamiltonians satisfying $H_i|_K < 0$ and converging pointwise to 0 on K and to $+\infty$ on $M \setminus K$

イロト イヨト イヨト

• Umut Varolgüneş defined the relative symplectic cohomology SH_M^* for a closed symplectic manifold (M, ω) , as a presheaf of \mathbb{Z}_{2N_M} -graded unital associative skew-commutative algebras (over the Novikov field) on the category of compacts in M (the product is due to Tonkonog–Varolgüneş), such that $SH_M^*(M) = QH^*(M)$. A new and crucial property is the **Mayer–Vietoris sequence** for pairs of commuting sets.

$$SH^*_M(K) = H\left(\widehat{\lim_{i\to\infty}} CF^*(H_i)\right) \otimes \Lambda,$$

where H_i is a sequence of Hamiltonians satisfying $H_i|_K < 0$ and converging pointwise to 0 on K and to $+\infty$ on $M \setminus K$, $CF^*(H_i)$ is the Floer complex of H_i over the Novikov ring, which is roughly the Morse complex of the action functional associated to H_i on the loop space of M.

• Umut Varolgüneş defined the relative symplectic cohomology SH_M^* for a closed symplectic manifold (M, ω) , as a presheaf of \mathbb{Z}_{2N_M} -graded unital associative skew-commutative algebras (over the Novikov field) on the category of compacts in M (the product is due to Tonkonog–Varolgüneş), such that $SH_M^*(M) = QH^*(M)$. A new and crucial property is the **Mayer–Vietoris sequence** for pairs of commuting sets.

$$SH^*_M(K) = H\left(\widehat{\lim_{i\to\infty}} CF^*(H_i)\right) \otimes \Lambda,$$

where H_i is a sequence of Hamiltonians satisfying $H_i|_K < 0$ and converging pointwise to 0 on K and to $+\infty$ on $M \setminus K$, $CF^*(H_i)$ is the Floer complex of H_i over the Novikov ring, which is roughly the Morse complex of the action functional associated to H_i on the loop space of M. The hat denotes completion.

• Umut Varolgüneş defined the relative symplectic cohomology SH_M^* for a closed symplectic manifold (M, ω) , as a presheaf of \mathbb{Z}_{2N_M} -graded unital associative skew-commutative algebras (over the Novikov field) on the category of compacts in M (the product is due to Tonkonog–Varolgüneş), such that $SH_M^*(M) = QH^*(M)$. A new and crucial property is the **Mayer–Vietoris sequence** for pairs of commuting sets.

$$SH^*_M(K) = H\left(\widehat{\lim_{i\to\infty}}CF^*(H_i)\right)\otimes\Lambda,$$

where H_i is a sequence of Hamiltonians satisfying $H_i|_K < 0$ and converging pointwise to 0 on K and to $+\infty$ on $M \setminus K$, $CF^*(H_i)$ is the Floer complex of H_i over the Novikov ring, which is roughly the Morse complex of the action functional associated to H_i on the loop space of M. The hat denotes completion.

• The quantum cohomology IVQM is defined as follows:

• Umut Varolgüneş defined the relative symplectic cohomology SH_M^* for a closed symplectic manifold (M, ω) , as a presheaf of \mathbb{Z}_{2N_M} -graded unital associative skew-commutative algebras (over the Novikov field) on the category of compacts in M (the product is due to Tonkonog–Varolgüneş), such that $SH_M^*(M) = QH^*(M)$. A new and crucial property is the **Mayer–Vietoris sequence** for pairs of commuting sets.

$$SH^*_M(K) = H\left(\widehat{\lim_{i\to\infty}}CF^*(H_i)\right)\otimes\Lambda,$$

where H_i is a sequence of Hamiltonians satisfying $H_i|_K < 0$ and converging pointwise to 0 on K and to $+\infty$ on $M \setminus K$, $CF^*(H_i)$ is the Floer complex of H_i over the Novikov ring, which is roughly the Morse complex of the action functional associated to H_i on the loop space of M. The hat denotes completion. • The quantum cohomology IVQM is defined as follows:

$$\tau(K) = \bigcap_{U \text{ open} \supset K} \ker \left(QH^*(M) \xrightarrow{\text{res}} SH^*(M \setminus U) \right), \quad \tau(U) = \bigcup_{K \text{ cpt} \subset U} \tau(K).$$

OBRIGADO!

・ロト ・四ト ・ヨト ・ヨ