Big fiber theorems and symplectic rigidity

Geometria em Lisboa

Frol Zapolsky (University of Haifa \& MISANU)

February 27, 2024

Based on joint work together with Adi Dickstein, Yaniv Ganor, Leonid Polterovich

Big fiber theorems

Big fiber theorems

Any map in a suitable category has a big fiber.

Big fiber theorems

Any map in a suitable category has a big fiber.

Example

- $X, Y=$ finite sets, $|X|>|Y| \Rightarrow$ any $f: X \rightarrow Y$ has a fiber containing at least two elements (a.k.a. Dirichlet's principle).

Big fiber theorems

Any map in a suitable category has a big fiber.

Example

- $X, Y=$ finite sets, $|X|>|Y| \Rightarrow$ any $f: X \rightarrow Y$ has a fiber containing at least two elements (a.k.a. Dirichlet's principle).
- $f: S^{n+d} \rightarrow \mathbb{R}^{n}$ continuous $\Rightarrow f$ has a fiber of d-volume at least that of S^{d} (Gromov 2003).

Big fiber theorems

Any map in a suitable category has a big fiber.

Example

- $X, Y=$ finite sets, $|X|>|Y| \Rightarrow$ any $f: X \rightarrow Y$ has a fiber containing at least two elements (a.k.a. Dirichlet's principle).
- $f: S^{n+d} \rightarrow \mathbb{R}^{n}$ continuous $\Rightarrow f$ has a fiber of d-volume at least that of S^{d} (Gromov 2003).
- (M, ω) closed symplectic manifold, $\pi: M \rightarrow \mathbb{R}^{d}$ involutive $\Rightarrow \pi$ has a nondisplaceable fiber (Entov-Polterovich 2005).

Big fiber theorems

Any map in a suitable category has a big fiber.

Example

- $X, Y=$ finite sets, $|X|>|Y| \Rightarrow$ any $f: X \rightarrow Y$ has a fiber containing at least two elements (a.k.a. Dirichlet's principle).
- $f: S^{n+d} \rightarrow \mathbb{R}^{n}$ continuous $\Rightarrow f$ has a fiber of d-volume at least that of S^{d} (Gromov 2003).
- (M, ω) closed symplectic manifold, $\pi: M \rightarrow \mathbb{R}^{d}$ involutive $\Rightarrow \pi$ has a nondisplaceable fiber (Entov-Polterovich 2005).
- $f: \mathbb{T}^{p(d+1)} \rightarrow \mathbb{R}^{d}$ continuous \Rightarrow there is $y_{0} \in \mathbb{R}^{d}$ with rk $\left(H^{*}\left(\mathbb{T}^{p(d+1)}\right) \rightarrow H^{*}\left(f^{-1}\left(y_{0}\right)\right)\right) \geq 2^{p}($ Gromov 2009 $)$.

Big fiber theorems

Any map in a suitable category has a big fiber.

Example

- $X, Y=$ finite sets, $|X|>|Y| \Rightarrow$ any $f: X \rightarrow Y$ has a fiber containing at least two elements (a.k.a. Dirichlet's principle).
- $f: S^{n+d} \rightarrow \mathbb{R}^{n}$ continuous $\Rightarrow f$ has a fiber of d-volume at least that of S^{d} (Gromov 2003).
- (M, ω) closed symplectic manifold, $\pi: M \rightarrow \mathbb{R}^{d}$ involutive $\Rightarrow \pi$ has a nondisplaceable fiber (Entov-Polterovich 2005).
- $f: \mathbb{T}^{p(d+1)} \rightarrow \mathbb{R}^{d}$ continuous \Rightarrow there is $y_{0} \in \mathbb{R}^{d}$ with rk $\left(H^{*}\left(\mathbb{T}^{p(d+1)}\right) \rightarrow H^{*}\left(f^{-1}\left(y_{0}\right)\right)\right) \geq 2^{p}$ (Gromov 2009).
- $f: \Delta^{p(d+1)} \rightarrow \mathbb{R}^{d}$ continuous $\Rightarrow f$ has a fiber intersecting all $p d$-dimensional faces (Karasev 2012). For affine f proved by Rado and Neumann circa 1945.

Ideal-valued measures

Ideal-valued measures

$A=$ associative skew-commutative unital $\mathbb{Z}_{2 k}$-graded algebra, $k \geq 0$ (e.g. $H^{*}(X)$)

Ideal-valued measures

$A=$ associative skew-commutative unital $\mathbb{Z}_{2 k}$-graded algebra, $k \geq 0$ (e.g. $H^{*}(X)$) $\mathcal{I}(A)=$ graded ideals of A (e.g. ker $f^{*} \subset H^{*}(X)$ for continuous $\left.f: Y \rightarrow X\right)$

Ideal-valued measures

$A=$ associative skew-commutative unital $\mathbb{Z}_{2 k}$-graded algebra, $k \geq 0$ (e.g. $\left.H^{*}(X)\right)$ $\mathcal{I}(A)=$ graded ideals of A (e.g. ker $f^{*} \subset H^{*}(X)$ for continuous $\left.f: Y \rightarrow X\right)$ $X=$ compact Hausdorff space.

Ideal-valued measures

$A=$ associative skew-commutative unital $\mathbb{Z}_{2 k}$-graded algebra, $k \geq 0$ (e.g. $\left.H^{*}(X)\right)$ $\mathcal{I}(A)=$ graded ideals of A (e.g. ker $f^{*} \subset H^{*}(X)$ for continuous $\left.f: Y \rightarrow X\right)$ $X=$ compact Hausdorff space.

Definition

An A-ideal-valued measure on $X(A$-IVM $)$ is a map $\mu: \mathcal{O}(X) \rightarrow \mathcal{I}(A)$, where $\mathcal{O}(X)=$ open sets of X, such that

Ideal-valued measures

$A=$ associative skew-commutative unital $\mathbb{Z}_{2 k}$-graded algebra, $k \geq 0$ (e.g. $\left.H^{*}(X)\right)$ $\mathcal{I}(A)=$ graded ideals of A (e.g. ker $f^{*} \subset H^{*}(X)$ for continuous $\left.f: Y \rightarrow X\right)$ $X=$ compact Hausdorff space.

Definition

An A-ideal-valued measure on $X(A$-IVM $)$ is a map $\mu: \mathcal{O}(X) \rightarrow \mathcal{I}(A)$, where $\mathcal{O}(X)=$ open sets of X, such that

- (normalization): $\mu(\varnothing)=0$ and $\mu(X)=A$;

Ideal-valued measures

$A=$ associative skew-commutative unital $\mathbb{Z}_{2 k}$-graded algebra, $k \geq 0$ (e.g. $\left.H^{*}(X)\right)$ $\mathcal{I}(A)=$ graded ideals of A (e.g. ker $f^{*} \subset H^{*}(X)$ for continuous $\left.f: Y \rightarrow X\right)$ $X=$ compact Hausdorff space.

Definition

An A-ideal-valued measure on $X(A$-IVM $)$ is a map $\mu: \mathcal{O}(X) \rightarrow \mathcal{I}(A)$, where $\mathcal{O}(X)=$ open sets of X, such that

- (normalization): $\mu(\varnothing)=0$ and $\mu(X)=A$;
- (monotonicity): $U \subset U^{\prime} \Rightarrow \mu(U) \subset \mu\left(U^{\prime}\right)$;

Ideal-valued measures

$A=$ associative skew-commutative unital $\mathbb{Z}_{2 k}$-graded algebra, $k \geq 0$ (e.g. $\left.H^{*}(X)\right)$ $\mathcal{I}(A)=$ graded ideals of A (e.g. ker $f^{*} \subset H^{*}(X)$ for continuous $\left.f: Y \rightarrow X\right)$ $X=$ compact Hausdorff space.

Definition

An A-ideal-valued measure on $X(A$-IVM $)$ is a map $\mu: \mathcal{O}(X) \rightarrow \mathcal{I}(A)$, where $\mathcal{O}(X)=$ open sets of X, such that

- (normalization): $\mu(\varnothing)=0$ and $\mu(X)=A$;
- (monotonicity): $U \subset U^{\prime} \Rightarrow \mu(U) \subset \mu\left(U^{\prime}\right)$;
- (continuity): if $U_{1} \subset U_{2} \subset \ldots$ and $U=\bigcup_{i} U_{i}$, then $\mu(U)=\bigcup_{i} \mu\left(U_{i}\right)$;

Ideal-valued measures

$A=$ associative skew-commutative unital $\mathbb{Z}_{2 k}$-graded algebra, $k \geq 0$ (e.g. $H^{*}(X)$) $\mathcal{I}(A)=$ graded ideals of A (e.g. ker $f^{*} \subset H^{*}(X)$ for continuous $f: Y \rightarrow X$) $X=$ compact Hausdorff space.

Definition

An A-ideal-valued measure on $X(A$-IVM $)$ is a map $\mu: \mathcal{O}(X) \rightarrow \mathcal{I}(A)$, where $\mathcal{O}(X)=$ open sets of X, such that

- (normalization): $\mu(\varnothing)=0$ and $\mu(X)=A$;
- (monotonicity): $U \subset U^{\prime} \Rightarrow \mu(U) \subset \mu\left(U^{\prime}\right)$;
- (continuity): if $U_{1} \subset U_{2} \subset \ldots$ and $U=\bigcup_{i} U_{i}$, then $\mu(U)=\bigcup_{i} \mu\left(U_{i}\right)$;
- (multiplicativity): $\mu(U) * \mu\left(U^{\prime}\right) \subset \mu\left(U \cap U^{\prime}\right)$;

Ideal-valued measures

$A=$ associative skew-commutative unital $\mathbb{Z}_{2 k}$-graded algebra, $k \geq 0$ (e.g. $H^{*}(X)$) $\mathcal{I}(A)=$ graded ideals of A (e.g. ker $f^{*} \subset H^{*}(X)$ for continuous $f: Y \rightarrow X$) $X=$ compact Hausdorff space.

Definition

An A-ideal-valued measure on $X(A$-IVM $)$ is a map $\mu: \mathcal{O}(X) \rightarrow \mathcal{I}(A)$, where $\mathcal{O}(X)=$ open sets of X, such that

- (normalization): $\mu(\varnothing)=0$ and $\mu(X)=A$;
- (monotonicity): $U \subset U^{\prime} \Rightarrow \mu(U) \subset \mu\left(U^{\prime}\right)$;
- (continuity): if $U_{1} \subset U_{2} \subset \ldots$ and $U=\bigcup_{i} U_{i}$, then $\mu(U)=\bigcup_{i} \mu\left(U_{i}\right)$;
- (multiplicativity): $\mu(U) * \mu\left(U^{\prime}\right) \subset \mu\left(U \cap U^{\prime}\right)$;
- (intersection): if $X=U \cup U^{\prime}$, then $\mu\left(U \cap U^{\prime}\right)=\mu(U) \cap \mu\left(U^{\prime}\right)$.

Ideal-valued measures

$A=$ associative skew-commutative unital $\mathbb{Z}_{2 k}$-graded algebra, $k \geq 0$ (e.g. $\left.H^{*}(X)\right)$ $\mathcal{I}(A)=$ graded ideals of $A\left(\right.$ e.g. ker $f^{*} \subset H^{*}(X)$ for continuous $\left.f: Y \rightarrow X\right)$ $X=$ compact Hausdorff space.

Definition

An A-ideal-valued measure on $X(A$-IVM $)$ is a map $\mu: \mathcal{O}(X) \rightarrow \mathcal{I}(A)$, where $\mathcal{O}(X)=$ open sets of X, such that

- (normalization): $\mu(\varnothing)=0$ and $\mu(X)=A$;
- (monotonicity) $: U \subset U^{\prime} \Rightarrow \mu(U) \subset \mu\left(U^{\prime}\right)$;
- (continuity): if $U_{1} \subset U_{2} \subset \ldots$ and $U=\bigcup_{i} U_{i}$, then $\mu(U)=\bigcup_{i} \mu\left(U_{i}\right)$;
- (multiplicativity): $\mu(U) * \mu\left(U^{\prime}\right) \subset \mu\left(U \cap U^{\prime}\right)$;
- (intersection): if $X=U \cup U^{\prime}$, then $\mu\left(U \cap U^{\prime}\right)=\mu(U) \cap \mu\left(U^{\prime}\right)$.
- IVMs can be extended to compact subsets by $\mu(K)=\bigcap_{U \supset K} \mu(U)$; this satisfies analogous properties.

The cohomology IVM

The cohomology IVM

$X=$ compact metrizable space. The cohomology IVM on X is given by

The cohomology IVM

$X=$ compact metrizable space. The cohomology IVM on X is given by

$$
\mu(K)=\bigcap_{U \text { open } \supset K} \operatorname{ker}\left(H^{*}(X) \rightarrow H^{*}(X \backslash U)\right) \quad \text { for compact } K,
$$

The cohomology IVM

$X=$ compact metrizable space. The cohomology IVM on X is given by

$$
\begin{gathered}
\mu(K)=\bigcap_{U \text { open } \supset K} \operatorname{ker}\left(H^{*}(X) \rightarrow H^{*}(X \backslash U)\right) \text { for compact } K, \\
\mu(U)=\bigcup_{K \subset \mathrm{ct} \subset U} \mu(K) \text { for open } U .
\end{gathered}
$$

The cohomology IVM

$X=$ compact metrizable space. The cohomology IVM on X is given by

$$
\begin{gathered}
\mu(K)=\bigcap_{U \text { open } \supset K} \operatorname{ker}\left(H^{*}(X) \rightarrow H^{*}(X \backslash U)\right) \text { for compact } K, \\
\mu(U)=\bigcup_{K \mathrm{cpt} \subset U} \mu(K) \text { for open } U .
\end{gathered}
$$

Example

$X=\mathbb{C} P^{n} . H^{*}\left(\mathbb{C} P^{n} ; \mathbb{F}\right)=\mathbb{F}[h] /\left(h^{n+1}\right)$.

The cohomology IVM

$X=$ compact metrizable space. The cohomology IVM on X is given by

$$
\begin{gathered}
\mu(K)=\bigcap_{U \text { open } \supset K} \operatorname{ker}\left(H^{*}(X) \rightarrow H^{*}(X \backslash U)\right) \text { for compact } K, \\
\mu(U)=\bigcup_{K \mathrm{cpt} \subset U} \mu(K) \text { for open } U .
\end{gathered}
$$

Example

$X=\mathbb{C} P^{n} . H^{*}\left(\mathbb{C} P^{n} ; \mathbb{F}\right)=\mathbb{F}[h] /\left(h^{n+1}\right)$. Let us compute $\mu\left(\mathbb{C} P^{k}\right)$:

The cohomology IVM

$X=$ compact metrizable space. The cohomology IVM on X is given by

$$
\begin{gathered}
\mu(K)=\bigcap_{U \text { open } J K} \operatorname{ker}\left(H^{*}(X) \rightarrow H^{*}(X \backslash U)\right) \text { for compact } K, \\
\mu(U)=\bigcup_{K \mathrm{cpt} \subset U} \mu(K) \text { for open } U
\end{gathered}
$$

Example

$X=\mathbb{C} P^{n} . H^{*}\left(\mathbb{C} P^{n} ; \mathbb{F}\right)=\mathbb{F}[h] /\left(h^{n+1}\right)$. Let us compute $\mu\left(\mathbb{C} P^{k}\right)$:

$$
\mu\left(\mathbb{C} P^{k}\right)=\operatorname{ker}\left(H^{*}\left(\mathbb{C} P^{n}\right) \rightarrow H^{*}\left(\mathbb{C} P^{n} \backslash \mathbb{C} P^{k}\right)\right)
$$

The cohomology IVM

$X=$ compact metrizable space. The cohomology IVM on X is given by

$$
\begin{gathered}
\mu(K)=\bigcap_{U \text { open } \supset K} \operatorname{ker}\left(H^{*}(X) \rightarrow H^{*}(X \backslash U)\right) \text { for compact } K, \\
\mu(U)=\bigcup_{K \mathrm{cpt} \subset U} \mu(K) \text { for open } U
\end{gathered}
$$

Example

$$
\begin{array}{r}
X=\mathbb{C} P^{n} . H^{*}\left(\mathbb{C} P^{n} ; \mathbb{F}\right)=\mathbb{F}[h] /\left(h^{n+1}\right) \text {. Let us compute } \mu\left(\mathbb{C} P^{k}\right) \text { : } \\
\mu\left(\mathbb{C} P^{k}\right)=\operatorname{ker}\left(H^{*}\left(\mathbb{C} P^{n}\right) \rightarrow H^{*}\left(\mathbb{C} P^{n} \backslash \mathbb{C} P^{k}\right)\right) .
\end{array}
$$

Now, $\mathbb{C} P^{n} \backslash \mathbb{C} P^{k}$ deformation retracts onto a copy of $\mathbb{C} P^{n-k-1}$, and the resulting map $H^{*}\left(\mathbb{C} P^{n}\right) \rightarrow H^{*}\left(\mathbb{C} P^{n-k-1}\right)$ is just the truncation $h^{n-k} \mapsto 0$.

The cohomology IVM

$X=$ compact metrizable space. The cohomology IVM on X is given by

$$
\begin{gathered}
\mu(K)=\bigcap_{U \text { open } J K} \operatorname{ker}\left(H^{*}(X) \rightarrow H^{*}(X \backslash U)\right) \text { for compact } K, \\
\mu(U)=\bigcup_{K \mathrm{cpt} \subset U} \mu(K) \text { for open } U
\end{gathered}
$$

Example

$$
\begin{array}{r}
X=\mathbb{C} P^{n} . H^{*}\left(\mathbb{C} P^{n} ; \mathbb{F}\right)=\mathbb{F}[h] /\left(h^{n+1}\right) . \text { Let us compute } \mu\left(\mathbb{C} P^{k}\right) \text { : } \\
\mu\left(\mathbb{C} P^{k}\right)=\operatorname{ker}\left(H^{*}\left(\mathbb{C} P^{n}\right) \rightarrow H^{*}\left(\mathbb{C} P^{n} \backslash \mathbb{C} P^{k}\right)\right) .
\end{array}
$$

Now, $\mathbb{C} P^{n} \backslash \mathbb{C} P^{k}$ deformation retracts onto a copy of $\mathbb{C} P^{n-k-1}$, and the resulting map $H^{*}\left(\mathbb{C} P^{n}\right) \rightarrow H^{*}\left(\mathbb{C} P^{n-k-1}\right)$ is just the truncation $h^{n-k} \mapsto 0$. Thus

$$
\mu\left(\mathbb{C} P^{k}\right)=\left(h^{n-k}\right) \subset \mathbb{F}[h] /\left(h^{n+1}\right) .
$$

Abstract centerpoint theorem and pushforwards

Abstract centerpoint theorem and pushforwards

Theorem (Karasev)

Let Y be a compact metrizable space of covering dimension d, and let ν be an A-IVM on Y for some algebra A.

Abstract centerpoint theorem and pushforwards

Theorem (Karasev)

Let Y be a compact metrizable space of covering dimension d, and let ν be an A-IVM on Y for some algebra A. If $I \in \mathcal{I}(A)$ satisfies $I^{*(d+1)} \neq 0$, then the collection of compact sets $Z \subset Y$ with $\nu(Z) \supset I$ has nonempty intersection.

Abstract centerpoint theorem and pushforwards

Theorem (Karasev)

Let Y be a compact metrizable space of covering dimension d, and let ν be an A-IVM on Y for some algebra A. If $I \in \mathcal{I}(A)$ satisfies $I^{*(d+1)} \neq 0$, then the collection of compact sets $Z \subset Y$ with $\nu(Z) \supset I$ has nonempty intersection.

A centerpoint of ν with respect to I is any point in the above intersection.

Abstract centerpoint theorem and pushforwards

Theorem (Karasev)

Let Y be a compact metrizable space of covering dimension d, and let ν be an A-IVM on Y for some algebra A. If $I \in \mathcal{I}(A)$ satisfies $I^{*(d+1)} \neq 0$, then the collection of compact sets $Z \subset Y$ with $\nu(Z) \supset I$ has nonempty intersection.

A centerpoint of ν with respect to I is any point in the above intersection. This cannot be applied directly to the cohomology IVM on either $\mathbb{C} P^{n}$ (too high a dimension) or Δ^{n} (no topology).

Abstract centerpoint theorem and pushforwards

Theorem (Karasev)

Let Y be a compact metrizable space of covering dimension d, and let ν be an A-IVM on Y for some algebra A. If $I \in \mathcal{I}(A)$ satisfies $I^{*(d+1)} \neq 0$, then the collection of compact sets $Z \subset Y$ with $\nu(Z) \supset I$ has nonempty intersection.

A centerpoint of ν with respect to I is any point in the above intersection.
This cannot be applied directly to the cohomology IVM on either $\mathbb{C} P^{n}$ (too high a dimension) or Δ^{n} (no topology).

Definition

Let $f: X \rightarrow Y$ be a continuous map, and let μ be an A-IVM on X for some algebra A. The pushforward of μ by f is $\left(f_{*} \mu\right)(V)=\mu\left(f^{-1}(V)\right)$ for open $V \subset Y$.

Abstract centerpoint theorem and pushforwards

Theorem (Karasev)

Let Y be a compact metrizable space of covering dimension d, and let ν be an A-IVM on Y for some algebra A. If $I \in \mathcal{I}(A)$ satisfies $I^{*(d+1)} \neq 0$, then the collection of compact sets $Z \subset Y$ with $\nu(Z) \supset I$ has nonempty intersection.

A centerpoint of ν with respect to l is any point in the above intersection.
This cannot be applied directly to the cohomology IVM on either $\mathbb{C} P^{n}$ (too high a dimension) or Δ^{n} (no topology).

Definition

Let $f: X \rightarrow Y$ be a continuous map, and let μ be an A-IVM on X for some algebra A. The pushforward of μ by f is $\left(f_{*} \mu\right)(V)=\mu\left(f^{-1}(V)\right)$ for open $V \subset Y$.

This defines an A-IVM on X. Passage to compacts commutes with pushforwards for compact metrizable spaces.

Proof of Karasev's theorem for the simplex

Proof of Karasev's theorem for the simplex

Example

Consider $\Phi: \mathbb{C} P^{n} \rightarrow \mathbb{R}^{n}: \Phi\left(\left[z_{0}: \cdots: z_{n}\right]\right)=\frac{1}{|z|^{2}}\left(\left|z_{1}\right|^{2}, \ldots,\left|z_{n}\right|^{2}\right) ; \Phi\left(\mathbb{C} P^{n}\right)=\Delta^{n}$. $\mu=$ coh. IVM on $\mathbb{C} P^{n} \Rightarrow\left(\Phi_{*} \mu\right)\left(\Delta^{k}\right)=\mu\left(\Phi^{-1}\left(\Delta^{k}\right)\right)=\mu\left(\mathbb{C} P^{k}\right)=\left(h^{n-k}\right)$.

Proof of Karasev's theorem for the simplex

Example

Consider $\left.\Phi: \mathbb{C} P^{n} \rightarrow \mathbb{R}^{n}: \Phi\left(\left[z_{0}: \cdots: z_{n}\right]\right)=\frac{1}{|z|^{2}}\left|z_{1}\right|^{2}, \ldots,\left|z_{n}\right|^{2}\right) ; \Phi\left(\mathbb{C} P^{n}\right)=\Delta^{n}$. $\mu=$ coh. IVM on $\mathbb{C} P^{n} \Rightarrow\left(\Phi_{*} \mu\right)\left(\Delta^{k}\right)=\mu\left(\Phi^{-1}\left(\Delta^{k}\right)\right)=\mu\left(\mathbb{C} P^{k}\right)=\left(h^{n-k}\right)$.

Proof of Karasev's simplex theorem.

Proof of Karasev's theorem for the simplex

Example

Consider $\left.\Phi: \mathbb{C} P^{n} \rightarrow \mathbb{R}^{n}: \Phi\left(\left[z_{0}: \cdots: z_{n}\right]\right)=\frac{1}{|z|^{2}}\left|z_{1}\right|^{2}, \ldots,\left|z_{n}\right|^{2}\right) ; \Phi\left(\mathbb{C} P^{n}\right)=\Delta^{n}$. $\mu=$ coh. IVM on $\mathbb{C} P^{n} \Rightarrow\left(\Phi_{*} \mu\right)\left(\Delta^{k}\right)=\mu\left(\Phi^{-1}\left(\Delta^{k}\right)\right)=\mu\left(\mathbb{C} P^{k}\right)=\left(h^{n-k}\right)$.

Proof of Karasev's simplex theorem.

Let $f: \Delta^{p(d+1)} \rightarrow Y$ be a continuous map, where Y is a metrizable space of covering dimension d.

Proof of Karasev's theorem for the simplex

Example

Consider $\left.\Phi: \mathbb{C} P^{n} \rightarrow \mathbb{R}^{n}: \Phi\left(\left[z_{0}: \cdots: z_{n}\right]\right)=\frac{1}{|z|^{2}}\left|z_{1}\right|^{2}, \ldots,\left|z_{n}\right|^{2}\right) ; \Phi\left(\mathbb{C} P^{n}\right)=\Delta^{n}$. $\mu=$ coh. IVM on $\mathbb{C} P^{n} \Rightarrow\left(\Phi_{*} \mu\right)\left(\Delta^{k}\right)=\mu\left(\Phi^{-1}\left(\Delta^{k}\right)\right)=\mu\left(\mathbb{C} P^{k}\right)=\left(h^{n-k}\right)$.

Proof of Karasev's simplex theorem.

Let $f: \Delta^{p(d+1)} \rightarrow Y$ be a continuous map, where Y is a metrizable space of covering dimension d. Let $\nu=\Phi_{*} \mu$ be the $H^{*}\left(\mathbb{C} P^{p(d+1)}\right)$-IVM on $\Delta^{p(d+1)}$.

Proof of Karasev's theorem for the simplex

Example

Consider $\Phi: \mathbb{C} P^{n} \rightarrow \mathbb{R}^{n}: \Phi\left(\left[z_{0}: \cdots: z_{n}\right]\right)=\frac{1}{|z|^{2}}\left(\left|z_{1}\right|^{2}, \ldots,\left|z_{n}\right|^{2}\right) ; \Phi\left(\mathbb{C} P^{n}\right)=\Delta^{n}$. $\mu=$ coh. IVM on $\mathbb{C} P^{n} \Rightarrow\left(\Phi_{*} \mu\right)\left(\Delta^{k}\right)=\mu\left(\Phi^{-1}\left(\Delta^{k}\right)\right)=\mu\left(\mathbb{C} P^{k}\right)=\left(h^{n-k}\right)$.

Proof of Karasev's simplex theorem.

Let $f: \Delta^{p(d+1)} \rightarrow Y$ be a continuous map, where Y is a metrizable space of covering dimension d. Let $\nu=\Phi_{*} \mu$ be the $H^{*}\left(\mathbb{C} P^{p(d+1)}\right)$-IVM on $\Delta^{p(d+1)}$. Let $I=\left(h^{p}\right) \in \mathcal{I}\left(H^{*}\left(\mathbb{C} P^{p(d+1)}\right)\right)$. Then $I^{(d+1)}=\left(h^{p(d+1)}\right) \neq 0$.

Proof of Karasev's theorem for the simplex

Example

Consider $\Phi: \mathbb{C} P^{n} \rightarrow \mathbb{R}^{n}: \Phi\left(\left[z_{0}: \cdots: z_{n}\right]\right)=\frac{1}{|z|^{2}}\left(\left|z_{1}\right|^{2}, \ldots,\left|z_{n}\right|^{2}\right) ; \Phi\left(\mathbb{C} P^{n}\right)=\Delta^{n}$. $\mu=$ coh. IVM on $\mathbb{C} P^{n} \Rightarrow\left(\Phi_{*} \mu\right)\left(\Delta^{k}\right)=\mu\left(\Phi^{-1}\left(\Delta^{k}\right)\right)=\mu\left(\mathbb{C} P^{k}\right)=\left(h^{n-k}\right)$.

Proof of Karasev's simplex theorem.

Let $f: \Delta^{p(d+1)} \rightarrow Y$ be a continuous map, where Y is a metrizable space of covering dimension d. Let $\nu=\Phi_{*} \mu$ be the $H^{*}\left(\mathbb{C} P^{p(d+1)}\right)$-IVM on $\Delta^{p(d+1)}$. Let $I=\left(h^{p}\right) \in \mathcal{I}\left(H^{*}\left(\mathbb{C} P^{p(d+1)}\right)\right)$. Then $I^{(d+1)}=\left(h^{p(d+1)}\right) \neq 0$. The abstract centerpoint theorem applies to $f_{*} \nu$ and yields $y_{0} \in Y$ such that $Z \subset Y$ compact, $I \subset\left(f_{*} \nu\right)(Z) \Rightarrow y_{0} \in Z$.

Proof of Karasev's theorem for the simplex

Example

Consider $\Phi: \mathbb{C} P^{n} \rightarrow \mathbb{R}^{n}: \Phi\left(\left[z_{0}: \cdots: z_{n}\right]\right)=\frac{1}{|z|^{2}}\left(\left|z_{1}\right|^{2}, \ldots,\left|z_{n}\right|^{2}\right) ; \Phi\left(\mathbb{C} P^{n}\right)=\Delta^{n}$. $\mu=$ coh. IVM on $\mathbb{C} P^{n} \Rightarrow\left(\Phi_{*} \mu\right)\left(\Delta^{k}\right)=\mu\left(\Phi^{-1}\left(\Delta^{k}\right)\right)=\mu\left(\mathbb{C} P^{k}\right)=\left(h^{n-k}\right)$.

Proof of Karasev's simplex theorem.

Let $f: \Delta^{p(d+1)} \rightarrow Y$ be a continuous map, where Y is a metrizable space of covering dimension d. Let $\nu=\Phi_{*} \mu$ be the $H^{*}\left(\mathbb{C} P^{p(d+1)}\right)$-IVM on $\Delta^{p(d+1)}$. Let $I=\left(h^{p}\right) \in \mathcal{I}\left(H^{*}\left(\mathbb{C} P^{p(d+1)}\right)\right)$. Then $I^{(d+1)}=\left(h^{p(d+1)}\right) \neq 0$. The abstract centerpoint theorem applies to $f_{*} \nu$ and yields $y_{0} \in Y$ such that $Z \subset Y$ compact, $I \subset\left(f_{*} \nu\right)(Z) \Rightarrow y_{0} \in Z$. Let $D \subset \Delta^{p(d+1)}$ be a $p d$-dimensional face and let $Z=f(D)$. Then $\nu(D)=\left(h^{p}\right)=I$,

Proof of Karasev's theorem for the simplex

Example

Consider $\Phi: \mathbb{C} P^{n} \rightarrow \mathbb{R}^{n}: \Phi\left(\left[z_{0}: \cdots: z_{n}\right]\right)=\frac{1}{|z|^{2}}\left(\left|z_{1}\right|^{2}, \ldots,\left|z_{n}\right|^{2}\right) ; \Phi\left(\mathbb{C} P^{n}\right)=\Delta^{n}$. $\mu=$ coh. IVM on $\mathbb{C} P^{n} \Rightarrow\left(\Phi_{*} \mu\right)\left(\Delta^{k}\right)=\mu\left(\Phi^{-1}\left(\Delta^{k}\right)\right)=\mu\left(\mathbb{C} P^{k}\right)=\left(h^{n-k}\right)$.

Proof of Karasev's simplex theorem.

Let $f: \Delta^{p(d+1)} \rightarrow Y$ be a continuous map, where Y is a metrizable space of covering dimension d. Let $\nu=\Phi_{*} \mu$ be the $H^{*}\left(\mathbb{C} P^{p(d+1)}\right)$-IVM on $\Delta^{p(d+1)}$. Let $I=\left(h^{p}\right) \in \mathcal{I}\left(H^{*}\left(\mathbb{C} P^{p(d+1)}\right)\right)$. Then $I^{(d+1)}=\left(h^{p(d+1)}\right) \neq 0$. The abstract centerpoint theorem applies to $f_{*} \nu$ and yields $y_{0} \in Y$ such that $Z \subset Y$ compact, $I \subset\left(f_{*} \nu\right)(Z) \Rightarrow y_{0} \in Z$. Let $D \subset \Delta^{p(d+1)}$ be a $p d$-dimensional face and let $Z=f(D)$. Then $\nu(D)=\left(h^{p}\right)=I$, and thus

$$
\left(f_{*} \nu\right)(Z)=\nu\left(f^{-1}(Z)\right)=\nu\left(f^{-1}(f(D))\right) \supset \nu(D)=I,
$$

by monotonicity and since $f^{-1}(f(D)) \supset D$.

Proof of Karasev's theorem for the simplex

Example

Consider $\Phi: \mathbb{C} P^{n} \rightarrow \mathbb{R}^{n}: \Phi\left(\left[z_{0}: \cdots: z_{n}\right]\right)=\frac{1}{|z|^{2}}\left(\left|z_{1}\right|^{2}, \ldots,\left|z_{n}\right|^{2}\right) ; \Phi\left(\mathbb{C} P^{n}\right)=\Delta^{n}$. $\mu=$ coh. IVM on $\mathbb{C} P^{n} \Rightarrow\left(\Phi_{*} \mu\right)\left(\Delta^{k}\right)=\mu\left(\Phi^{-1}\left(\Delta^{k}\right)\right)=\mu\left(\mathbb{C} P^{k}\right)=\left(h^{n-k}\right)$.

Proof of Karasev's simplex theorem.

Let $f: \Delta^{p(d+1)} \rightarrow Y$ be a continuous map, where Y is a metrizable space of covering dimension d. Let $\nu=\Phi_{*} \mu$ be the $H^{*}\left(\mathbb{C} P^{p(d+1)}\right)$-IVM on $\Delta^{p(d+1)}$. Let $I=\left(h^{p}\right) \in \mathcal{I}\left(H^{*}\left(\mathbb{C} P^{p(d+1)}\right)\right)$. Then $I^{(d+1)}=\left(h^{p(d+1)}\right) \neq 0$. The abstract centerpoint theorem applies to $f_{*} \nu$ and yields $y_{0} \in Y$ such that $Z \subset Y$ compact, $I \subset\left(f_{*} \nu\right)(Z) \Rightarrow y_{0} \in Z$. Let $D \subset \Delta^{p(d+1)}$ be a $p d$-dimensional face and let $Z=f(D)$. Then $\nu(D)=\left(h^{p}\right)=I$, and thus

$$
\left(f_{*} \nu\right)(Z)=\nu\left(f^{-1}(Z)\right)=\nu\left(f^{-1}(f(D))\right) \supset \nu(D)=I,
$$

by monotonicity and since $f^{-1}(f(D)) \supset D$. It follows that $y_{0} \in Z=f(D)$, or equivalently $D \cap f^{-1}\left(y_{0}\right) \neq 0$.

Symplectic geometry I: basics

Symplectic geometry I: basics

Symplectic manifold $=\left(M^{2 n}, \omega\right), \omega$ a closed 2-form: $\omega^{\wedge n}$ is a volume form.

Symplectic geometry I: basics

Symplectic manifold $=\left(M^{2 n}, \omega\right), \omega$ a closed 2-form: $\omega^{\wedge n}$ is a volume form. For a Hamiltonian $H:[0,1] \times M \rightarrow \mathbb{R}$ have its Hamiltonian vector field X_{H}^{t} : $\omega\left(X_{H}^{t}, \cdot\right)=-d H_{t}$ and the Hamiltonian flow ϕ_{H}^{t}.

Symplectic geometry I: basics

Symplectic manifold $=\left(M^{2 n}, \omega\right), \omega$ a closed 2-form: $\omega^{\wedge n}$ is a volume form. For a Hamiltonian $H:[0,1] \times M \rightarrow \mathbb{R}$ have its Hamiltonian vector field X_{H}^{t} : $\omega\left(X_{H}^{t}, \cdot\right)=-d H_{t}$ and the Hamiltonian flow ϕ_{H}^{t}. The Hamiltonian group $\operatorname{Ham}(M, \omega)$ is the set of ϕ_{H}^{1}.

Symplectic geometry I: basics

Symplectic manifold $=\left(M^{2 n}, \omega\right), \omega$ a closed 2-form: $\omega^{\wedge n}$ is a volume form. For a Hamiltonian $H:[0,1] \times M \rightarrow \mathbb{R}$ have its Hamiltonian vector field X_{H}^{t} : $\omega\left(X_{H}^{t}, \cdot\right)=-d H_{t}$ and the Hamiltonian flow ϕ_{H}^{t}. The Hamiltonian group $\operatorname{Ham}(M, \omega)$ is the set of ϕ_{H}^{1}. Have the symplectomorphism group $\operatorname{Symp}(M, \omega)=\left\{\phi \in \operatorname{Diff}(M) \mid \phi^{*} \omega=\omega\right\}$ and its identity component $\operatorname{Symp}_{0}(M, \omega)$.

Symplectic geometry I: basics

Symplectic manifold $=\left(M^{2 n}, \omega\right), \omega$ a closed 2-form: $\omega^{\wedge n}$ is a volume form. For a Hamiltonian $H:[0,1] \times M \rightarrow \mathbb{R}$ have its Hamiltonian vector field X_{H}^{t} : $\omega\left(X_{H}^{t}, \cdot\right)=-d H_{t}$ and the Hamiltonian flow ϕ_{H}^{t}. The Hamiltonian group $\operatorname{Ham}(M, \omega)$ is the set of ϕ_{H}^{1}. Have the symplectomorphism group $\operatorname{Symp}(M, \omega)=\left\{\phi \in \operatorname{Diff}(M) \mid \phi^{*} \omega=\omega\right\}$ and its identity component $\operatorname{Symp}_{0}(M, \omega)$. Basic fact: $\operatorname{Ham}(M, \omega) \subset \operatorname{Symp}_{0}(M, \omega)$.

Symplectic geometry I: basics

Symplectic manifold $=\left(M^{2 n}, \omega\right), \omega$ a closed 2-form: $\omega^{\wedge n}$ is a volume form. For a Hamiltonian $H:[0,1] \times M \rightarrow \mathbb{R}$ have its Hamiltonian vector field X_{H}^{t} : $\omega\left(X_{H}^{t}, \cdot\right)=-d H_{t}$ and the Hamiltonian flow ϕ_{H}^{t}. The Hamiltonian group $\operatorname{Ham}(M, \omega)$ is the set of ϕ_{H}^{1}. Have the symplectomorphism group $\operatorname{Symp}(M, \omega)=\left\{\phi \in \operatorname{Diff}(M) \mid \phi^{*} \omega=\omega\right\}$ and its identity component $\operatorname{Symp}_{0}(M, \omega)$. Basic fact: $\operatorname{Ham}(M, \omega) \subset \operatorname{Symp}_{0}(M, \omega)$.

Example

Symplectic geometry I: basics

Symplectic manifold $=\left(M^{2 n}, \omega\right), \omega$ a closed 2-form: $\omega^{\wedge n}$ is a volume form. For a Hamiltonian $H:[0,1] \times M \rightarrow \mathbb{R}$ have its Hamiltonian vector field X_{H}^{t} : $\omega\left(X_{H}^{t}, \cdot\right)=-d H_{t}$ and the Hamiltonian flow ϕ_{H}^{t}. The Hamiltonian group $\operatorname{Ham}(M, \omega)$ is the set of ϕ_{H}^{1}. Have the symplectomorphism group $\operatorname{Symp}(M, \omega)=\left\{\phi \in \operatorname{Diff}(M) \mid \phi^{*} \omega=\omega\right\}$ and its identity component $\operatorname{Symp}_{0}(M, \omega)$. Basic fact: $\operatorname{Ham}(M, \omega) \subset \operatorname{Symp}_{0}(M, \omega)$.

Example

$$
\text { - } \mathbb{R}^{2 n}\left(x_{1}, \ldots, x_{n}, y_{1}, \ldots, y_{n}\right), \omega_{\text {std }}=\sum_{i} d x_{i} \wedge d y_{i}
$$

Symplectic geometry I: basics

Symplectic manifold $=\left(M^{2 n}, \omega\right), \omega$ a closed 2-form: $\omega^{\wedge n}$ is a volume form. For a Hamiltonian $H:[0,1] \times M \rightarrow \mathbb{R}$ have its Hamiltonian vector field X_{H}^{t} : $\omega\left(X_{H}^{t}, \cdot\right)=-d H_{t}$ and the Hamiltonian flow ϕ_{H}^{t}. The Hamiltonian group $\operatorname{Ham}(M, \omega)$ is the set of ϕ_{H}^{1}. Have the symplectomorphism group $\operatorname{Symp}(M, \omega)=\left\{\phi \in \operatorname{Diff}(M) \mid \phi^{*} \omega=\omega\right\}$ and its identity component $\operatorname{Symp}_{0}(M, \omega)$. Basic fact: $\operatorname{Ham}(M, \omega) \subset \operatorname{Symp}_{0}(M, \omega)$.

Example

- $\mathbb{R}^{2 n}\left(x_{1}, \ldots, x_{n}, y_{1}, \ldots, y_{n}\right), \omega_{\text {std }}=\sum_{i} d x_{i} \wedge d y_{i}$.
- $\mathbb{T}^{2 n}=\mathbb{R}^{2 n} / \mathbb{Z}^{2 n}, \omega$ descends from $\mathbb{R}^{2 n}$.

Symplectic geometry I: basics

Symplectic manifold $=\left(M^{2 n}, \omega\right), \omega$ a closed 2-form: $\omega^{\wedge n}$ is a volume form. For a Hamiltonian $H:[0,1] \times M \rightarrow \mathbb{R}$ have its Hamiltonian vector field X_{H}^{t} : $\omega\left(X_{H}^{t}, \cdot\right)=-d H_{t}$ and the Hamiltonian flow ϕ_{H}^{t}. The Hamiltonian group $\operatorname{Ham}(M, \omega)$ is the set of ϕ_{H}^{1}. Have the symplectomorphism group $\operatorname{Symp}(M, \omega)=\left\{\phi \in \operatorname{Diff}(M) \mid \phi^{*} \omega=\omega\right\}$ and its identity component $\operatorname{Symp}_{0}(M, \omega)$. Basic fact: $\operatorname{Ham}(M, \omega) \subset \operatorname{Symp}_{0}(M, \omega)$.

Example

- $\mathbb{R}^{2 n}\left(x_{1}, \ldots, x_{n}, y_{1}, \ldots, y_{n}\right), \omega_{\text {std }}=\sum_{i} d x_{i} \wedge d y_{i}$.
- $\mathbb{T}^{2 n}=\mathbb{R}^{2 n} / \mathbb{Z}^{2 n}, \omega$ descends from $\mathbb{R}^{2 n}$.
- Surfaces with area forms;

Symplectic geometry I: basics

Symplectic manifold $=\left(M^{2 n}, \omega\right), \omega$ a closed 2-form: $\omega^{\wedge n}$ is a volume form. For a Hamiltonian $H:[0,1] \times M \rightarrow \mathbb{R}$ have its Hamiltonian vector field X_{H}^{t} : $\omega\left(X_{H}^{t}, \cdot\right)=-d H_{t}$ and the Hamiltonian flow ϕ_{H}^{t}. The Hamiltonian group $\operatorname{Ham}(M, \omega)$ is the set of ϕ_{H}^{1}. Have the symplectomorphism group $\operatorname{Symp}(M, \omega)=\left\{\phi \in \operatorname{Diff}(M) \mid \phi^{*} \omega=\omega\right\}$ and its identity component $\operatorname{Symp}_{0}(M, \omega)$. Basic fact: $\operatorname{Ham}(M, \omega) \subset \operatorname{Symp}_{0}(M, \omega)$.

Example

- $\mathbb{R}^{2 n}\left(x_{1}, \ldots, x_{n}, y_{1}, \ldots, y_{n}\right), \omega_{\text {std }}=\sum_{i} d x_{i} \wedge d y_{i}$.
- $\mathbb{T}^{2 n}=\mathbb{R}^{2 n} / \mathbb{Z}^{2 n}, \omega$ descends from $\mathbb{R}^{2 n}$.
- Surfaces with area forms;
- $\left(\mathbb{C} P^{n}, \omega_{\mathrm{FS}}\right): \mathbb{C}^{n+1} \supset S^{2 n+1} \xrightarrow{\pi} \mathbb{C} P^{n}, \pi^{*} \omega_{\mathrm{FS}}=\omega_{\mathrm{std}} \mid S^{2 n+1}$.

Symplectic geometry I: basics

Symplectic manifold $=\left(M^{2 n}, \omega\right), \omega$ a closed 2-form: $\omega^{\wedge n}$ is a volume form. For a Hamiltonian $H:[0,1] \times M \rightarrow \mathbb{R}$ have its Hamiltonian vector field X_{H}^{t} : $\omega\left(X_{H}^{t}, \cdot\right)=-d H_{t}$ and the Hamiltonian flow ϕ_{H}^{t}. The Hamiltonian group $\operatorname{Ham}(M, \omega)$ is the set of ϕ_{H}^{1}. Have the symplectomorphism group $\operatorname{Symp}(M, \omega)=\left\{\phi \in \operatorname{Diff}(M) \mid \phi^{*} \omega=\omega\right\}$ and its identity component $\operatorname{Symp}_{0}(M, \omega)$. Basic fact: $\operatorname{Ham}(M, \omega) \subset \operatorname{Symp}_{0}(M, \omega)$.

Example

- $\mathbb{R}^{2 n}\left(x_{1}, \ldots, x_{n}, y_{1}, \ldots, y_{n}\right), \omega_{\text {std }}=\sum_{i} d x_{i} \wedge d y_{i}$.
- $\mathbb{T}^{2 n}=\mathbb{R}^{2 n} / \mathbb{Z}^{2 n}, \omega$ descends from $\mathbb{R}^{2 n}$.
- Surfaces with area forms;
- $\left(\mathbb{C} P^{n}, \omega_{\mathrm{FS}}\right): \mathbb{C}^{n+1} \supset S^{2 n+1} \xrightarrow{\pi} \mathbb{C} P^{n}, \pi^{*} \omega_{\mathrm{FS}}=\left.\omega_{\mathrm{std}}\right|_{S^{2 n+1}}$.
- Products.

Symplectic geometry II: special maps and size

Symplectic geometry II: special maps and size

The Poisson bracket of $f, g \in C^{\infty}(M)$ is $\{f, g\}=\omega\left(X_{g}, X_{f}\right)=d f\left(X_{g}\right)$.

Symplectic geometry II: special maps and size

The Poisson bracket of $f, g \in C^{\infty}(M)$ is $\{f, g\}=\omega\left(X_{g}, X_{f}\right)=d f\left(X_{g}\right)$. A smooth map $\pi: M \rightarrow B$ is involutive if for $f, g \in C^{\infty}(B)$ have $\left\{\pi^{*} f, \pi^{*} g\right\} \equiv 0$.

Symplectic geometry II: special maps and size

The Poisson bracket of $f, g \in C^{\infty}(M)$ is $\{f, g\}=\omega\left(X_{g}, X_{f}\right)=d f\left(X_{g}\right)$. A smooth map $\pi: M \rightarrow B$ is involutive if for $f, g \in C^{\infty}(B)$ have $\left\{\pi^{*} f, \pi^{*} g\right\} \equiv 0$.

Example

- $\pi=\left(f_{1}, \ldots, f_{d}\right): M \rightarrow \mathbb{R}^{d}$ is involutive if and only if $\left\{f_{i}, f_{j}\right\} \equiv 0$.

Symplectic geometry II: special maps and size

The Poisson bracket of $f, g \in C^{\infty}(M)$ is $\{f, g\}=\omega\left(X_{g}, X_{f}\right)=d f\left(X_{g}\right)$. A smooth map $\pi: M \rightarrow B$ is involutive if for $f, g \in C^{\infty}(B)$ have $\left\{\pi^{*} f, \pi^{*} g\right\} \equiv 0$.

Example

- $\pi=\left(f_{1}, \ldots, f_{d}\right): M \rightarrow \mathbb{R}^{d}$ is involutive if and only if $\left\{f_{i}, f_{j}\right\} \equiv 0$.
- $\Phi: \mathbb{C} P^{n} \rightarrow \mathbb{R}^{n}$ is involutive.

Symplectic geometry II: special maps and size

The Poisson bracket of $f, g \in C^{\infty}(M)$ is $\{f, g\}=\omega\left(X_{g}, X_{f}\right)=d f\left(X_{g}\right)$. A smooth map $\pi: M \rightarrow B$ is involutive if for $f, g \in C^{\infty}(B)$ have $\left\{\pi^{*} f, \pi^{*} g\right\} \equiv 0$.

Example

- $\pi=\left(f_{1}, \ldots, f_{d}\right): M \rightarrow \mathbb{R}^{d}$ is involutive if and only if $\left\{f_{i}, f_{j}\right\} \equiv 0$.
- $\Phi: \mathbb{C} P^{n} \rightarrow \mathbb{R}^{n}$ is involutive.
- $\mathbb{T}^{2 n}=\mathbb{T}^{n}(p) \times \mathbb{T}^{n}(q) \rightarrow \mathbb{T}^{n}(p)$ is involutive for $\omega=\sum_{i} d p_{i} \wedge d q_{i}$.

Symplectic geometry II: special maps and size

The Poisson bracket of $f, g \in C^{\infty}(M)$ is $\{f, g\}=\omega\left(X_{g}, X_{f}\right)=d f\left(X_{g}\right)$. A smooth map $\pi: M \rightarrow B$ is involutive if for $f, g \in C^{\infty}(B)$ have $\left\{\pi^{*} f, \pi^{*} g\right\} \equiv 0$.

Example

- $\pi=\left(f_{1}, \ldots, f_{d}\right): M \rightarrow \mathbb{R}^{d}$ is involutive if and only if $\left\{f_{i}, f_{j}\right\} \equiv 0$.
- $\Phi: \mathbb{C} P^{n} \rightarrow \mathbb{R}^{n}$ is involutive.
- $\mathbb{T}^{2 n}=\mathbb{T}^{n}(p) \times \mathbb{T}^{n}(q) \rightarrow \mathbb{T}^{n}(p)$ is involutive for $\omega=\sum_{i} d p_{i} \wedge d q_{i}$.

A set $S \subset M$ is displaceable if $\exists \phi \in \operatorname{Ham}(M, \omega): \phi(S) \cap \bar{S}=\varnothing$.

Symplectic geometry II: special maps and size

The Poisson bracket of $f, g \in C^{\infty}(M)$ is $\{f, g\}=\omega\left(X_{g}, X_{f}\right)=d f\left(X_{g}\right)$. A smooth map $\pi: M \rightarrow B$ is involutive if for $f, g \in C^{\infty}(B)$ have $\left\{\pi^{*} f, \pi^{*} g\right\} \equiv 0$.

Example

- $\pi=\left(f_{1}, \ldots, f_{d}\right): M \rightarrow \mathbb{R}^{d}$ is involutive if and only if $\left\{f_{i}, f_{j}\right\} \equiv 0$.
- $\Phi: \mathbb{C} P^{n} \rightarrow \mathbb{R}^{n}$ is involutive.
- $\mathbb{T}^{2 n}=\mathbb{T}^{n}(p) \times \mathbb{T}^{n}(q) \rightarrow \mathbb{T}^{n}(p)$ is involutive for $\omega=\sum_{i} d p_{i} \wedge d q_{i}$.

A set $S \subset M$ is displaceable if $\exists \phi \in \operatorname{Ham}(M, \omega): \phi(S) \cap \bar{S}=\varnothing$.

Example

- Any compact in $\mathbb{R}^{2 n}$ is displaceable.

Symplectic geometry II: special maps and size

The Poisson bracket of $f, g \in C^{\infty}(M)$ is $\{f, g\}=\omega\left(X_{g}, X_{f}\right)=d f\left(X_{g}\right)$. A smooth map $\pi: M \rightarrow B$ is involutive if for $f, g \in C^{\infty}(B)$ have $\left\{\pi^{*} f, \pi^{*} g\right\} \equiv 0$.

Example

- $\pi=\left(f_{1}, \ldots, f_{d}\right): M \rightarrow \mathbb{R}^{d}$ is involutive if and only if $\left\{f_{i}, f_{j}\right\} \equiv 0$.
- $\Phi: \mathbb{C} P^{n} \rightarrow \mathbb{R}^{n}$ is involutive.
- $\mathbb{T}^{2 n}=\mathbb{T}^{n}(p) \times \mathbb{T}^{n}(q) \rightarrow \mathbb{T}^{n}(p)$ is involutive for $\omega=\sum_{i} d p_{i} \wedge d q_{i}$.

A set $S \subset M$ is displaceable if $\exists \phi \in \operatorname{Ham}(M, \omega): \phi(S) \cap \bar{S}=\varnothing$.

Example

- Any compact in $\mathbb{R}^{2 n}$ is displaceable.
- In S^{2}, any open hemisphere is displaceable by a rotation. Any closed hemisphere is nondisplaceable. The equator is nondisplaceable.

Symplectic geometry II: special maps and size

The Poisson bracket of $f, g \in C^{\infty}(M)$ is $\{f, g\}=\omega\left(X_{g}, X_{f}\right)=d f\left(X_{g}\right)$. A smooth map $\pi: M \rightarrow B$ is involutive if for $f, g \in C^{\infty}(B)$ have $\left\{\pi^{*} f, \pi^{*} g\right\} \equiv 0$.

Example

- $\pi=\left(f_{1}, \ldots, f_{d}\right): M \rightarrow \mathbb{R}^{d}$ is involutive if and only if $\left\{f_{i}, f_{j}\right\} \equiv 0$.
- $\Phi: \mathbb{C} P^{n} \rightarrow \mathbb{R}^{n}$ is involutive.
- $\mathbb{T}^{2 n}=\mathbb{T}^{n}(p) \times \mathbb{T}^{n}(q) \rightarrow \mathbb{T}^{n}(p)$ is involutive for $\omega=\sum_{i} d p_{i} \wedge d q_{i}$.

A set $S \subset M$ is displaceable if $\exists \phi \in \operatorname{Ham}(M, \omega): \phi(S) \cap \bar{S}=\varnothing$.

Example

- Any compact in $\mathbb{R}^{2 n}$ is displaceable.
- In S^{2}, any open hemisphere is displaceable by a rotation. Any closed hemisphere is nondisplaceable. The equator is nondisplaceable.
- $\Phi: \mathbb{C} P^{n} \rightarrow \Delta^{n}$: let $p_{0}=\left(\frac{1}{n+1}, \ldots, \frac{1}{n+1}\right)$. Since $S_{n+1} \subset \operatorname{PU}(n) \subset \operatorname{Ham}\left(\mathbb{C} P^{n}\right)$, for any $p \neq p_{0}, \Phi^{-1}(p)$ is displaceable.

Big fibers in symplectic geometry

Big fibers in symplectic geometry

Theorem (Entov-Polterovich)

Let (M, ω) be a closed symplectic manifold. Then any involutive map $M \rightarrow B$ has a nondisplaceable fiber.

Big fibers in symplectic geometry

Theorem (Entov-Polterovich)

Let (M, ω) be a closed symplectic manifold. Then any involutive map $M \rightarrow B$ has a nondisplaceable fiber.

Example

- $\Phi: \mathbb{C} P^{n} \rightarrow \Delta^{n}$: since for $p \neq p_{0}, \Phi^{-1}(p)$ is displaceable, it follows that $\Phi^{-1}\left(p_{0}\right)$, a.k.a. the Clifford torus, is nondisplaceable.

Big fibers in symplectic geometry

Theorem (Entov-Polterovich)

Let (M, ω) be a closed symplectic manifold. Then any involutive map $M \rightarrow B$ has a nondisplaceable fiber.

Example

- $\Phi: \mathbb{C} P^{n} \rightarrow \Delta^{n}$: since for $p \neq p_{0}, \Phi^{-1}(p)$ is displaceable, it follows that $\Phi^{-1}\left(p_{0}\right)$, a.k.a. the Clifford torus, is nondisplaceable.
- For $n=1$, we obtain the equator in $S^{2}=\mathbb{C} P^{1}$.

Big fibers in symplectic geometry

Theorem (Entov-Polterovich)

Let (M, ω) be a closed symplectic manifold. Then any involutive map $M \rightarrow B$ has a nondisplaceable fiber.

Example

- $\Phi: \mathbb{C} P^{n} \rightarrow \Delta^{n}$: since for $p \neq p_{0}, \Phi^{-1}(p)$ is displaceable, it follows that $\Phi^{-1}\left(p_{0}\right)$, a.k.a. the Clifford torus, is nondisplaceable.
- For $n=1$, we obtain the equator in $S^{2}=\mathbb{C} P^{1}$.
- $\mathbb{T}^{2 n} \rightarrow \mathbb{T}^{n}$ must have a nondisplaceable fiber. Any fiber here is a linear Lagrangian torus, and they are all equivalent under Symp $\left(\mathbb{T}^{2 n}\right)$. Thus all of them are nondisplaceable.

Big fibers in symplectic geometry

Theorem (Entov-Polterovich)

Let (M, ω) be a closed symplectic manifold. Then any involutive map $M \rightarrow B$ has a nondisplaceable fiber.

Example

- $\Phi: \mathbb{C} P^{n} \rightarrow \Delta^{n}$: since for $p \neq p_{0}, \Phi^{-1}(p)$ is displaceable, it follows that $\Phi^{-1}\left(p_{0}\right)$, a.k.a. the Clifford torus, is nondisplaceable.
- For $n=1$, we obtain the equator in $S^{2}=\mathbb{C} P^{1}$.
- $\mathbb{T}^{2 n} \rightarrow \mathbb{T}^{n}$ must have a nondisplaceable fiber. Any fiber here is a linear Lagrangian torus, and they are all equivalent under $\operatorname{Symp}\left(\mathbb{T}^{2 n}\right)$. Thus all of them are nondisplaceable.
- Let $\Gamma_{1}, \ldots, \Gamma_{k} \subset S^{2}$ be graphs such that each connected component of $S^{2} \backslash \Gamma_{i}$ is a disk of area $\leq \frac{1}{2}$. Then $\Gamma_{1} \times \cdots \times \Gamma_{k}$ is nondisplaceable.

Big fibers in symplectic geometry

Theorem (Entov-Polterovich)

Let (M, ω) be a closed symplectic manifold. Then any involutive map $M \rightarrow B$ has a nondisplaceable fiber.

Example

- $\Phi: \mathbb{C} P^{n} \rightarrow \Delta^{n}$: since for $p \neq p_{0}, \Phi^{-1}(p)$ is displaceable, it follows that $\Phi^{-1}\left(p_{0}\right)$, a.k.a. the Clifford torus, is nondisplaceable.
- For $n=1$, we obtain the equator in $S^{2}=\mathbb{C} P^{1}$.
- $\mathbb{T}^{2 n} \rightarrow \mathbb{T}^{n}$ must have a nondisplaceable fiber. Any fiber here is a linear Lagrangian torus, and they are all equivalent under Symp($\left.\mathbb{T}^{2 n}\right)$. Thus all of them are nondisplaceable.
- Let $\Gamma_{1}, \ldots, \Gamma_{k} \subset S^{2}$ be graphs such that each connected component of $S^{2} \backslash \Gamma_{i}$ is a disk of area $\leq \frac{1}{2}$. Then $\Gamma_{1} \times \cdots \times \Gamma_{k}$ is nondisplaceable. Indeed, if $f_{i} \in C^{\infty}\left(S^{2}\right): \Gamma_{i}=f_{i}^{-1}(0)$, then $f_{1} \times \cdots \times f_{k}:\left(S^{2}\right)^{k} \rightarrow \mathbb{R}^{k}$ is involutive and all fibers but 0 are displaceable.

Ideal-valued quasi-measures

Ideal-valued quasi-measures

Two closed (respectively, open) subsets A, A^{\prime} of a closed symplectic manifold (M, ω) commute if there is an involutive map $\pi: M \rightarrow B$ and closed (respectively, open) sets $C, C^{\prime} \subset B$ such that $A=\pi^{-1}(C), A^{\prime}=\pi^{-1}\left(C^{\prime}\right)$.

Ideal-valued quasi-measures

Two closed (respectively, open) subsets A, A^{\prime} of a closed symplectic manifold (M, ω) commute if there is an involutive map $\pi: M \rightarrow B$ and closed (respectively, open) sets $C, C^{\prime} \subset B$ such that $A=\pi^{-1}(C), A^{\prime}=\pi^{-1}\left(C^{\prime}\right)$.

Definition

An A-ideal-valued quasi-measure (A-IVQM) on a closed symplectic manifold (M, ω) is a map $\tau: \mathcal{O}(M) \rightarrow \mathcal{I}(A)$ satisfying all the axioms of an $A-\mathrm{IVM}$,

Ideal-valued quasi-measures

Two closed (respectively, open) subsets A, A^{\prime} of a closed symplectic manifold (M, ω) commute if there is an involutive map $\pi: M \rightarrow B$ and closed (respectively, open) sets $C, C^{\prime} \subset B$ such that $A=\pi^{-1}(C), A^{\prime}=\pi^{-1}\left(C^{\prime}\right)$.

Definition

An A-ideal-valued quasi-measure (A-IVQM) on a closed symplectic manifold (M, ω) is a map $\tau: \mathcal{O}(M) \rightarrow \mathcal{I}(A)$ satisfying all the axioms of an A-IVM, except multiplicativity, which is replaced by

- (quasi-multiplicativity): $\tau(U) * \tau\left(U^{\prime}\right) \subset \tau\left(U \cap U^{\prime}\right)$ if U, U^{\prime} commute.

Ideal-valued quasi-measures

Two closed (respectively, open) subsets A, A^{\prime} of a closed symplectic manifold (M, ω) commute if there is an involutive map $\pi: M \rightarrow B$ and closed (respectively, open) sets $C, C^{\prime} \subset B$ such that $A=\pi^{-1}(C), A^{\prime}=\pi^{-1}\left(C^{\prime}\right)$.

Definition

An A-ideal-valued quasi-measure (A-IVQM) on a closed symplectic manifold (M, ω) is a map $\tau: \mathcal{O}(M) \rightarrow \mathcal{I}(A)$ satisfying all the axioms of an A-IVM, except multiplicativity, which is replaced by

- (quasi-multiplicativity): $\tau(U) * \tau\left(U^{\prime}\right) \subset \tau\left(U \cap U^{\prime}\right)$ if U, U^{\prime} commute.

Two further properties:

Ideal-valued quasi-measures

Two closed (respectively, open) subsets A, A^{\prime} of a closed symplectic manifold (M, ω) commute if there is an involutive map $\pi: M \rightarrow B$ and closed (respectively, open) sets $C, C^{\prime} \subset B$ such that $A=\pi^{-1}(C), A^{\prime}=\pi^{-1}\left(C^{\prime}\right)$.

Definition

An A-ideal-valued quasi-measure (A-IVQM) on a closed symplectic manifold (M, ω) is a map $\tau: \mathcal{O}(M) \rightarrow \mathcal{I}(A)$ satisfying all the axioms of an A-IVM, except multiplicativity, which is replaced by

- (quasi-multiplicativity): $\tau(U) * \tau\left(U^{\prime}\right) \subset \tau\left(U \cap U^{\prime}\right)$ if U, U^{\prime} commute.

Two further properties:

- (invariance): τ is $\operatorname{Symp}_{0}(M, \omega)$-invariant;

Ideal-valued quasi-measures

Two closed (respectively, open) subsets A, A^{\prime} of a closed symplectic manifold (M, ω) commute if there is an involutive map $\pi: M \rightarrow B$ and closed (respectively, open) sets $C, C^{\prime} \subset B$ such that $A=\pi^{-1}(C), A^{\prime}=\pi^{-1}\left(C^{\prime}\right)$.

Definition

An A-ideal-valued quasi-measure (A-IVQM) on a closed symplectic manifold (M, ω) is a map $\tau: \mathcal{O}(M) \rightarrow \mathcal{I}(A)$ satisfying all the axioms of an A-IVM, except multiplicativity, which is replaced by

- (quasi-multiplicativity): $\tau(U) * \tau\left(U^{\prime}\right) \subset \tau\left(U \cap U^{\prime}\right)$ if U, U^{\prime} commute.

Two further properties:

- (invariance): τ is $\operatorname{Symp}_{0}(M, \omega)$-invariant;
- (vanishing): if $K \subset M$ is a displaceable compact, then $\tau(M \backslash K)=A$, and there is open $U \supset K$ with $\tau(U)=0$.

Main result

Main result

Given a closed symplectic manifold (M, ω), its quantum cohomology $Q H^{*}(M)$ is a unital associative skew-commutative algebra, which is $\mathbb{Z}_{2 N_{M}}$-graded, where N_{M} is the minimal Chern number of M.

Main result

Given a closed symplectic manifold (M, ω), its quantum cohomology $Q H^{*}(M)$ is a unital associative skew-commutative algebra, which is $\mathbb{Z}_{2 N_{M}}$-graded, where N_{M} is the minimal Chern number of M. Additively, $Q H^{*}(M)$ is just a regrading of $H^{*}(M ; \Lambda)$, the singular cohomology of M with coefficients in the so-called Novikov field. The product is deformed by a count of holomorphic spheres in M.

Main result

Given a closed symplectic manifold (M, ω), its quantum cohomology $Q H^{*}(M)$ is a unital associative skew-commutative algebra, which is $\mathbb{Z}_{2 N_{M}}$-graded, where N_{M} is the minimal Chern number of M. Additively, $Q H^{*}(M)$ is just a regrading of $H^{*}(M ; \Lambda)$, the singular cohomology of M with coefficients in the so-called Novikov field. The product is deformed by a count of holomorphic spheres in M.

Theorem (DGPZ 2021)

Any closed symplectic manifold (M, ω) carries a $Q H^{*}(M)$-IVQM which also satisfies invariance and vanishing.

Main result

Given a closed symplectic manifold (M, ω), its quantum cohomology $Q H^{*}(M)$ is a unital associative skew-commutative algebra, which is $\mathbb{Z}_{2 N_{M}}$-graded, where N_{M} is the minimal Chern number of M. Additively, $Q H^{*}(M)$ is just a regrading of $H^{*}(M ; \Lambda)$, the singular cohomology of M with coefficients in the so-called Novikov field. The product is deformed by a count of holomorphic spheres in M.

Theorem (DGPZ 2021)

Any closed symplectic manifold (M, ω) carries a $Q H^{*}(M)$-IVQM which also satisfies invariance and vanishing.

This is referred to as the quantum cohomology IVQM.

Main result

Given a closed symplectic manifold (M, ω), its quantum cohomology $Q H^{*}(M)$ is a unital associative skew-commutative algebra, which is $\mathbb{Z}_{2 N_{M}}$-graded, where N_{M} is the minimal Chern number of M. Additively, $Q H^{*}(M)$ is just a regrading of $H^{*}(M ; \Lambda)$, the singular cohomology of M with coefficients in the so-called Novikov field. The product is deformed by a count of holomorphic spheres in M.

Theorem (DGPZ 2021)

Any closed symplectic manifold (M, ω) carries a $Q H^{*}(M)$-IVQM which also satisfies invariance and vanishing.

This is referred to as the quantum cohomology IVQM.

Example

On S^{2}, the quantum cohomology IVQM τ can be described as follows: for an open set $U \subset S^{2}, \tau(U)=0$ if for every compact connected smooth subsurface $Q \subset U$ there exists a smooth closed disk of area $<\frac{1}{2}$ containing Q. Otherwise $\tau(U)=Q H^{*}\left(S^{2}\right)$.

IVQMs and involutive maps

IVQMs and involutive maps

The power of IVQMs comes from the following.

IVQMs and involutive maps

The power of IVQMs comes from the following.

Lemma

If τ is an A-IVQM on (M, ω) and $\pi: M \rightarrow B$ is involutive, then $\pi_{*} \tau$ is an $A-I V M$.

IVQMs and involutive maps

The power of IVQMs comes from the following.

Lemma

If τ is an A-IVQM on (M, ω) and $\pi: M \rightarrow B$ is involutive, then $\pi_{*} \tau$ is an $A-I V M$.

Corollary

Let (M, ω) be a closed symplectic manifold, let τ be an $A-I V Q M$ on M, and assume that $\pi: M \rightarrow B$ is an involutive map, where $\operatorname{dim} B=d$.

IVQMs and involutive maps

The power of IVQMs comes from the following.

Lemma

If τ is an A-IVQM on (M, ω) and $\pi: M \rightarrow B$ is involutive, then $\pi_{*} \tau$ is an $A-I V M$.

Corollary

Let (M, ω) be a closed symplectic manifold, let τ be an $A-I V Q M$ on M, and assume that $\pi: M \rightarrow B$ is an involutive map, where $\operatorname{dim} B=d$. If $I \in \mathcal{I}(A)$ satisfies $I^{*(d+1)} \neq 0$, then there is $b_{0} \in B$ such that $\pi^{-1}\left(b_{0}\right)$ intersects each compact $Z \subset M$ with $I \subset \tau(Z)$.

IVQMs and involutive maps

The power of IVQMs comes from the following.

Lemma

If τ is an A-IVQM on (M, ω) and $\pi: M \rightarrow B$ is involutive, then $\pi_{*} \tau$ is an $A-I V M$.

Corollary

Let (M, ω) be a closed symplectic manifold, let τ be an $A-I V Q M$ on M, and assume that $\pi: M \rightarrow B$ is an involutive map, where $\operatorname{dim} B=d$. If $I \in \mathcal{I}(A)$ satisfies $I^{*(d+1)} \neq 0$, then there is $b_{0} \in B$ such that $\pi^{-1}\left(b_{0}\right)$ intersects each compact $Z \subset M$ with $I \subset \tau(Z)$.

Proof.

The abstract centerpoint theorem applied to the A-IVM $\pi_{*} \tau$, yields $b_{0} \in B$ such that for each compact $C \subset B$ with $I \subset\left(\pi_{*} \tau\right)(C)$ satisfies $b_{0} \in C$.

IVQMs and involutive maps

The power of IVQMs comes from the following.

Lemma

If τ is an A-IVQM on (M, ω) and $\pi: M \rightarrow B$ is involutive, then $\pi_{*} \tau$ is an $A-I V M$.

Corollary

Let (M, ω) be a closed symplectic manifold, let τ be an $A-I V Q M$ on M, and assume that $\pi: M \rightarrow B$ is an involutive map, where $\operatorname{dim} B=d$. If $I \in \mathcal{I}(A)$ satisfies $I^{*(d+1)} \neq 0$, then there is $b_{0} \in B$ such that $\pi^{-1}\left(b_{0}\right)$ intersects each compact $Z \subset M$ with $I \subset \tau(Z)$.

Proof.

The abstract centerpoint theorem applied to the A-IVM $\pi_{*} \tau$, yields $b_{0} \in B$ such that for each compact $C \subset B$ with $I \subset\left(\pi_{*} \tau\right)(C)$ satisfies $b_{0} \in C$. If $Z \subset M$ is compact and $I \subset \tau(Z)$, then $\pi^{-1}(\pi(Z)) \supset Z$ and thus

IVQMs and involutive maps

The power of IVQMs comes from the following.

Lemma

If τ is an A-IVQM on (M, ω) and $\pi: M \rightarrow B$ is involutive, then $\pi_{*} \tau$ is an $A-I V M$.

Corollary

Let (M, ω) be a closed symplectic manifold, let τ be an $A-I V Q M$ on M, and assume that $\pi: M \rightarrow B$ is an involutive map, where $\operatorname{dim} B=d$. If $I \in \mathcal{I}(A)$ satisfies $I^{*(d+1)} \neq 0$, then there is $b_{0} \in B$ such that $\pi^{-1}\left(b_{0}\right)$ intersects each compact $Z \subset M$ with $I \subset \tau(Z)$.

Proof.

The abstract centerpoint theorem applied to the A-IVM $\pi_{*} \tau$, yields $b_{0} \in B$ such that for each compact $C \subset B$ with $I \subset\left(\pi_{*} \tau\right)(C)$ satisfies $b_{0} \in C$. If $Z \subset M$ is compact and $I \subset \tau(Z)$, then $\pi^{-1}(\pi(Z)) \supset Z$ and thus $\left(\pi_{*} \tau\right)(\pi(Z))=\tau\left(\pi^{-1}(\pi(Z))\right) \supset \tau(Z) \supset I \Rightarrow b_{0} \in \pi(Z) \Rightarrow \pi^{-1}\left(b_{0}\right) \cap Z \neq \varnothing$.

New example of symplectic rigidity

New example of symplectic rigidity

For $a, b, c \in \mathbb{T}^{2}$ define subsets $T_{1}(a), T_{2}(b), T_{3}(c) \subset \mathbb{T}^{6}$:

New example of symplectic rigidity

For $a, b, c \in \mathbb{T}^{2}$ define subsets $T_{1}(a), T_{2}(b), T_{3}(c) \subset \mathbb{T}^{6}$:

$$
\begin{aligned}
& T_{1}(a)=\left\{(p, q) \in \mathbb{T}^{6} \mid\left(p_{1}, p_{2}\right)=a\right\}, \\
& T_{2}(b)=\left\{(p, q) \in \mathbb{T}^{6} \mid\left(q_{1}, q_{3}\right)=b\right\}, \\
& T_{3}(c)=\left\{(p, q) \in \mathbb{T}^{6} \mid\left(p_{3}, q_{2}\right)=c\right\} .
\end{aligned}
$$

New example of symplectic rigidity

For $a, b, c \in \mathbb{T}^{2}$ define subsets $T_{1}(a), T_{2}(b), T_{3}(c) \subset \mathbb{T}^{6}$:

$$
\begin{aligned}
& T_{1}(a)=\left\{(p, q) \in \mathbb{T}^{6} \mid\left(p_{1}, p_{2}\right)=a\right\}, \\
& T_{2}(b)=\left\{(p, q) \in \mathbb{T}^{6} \mid\left(q_{1}, q_{3}\right)=b\right\}, \\
& T_{3}(c)=\left\{(p, q) \in \mathbb{T}^{6} \mid\left(p_{3}, q_{2}\right)=c\right\} .
\end{aligned}
$$

Put $T(a, b, c)=T_{1}(a) \cup T_{2}(b) \cup T_{3}(c)$.

New example of symplectic rigidity

For $a, b, c \in \mathbb{T}^{2}$ define subsets $T_{1}(a), T_{2}(b), T_{3}(c) \subset \mathbb{T}^{6}$:

$$
\begin{aligned}
& T_{1}(a)=\left\{(p, q) \in \mathbb{T}^{6} \mid\left(p_{1}, p_{2}\right)=a\right\}, \\
& T_{2}(b)=\left\{(p, q) \in \mathbb{T}^{6} \mid\left(q_{1}, q_{3}\right)=b\right\}, \\
& T_{3}(c)=\left\{(p, q) \in \mathbb{T}^{6} \mid\left(p_{3}, q_{2}\right)=c\right\} .
\end{aligned}
$$

Put $T(a, b, c)=T_{1}(a) \cup T_{2}(b) \cup T_{3}(c)$.

Theorem (DGPZ 2021)

Any involutive map $\pi: \mathbb{T}^{6} \times S^{2} \rightarrow B$, where B is a surface, has a fiber which intersects all sets of the form $T(a, b, c) \times$ equator.

New example of symplectic rigidity

For $a, b, c \in \mathbb{T}^{2}$ define subsets $T_{1}(a), T_{2}(b), T_{3}(c) \subset \mathbb{T}^{6}$:

$$
\begin{aligned}
& T_{1}(a)=\left\{(p, q) \in \mathbb{T}^{6} \mid\left(p_{1}, p_{2}\right)=a\right\}, \\
& T_{2}(b)=\left\{(p, q) \in \mathbb{T}^{6} \mid\left(q_{1}, q_{3}\right)=b\right\}, \\
& T_{3}(c)=\left\{(p, q) \in \mathbb{T}^{6} \mid\left(p_{3}, q_{2}\right)=c\right\} .
\end{aligned}
$$

Put $T(a, b, c)=T_{1}(a) \cup T_{2}(b) \cup T_{3}(c)$.

Theorem (DGPZ 2021)

Any involutive map $\pi: \mathbb{T}^{6} \times S^{2} \rightarrow B$, where B is a surface, has a fiber which intersects all sets of the form $T(a, b, c) \times$ equator.

Idea: $Q H^{*}\left(\mathbb{T}^{6} \times S^{2}\right)=Q H^{*}\left(\mathbb{T}^{6}\right) \otimes Q H^{*}\left(S^{2}\right)$.

New example of symplectic rigidity

For $a, b, c \in \mathbb{T}^{2}$ define subsets $T_{1}(a), T_{2}(b), T_{3}(c) \subset \mathbb{T}^{6}$:

$$
\begin{aligned}
& T_{1}(a)=\left\{(p, q) \in \mathbb{T}^{6} \mid\left(p_{1}, p_{2}\right)=a\right\}, \\
& T_{2}(b)=\left\{(p, q) \in \mathbb{T}^{6} \mid\left(q_{1}, q_{3}\right)=b\right\}, \\
& T_{3}(c)=\left\{(p, q) \in \mathbb{T}^{6} \mid\left(p_{3}, q_{2}\right)=c\right\} .
\end{aligned}
$$

Put $T(a, b, c)=T_{1}(a) \cup T_{2}(b) \cup T_{3}(c)$.

Theorem (DGPZ 2021)

Any involutive map $\pi: \mathbb{T}^{6} \times S^{2} \rightarrow B$, where B is a surface, has a fiber which intersects all sets of the form $T(a, b, c) \times$ equator.

Idea: $Q H^{*}\left(\mathbb{T}^{6} \times S^{2}\right)=Q H^{*}\left(\mathbb{T}^{6}\right) \otimes Q H^{*}\left(S^{2}\right)$. The ideal $I=\left(\left[d p_{1} \wedge d p_{2}\right] \otimes 1,\left[d q_{1} \wedge d q_{3}\right] \otimes 1,\left[d p_{3} \wedge d q_{2}\right] \otimes 1\right) \in \mathcal{I}\left(Q H^{*}\left(\mathbb{T}^{6} \times S^{2}\right)\right)$ satisfies $\left[d p_{1} \wedge d p_{2} \wedge d p_{3} \wedge d q_{1} \wedge d q_{2} \wedge d q_{3}\right] \otimes 1 \in I^{* 3}$, in particular $I^{* 3} \neq 0$.

New example of symplectic rigidity

For $a, b, c \in \mathbb{T}^{2}$ define subsets $T_{1}(a), T_{2}(b), T_{3}(c) \subset \mathbb{T}^{6}$:

$$
\begin{aligned}
& T_{1}(a)=\left\{(p, q) \in \mathbb{T}^{6} \mid\left(p_{1}, p_{2}\right)=a\right\} \\
& T_{2}(b)=\left\{(p, q) \in \mathbb{T}^{6} \mid\left(q_{1}, q_{3}\right)=b\right\} \\
& T_{3}(c)=\left\{(p, q) \in \mathbb{T}^{6} \mid\left(p_{3}, q_{2}\right)=c\right\}
\end{aligned}
$$

Put $T(a, b, c)=T_{1}(a) \cup T_{2}(b) \cup T_{3}(c)$.

Theorem (DGPZ 2021)

Any involutive map $\pi: \mathbb{T}^{6} \times S^{2} \rightarrow B$, where B is a surface, has a fiber which intersects all sets of the form $T(a, b, c) \times$ equator.

Idea: $Q H^{*}\left(\mathbb{T}^{6} \times S^{2}\right)=Q H^{*}\left(\mathbb{T}^{6}\right) \otimes Q H^{*}\left(S^{2}\right)$. The ideal $I=\left(\left[d p_{1} \wedge d p_{2}\right] \otimes 1,\left[d q_{1} \wedge d q_{3}\right] \otimes 1,\left[d p_{3} \wedge d q_{2}\right] \otimes 1\right) \in \mathcal{I}\left(Q H^{*}\left(\mathbb{T}^{6} \times S^{2}\right)\right)$ satisfies $\left[d p_{1} \wedge d p_{2} \wedge d p_{3} \wedge d q_{1} \wedge d q_{2} \wedge d q_{3}\right] \otimes 1 \in I^{* 3}$, in particular $I^{* 3} \neq 0$. Thus π has a fiber which intersects each $Z \subset \mathbb{T}^{6} \times S^{2}$ with $I \subset \tau(Z)$, where τ is the quantum cohomology IVQM.

New example of symplectic rigidity

For $a, b, c \in \mathbb{T}^{2}$ define subsets $T_{1}(a), T_{2}(b), T_{3}(c) \subset \mathbb{T}^{6}$:

$$
\begin{aligned}
& T_{1}(a)=\left\{(p, q) \in \mathbb{T}^{6} \mid\left(p_{1}, p_{2}\right)=a\right\} \\
& T_{2}(b)=\left\{(p, q) \in \mathbb{T}^{6} \mid\left(q_{1}, q_{3}\right)=b\right\} \\
& T_{3}(c)=\left\{(p, q) \in \mathbb{T}^{6} \mid\left(p_{3}, q_{2}\right)=c\right\}
\end{aligned}
$$

Put $T(a, b, c)=T_{1}(a) \cup T_{2}(b) \cup T_{3}(c)$.

Theorem (DGPZ 2021)

Any involutive map $\pi: \mathbb{T}^{6} \times S^{2} \rightarrow B$, where B is a surface, has a fiber which intersects all sets of the form $T(a, b, c) \times$ equator.

Idea: $Q H^{*}\left(\mathbb{T}^{6} \times S^{2}\right)=Q H^{*}\left(\mathbb{T}^{6}\right) \otimes Q H^{*}\left(S^{2}\right)$. The ideal $I=\left(\left[d p_{1} \wedge d p_{2}\right] \otimes 1,\left[d q_{1} \wedge d q_{3}\right] \otimes 1,\left[d p_{3} \wedge d q_{2}\right] \otimes 1\right) \in \mathcal{I}\left(Q H^{*}\left(\mathbb{T}^{6} \times S^{2}\right)\right)$ satisfies $\left[d p_{1} \wedge d p_{2} \wedge d p_{3} \wedge d q_{1} \wedge d q_{2} \wedge d q_{3}\right] \otimes 1 \in I^{* 3}$, in particular $I^{* 3} \neq 0$. Thus π has a fiber which intersects each $Z \subset \mathbb{T}^{6} \times S^{2}$ with $I \subset \tau(Z)$, where τ is the quantum cohomology IVQM. It remains to compute that $I \subset \tau(T(a, b, c) \times$ equator $)$.

Relative symplectic cohomology and IVQMs

Relative symplectic cohomology and IVQMs

- Umut Varolgüneș defined the relative symplectic cohomology $S H_{M}^{*}$ for a closed symplectic manifold (M, ω),

Relative symplectic cohomology and IVQMs

- Umut Varolgüneș defined the relative symplectic cohomology $S H_{M}^{*}$ for a closed symplectic manifold (M, ω), as a presheaf of $\mathbb{Z}_{2 N_{M}}$-graded unital associative skew-commutative algebras (over the Novikov field) on the category of compacts in M (the product is due to Tonkonog-Varolgüneș)

Relative symplectic cohomology and IVQMs

- Umut Varolgüneș defined the relative symplectic cohomology $S H_{M}^{*}$ for a closed symplectic manifold (M, ω), as a presheaf of $\mathbb{Z}_{2 N_{M}}$-graded unital associative skew-commutative algebras (over the Novikov field) on the category of compacts in M (the product is due to Tonkonog-Varolgüneș), such that $S H_{M}^{*}(M)=Q H^{*}(M)$. A new and crucial property is the Mayer-Vietoris sequence for pairs of commuting sets.

Relative symplectic cohomology and IVQMs

- Umut Varolgüneș defined the relative symplectic cohomology $S H_{M}^{*}$ for a closed symplectic manifold (M, ω), as a presheaf of $\mathbb{Z}_{2 N_{M}}$-graded unital associative skew-commutative algebras (over the Novikov field) on the category of compacts in M (the product is due to Tonkonog-Varolgüneș), such that $S H_{M}^{*}(M)=Q H^{*}(M)$. A new and crucial property is the Mayer-Vietoris sequence for pairs of commuting sets.

$$
S H_{M}^{*}(K)=H\left(\underset{i \rightarrow \infty}{\widehat{\lim } C F^{*}}\left(H_{i}\right)\right) \otimes \Lambda
$$

Relative symplectic cohomology and IVQMs

- Umut Varolgüneș defined the relative symplectic cohomology $S H_{M}^{*}$ for a closed symplectic manifold (M, ω), as a presheaf of $\mathbb{Z}_{2 N_{M}}$-graded unital associative skew-commutative algebras (over the Novikov field) on the category of compacts in M (the product is due to Tonkonog-Varolgüneș), such that $S H_{M}^{*}(M)=Q H^{*}(M)$. A new and crucial property is the Mayer-Vietoris sequence for pairs of commuting sets.

$$
S H_{M}^{*}(K)=H\left(\underset{i \rightarrow \infty}{\left.\widehat{\lim _{\rightarrow}} C F^{*}\left(H_{i}\right)\right) \otimes \Lambda, ~ ;, ~}\right.
$$

where H_{i} is a sequence of Hamiltonians satisfying $\left.H_{i}\right|_{K}<0$ and converging pointwise to 0 on K and to $+\infty$ on $M \backslash K$

Relative symplectic cohomology and IVQMs

- Umut Varolgüneș defined the relative symplectic cohomology $S H_{M}^{*}$ for a closed symplectic manifold (M, ω), as a presheaf of $\mathbb{Z}_{2 N_{M}}$-graded unital associative skew-commutative algebras (over the Novikov field) on the category of compacts in M (the product is due to Tonkonog-Varolgüneș), such that $S H_{M}^{*}(M)=Q H^{*}(M)$. A new and crucial property is the Mayer-Vietoris sequence for pairs of commuting sets.

$$
S H_{M}^{*}(K)=H\left(\underset{i \rightarrow \infty}{\left.\widehat{\lim _{\rightarrow}} C F^{*}\left(H_{i}\right)\right) \otimes \Lambda, ~, ~, ~}\right.
$$

where H_{i} is a sequence of Hamiltonians satisfying $\left.H_{i}\right|_{K}<0$ and converging pointwise to 0 on K and to $+\infty$ on $M \backslash K, C F^{*}\left(H_{i}\right)$ is the Floer complex of H_{i} over the Novikov ring, which is roughly the Morse complex of the action functional associated to H_{i} on the loop space of M.

Relative symplectic cohomology and IVQMs

- Umut Varolgüneș defined the relative symplectic cohomology $S H_{M}^{*}$ for a closed symplectic manifold (M, ω), as a presheaf of $\mathbb{Z}_{2 N_{M}}$-graded unital associative skew-commutative algebras (over the Novikov field) on the category of compacts in M (the product is due to Tonkonog-Varolgüneș), such that $S H_{M}^{*}(M)=Q H^{*}(M)$. A new and crucial property is the Mayer-Vietoris sequence for pairs of commuting sets.

$$
S H_{M}^{*}(K)=H\left(\underset{i \rightarrow \infty}{\left.\widehat{\lim _{\rightarrow}} C F^{*}\left(H_{i}\right)\right) \otimes \Lambda, ~, ~, ~}\right.
$$

where H_{i} is a sequence of Hamiltonians satisfying $\left.H_{i}\right|_{K}<0$ and converging pointwise to 0 on K and to $+\infty$ on $M \backslash K, C F^{*}\left(H_{i}\right)$ is the Floer complex of H_{i} over the Novikov ring, which is roughly the Morse complex of the action functional associated to H_{i} on the loop space of M. The hat denotes completion.

Relative symplectic cohomology and IVQMs

- Umut Varolgüneș defined the relative symplectic cohomology $S H_{M}^{*}$ for a closed symplectic manifold (M, ω), as a presheaf of $\mathbb{Z}_{2 N_{M}}$-graded unital associative skew-commutative algebras (over the Novikov field) on the category of compacts in M (the product is due to Tonkonog-Varolgüneș), such that $S H_{M}^{*}(M)=Q H^{*}(M)$. A new and crucial property is the Mayer-Vietoris sequence for pairs of commuting sets.

$$
S H_{M}^{*}(K)=H\left(\underset{i \rightarrow \infty}{\left.\widehat{\lim _{\rightarrow}} C F^{*}\left(H_{i}\right)\right) \otimes \Lambda, ~, ~, ~}\right.
$$

where H_{i} is a sequence of Hamiltonians satisfying $\left.H_{i}\right|_{K}<0$ and converging pointwise to 0 on K and to $+\infty$ on $M \backslash K, C F^{*}\left(H_{i}\right)$ is the Floer complex of H_{i} over the Novikov ring, which is roughly the Morse complex of the action functional associated to H_{i} on the loop space of M. The hat denotes completion.

- The quantum cohomology IVQM is defined as follows:

Relative symplectic cohomology and IVQMs

- Umut Varolgüneș defined the relative symplectic cohomology $S H_{M}^{*}$ for a closed symplectic manifold (M, ω), as a presheaf of $\mathbb{Z}_{2 N_{M}}$-graded unital associative skew-commutative algebras (over the Novikov field) on the category of compacts in M (the product is due to Tonkonog-Varolgüness), such that $S H_{M}^{*}(M)=Q H^{*}(M)$. A new and crucial property is the Mayer-Vietoris sequence for pairs of commuting sets.

$$
S H_{M}^{*}(K)=H\left(\underset{i \rightarrow \infty}{\left.\widehat{\lim _{\rightarrow}} C F^{*}\left(H_{i}\right)\right) \otimes \Lambda, ~, ~, ~}\right.
$$

where H_{i} is a sequence of Hamiltonians satisfying $\left.H_{i}\right|_{K}<0$ and converging pointwise to 0 on K and to $+\infty$ on $M \backslash K, C F^{*}\left(H_{i}\right)$ is the Floer complex of H_{i} over the Novikov ring, which is roughly the Morse complex of the action functional associated to H_{i} on the loop space of M. The hat denotes completion.

- The quantum cohomology IVQM is defined as follows:

$$
\tau(K)=\bigcap_{U \text { open } \supset K} \operatorname{ker}\left(Q H^{*}(M) \xrightarrow{\text { res }} S H^{*}(M \backslash U)\right), \quad \tau(U)=\bigcup_{K \text { cpt } \subset U} \tau(K) .
$$

OBRIGADO!

