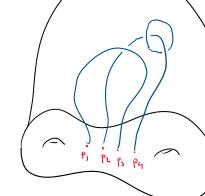
Tuesday, February 20, 2024 1:12 PM

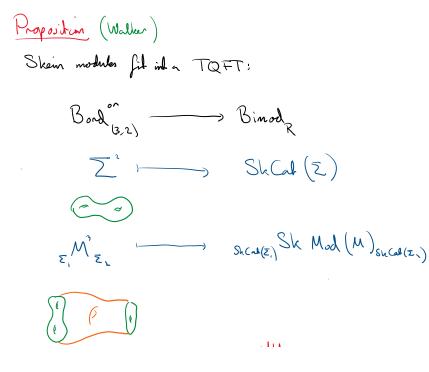
· Skein modules

My talks Page 1

$$\begin{split} & () (Halk - Paylight) \quad Shr (S', S') = R \oplus \bigoplus_{i=1}^{m} \mathbb{P}_{\left\{1 - \sigma^{ent}\right\}}^{R} \\ & \text{Theorem} (Bullevin, Predight-Schenn) \\ & Shr_{ent}(M) = \mathbb{C} \left[Loc_{ent}(M) \right] = \mathbb{C} \left[H_{low}(\pi(M), Shr) \right]^{E_{0}} \\ & \mathbb{E} \\ & \mathbb$$

Relative skim modules.





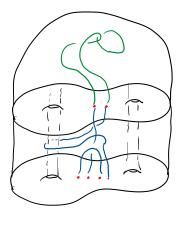
Where:
$$SkCat(\Sigma)$$
 has objects given by file schude $\{p_{1},...,p_{k}\} \in \Sigma$,
 $Hom_{suCat(\Sigma)}(\{p_{1},...,p_{k}\}, \{q_{1},...,q_{k}\})$ R -line categoing
 $:= Sk(\Sigma \times \{0, T\}; \{p_{1},...,p_{k}\} \times \{0\} \cup \{q_{1},...,q_{k}\})$
Comport ion = "starking"

Note: End_{SkCal(z)} (
$$\phi$$
) =: SkAlg(\overline{z}).

ard

Given M a 3-minifeld with
$$\Im M \cong \mathbb{Z}$$

Sk Mod (M): Sk Cal (\mathbb{Z}) \longrightarrow R-mod
 $\{p_1, \dots, p_k\} \longmapsto$ Sk ($M \not: \{p_1, \dots, p_k\}$)



^

,

.

· ``

My talks Page 5

(2)
$$A = \operatorname{Rep}(G)$$
 $R = C$ $\operatorname{Map}(M_{B}, \sigma)$
 $\operatorname{Map}(M_{B}, \sigma)$

_

These
$$(G \ S \ S)$$

If M is dead then dim $Sk_{G,r}(M) = \infty$.
Longhols (Kapalin-Willow)
4d TQFT (tould of 4d N=4 SYM G)
provides $P \in \mathbb{CP}^{12} S^{2}$
 O, ∞
 $Z_{G,P}(M) \cong H$. $Sk_{G,R}(M)$
 J_{middel} $\left[\frac{2}{2} + \frac{2}{\sqrt{7}}\right]$
 S_{middel} $\left[\frac{2}{2} + \frac{2}{\sqrt{7}}\right]$
 S_{middel} $\left[\frac{2}{\sqrt{7}} + \frac{2}{\sqrt{7}}\right]$
 S_{middel} $V^{r} = \frac{1}{\sqrt{7}}$
 $V = \frac{1}{\sqrt{7}}$
(where G' is the Longholds dual group
 $V^{r} = \frac{1}{\sqrt{7}}$
(dim $Sk_{G,2}(M) = \dim Sk_{G,2}(M)$]
(We have shelled the in a very sundle values of const, e.g. $M = T^{3}$, $G = SL_{1}$, $G = FGL_{2}$.)
(and $M = \frac{1}{\sqrt{7}}$
($G = Schowar$) $Sk_{1}(M) \cong H^{2}(T_{1} - (M) + \phi^{2})$ $M = M$

My talks Page 7