Deep Networks Are Kernel Machines

Pedro Domingos

Paul G. Allen School of Computer Science & Engineering University of Washington

- Claim: Deep networks discover new representations
- This talk: They're just kernel machines with a particular kernel
- True of all models learned by gradient descent
- $\bullet\,$ Weights are a superposition of the training examples $\rightarrow\,$ Interpretability
- Architecture incorporates knowledge
- Many implications

$$y = g\left(\sum_{i} a_i K(x, x_i) + b\right)$$

y Model output

- g(.) Optional nonlinearity
 - a_i Learned parameters (typically $a'_i y^*_i$)
- K(.,.) Kernel (predefined or learned)
 - x Query data point
 - x_i Training data points
 - b Learned parameter

$$w_{s+1} = w_s - \epsilon \nabla_w L(w_s)$$

- w Weight vector
- s Step
- ϵ Learning rate
- L(.) Loss function

æ

э

$$K(x,x') = \int_{c(t)} \nabla_w y(x) \cdot \nabla_w y(x') dt$$

- K(.,.) Path kernel
 - x, x' Data points
 - t Time
 - w Weight vector
 - c(t) Path taken by w during gradient descent
 - y(.) Model

Example

æ

< ∃ →

< E

The *tangent kernel* associated with function $f_w(x)$ and parameter vector v is

$$\mathcal{K}^{g}_{f,v}(x,x') = \nabla_{w} f_{w}(x) \cdot \nabla_{w} f_{w}(x')$$

with the gradients taken at v.

The *path kernel* associated with function $f_w(x)$ and curve c(t) in parameter space is

$$K_{f,c}^{p}(x,x') = \int_{c(t)} K_{f,w(t)}^{g}(x,x') dt$$

Suppose the model $y = f_w(x)$, with f a differentiable function of w, is learned from a training set $\{(x_i, y_i^*)\}_{i=1}^m$ by gradient descent with differentiable loss function $L = \sum_i L(y_i^*, y_i)$ and learning rate ϵ . Then

$$\lim_{\epsilon\to 0} y = \sum_{i=1}^m a_i K(x, x_i) + b$$

where $K(x, x_i)$ is the path kernel associated with $f_w(x)$ and the path taken by the parameters during gradient descent, a_i is the average $-\partial L/\partial y_i$ along the path weighted by the corresponding tangent kernel, and b is the initial model.

Proof (1)

Gradient flow:

$$\frac{dw}{dt} = -\nabla L(w)$$

Chain rule:

$$\frac{dy}{dt} = \sum_{j=1}^{d} \frac{\partial y}{\partial w_j} \frac{dw_j}{dt} = \nabla y \cdot \frac{dw}{dt}$$

Combining the two:

$$\frac{dy}{dt} = -\nabla y \cdot \nabla L$$

æ

聞 と く き と く き と

Proof (2)

Additivity of the loss:

$$\frac{dy}{dt} = -\sum_{i=1}^m \nabla y \cdot \nabla L_i$$

Chain rule:

$$\frac{dy}{dt} = -\sum_{i=1}^m L'_i \, \nabla y \cdot \nabla y_i$$

Integrating:

$$y = y_0 - \int_{c(t)} \sum_{i=1}^m L'_i \, \nabla y \cdot \nabla y_i \, dt$$

A ►

- ▲ 문 ▶ - ▲ 문 ▶

æ

Proof (3)

Reordering and averaging L'_i :

$$y = y_0 - \sum_{i=1}^m \overline{L'_i} \int_{c(t)} \nabla y \cdot \nabla y_i \, dt$$

Compare:

$$y = \sum_{i=1}^{m} a_i K(x, x_i) + b$$

QED

æ

문▶ ★ 문▶

- Coefficients depend on x, but only through kernels
- Alternate formulation: loss-weighted path kernel $ightarrow a_i = -1$
- Applies to least squares, cross-entropy, likelihood, etc.
- Adding regularizer just adds term to b
- Readily extended to stochastic gradient
- Generalization of classic result for single-layer perceptrons
- Assumes learning rate is sufficiently small

- Interpretability
- Empirical behavior
- Representation learning

Model

▲御▶ ▲理▶ ▲理▶ - 理

- Incorporating knowledge
- Curse of dimensionality
- Scalability

- Boosting
- Graphical models
- Convex learning problems

- Other learning algorithms
- Better gradient descent
- Representation learning
- Superposition learning