Rigidity of non-compact static domains in hyperbolic space via positive mass theorems

Levi Lopes de Lima

Universidade Federal do Ceará - Fortaleza/CE - Brazil

Geometry in Lisbon/February, 2024

Outline of the talk

Outline of the talk

- Based on joint work with S. Almaraz (arXiv:2206.09768).

Outline of the talk

- Based on joint work with S. Almaraz (arXiv:2206.09768).
- The basic ideas we put forward in this work are contained in the following diagram.

Outline of the talk

- Based on joint work with S. Almaraz (arXiv:2206.09768).
- The basic ideas we put forward in this work are contained in the following diagram.

A rigidity result for $\left(\mathbb{R}^{n}, \delta\right)$ via the classical PMT

A rigidity result for $\left(\mathbb{R}^{n}, \delta\right)$ via the classical PMT

- We start our journey with the following rigidity result for $\left(\mathbb{R}^{n}, \delta\right)$, which for a long time was known as Geroch's conjecture.

A rigidity result for $\left(\mathbb{R}^{n}, \delta\right)$ via the classical PMT

- We start our journey with the following rigidity result for $\left(\mathbb{R}^{n}, \delta\right)$, which for a long time was known as Geroch's conjecture.

Theorem (Schoen-Yau, Witten, Gromov-Lawson)
Let g be a Riemannian metric in \mathbb{R}^{n} such that

- its scalar curvature R_{g} is non-negative everywhere;
- $g=\delta$ outside a compact set.

Then $g=\delta$ everywhere.

A rigidity result for $\left(\mathbb{R}^{n}, \delta\right)$ via the classical PMT

- We start our journey with the following rigidity result for $\left(\mathbb{R}^{n}, \delta\right)$, which for a long time was known as Geroch's conjecture.

Theorem (Schoen-Yau, Witten, Gromov-Lawson)
Let g be a Riemannian metric in \mathbb{R}^{n} such that

- its scalar curvature R_{g} is non-negative everywhere;
- $g=\delta$ outside a compact set.

Then $g=\delta$ everywhere.

- The (independent) arguments by Schoen-Yau and Witten retrieve the result as a consequence of a proof of the classical Positive Mass Theorem (PMT) for (time-symmetric) asymptotically flat manifolds. In particular, in order to reach the same conclusion, it suffices to require that the convergence $g \rightarrow \delta$ is supercritical in the sense that

$$
|g-\delta|_{\delta}=O_{2}\left(r^{-\sigma}\right), \quad \sigma>n-2
$$

as this implies that the ADM mass of $\left(\mathbb{R}^{n}, g\right)$ vanishes.

A rigidity result for $\left(\mathbb{R}^{n}, \delta\right)$ via the classical PMT

- We start our journey with the following rigidity result for $\left(\mathbb{R}^{n}, \delta\right)$, which for a long time was known as Geroch's conjecture.

Theorem (Schoen-Yau, Witten, Gromov-Lawson)
Let g be a Riemannian metric in \mathbb{R}^{n} such that

- its scalar curvature R_{g} is non-negative everywhere;
- $g=\delta$ outside a compact set.

Then $g=\delta$ everywhere.

- The (independent) arguments by Schoen-Yau and Witten retrieve the result as a consequence of a proof of the classical Positive Mass Theorem (PMT) for (time-symmetric) asymptotically flat manifolds. In particular, in order to reach the same conclusion, it suffices to require that the convergence $g \rightarrow \delta$ is supercritical in the sense that

$$
|g-\delta|_{\delta}=O_{2}\left(r^{-\sigma}\right), \quad \sigma>n-2
$$

as this implies that the ADM mass of $\left(\mathbb{R}^{n}, g\right)$ vanishes.

- Since R_{g} may be viewed as the energy density in GR, this result confirms that one can not inject energy into the static gravitational system modeled by ($\left.\mathbb{R}^{n}, \delta\right)$ while still keeping the supercritical asymptotic behavior.

A rigidity result for $\left(\mathbb{R}^{n}, \delta\right)$ via the classical PMT

- We start our journey with the following rigidity result for $\left(\mathbb{R}^{n}, \delta\right)$, which for a long time was known as Geroch's conjecture.

Theorem (Schoen-Yau, Witten, Gromov-Lawson)
Let g be a Riemannian metric in \mathbb{R}^{n} such that

- its scalar curvature R_{g} is non-negative everywhere;
- $g=\delta$ outside a compact set.

Then $g=\delta$ everywhere.

- The (independent) arguments by Schoen-Yau and Witten retrieve the result as a consequence of a proof of the classical Positive Mass Theorem (PMT) for (time-symmetric) asymptotically flat manifolds. In particular, in order to reach the same conclusion, it suffices to require that the convergence $g \rightarrow \delta$ is supercritical in the sense that

$$
|g-\delta|_{\delta}=O_{2}\left(r^{-\sigma}\right), \quad \sigma>n-2
$$

as this implies that the ADM mass of $\left(\mathbb{R}^{n}, g\right)$ vanishes.

- Since R_{g} may be viewed as the energy density in GR, this result confirms that one can not inject energy into the static gravitational system modeled by ($\left.\mathbb{R}^{n}, \delta\right)$ while still keeping the supercritical asymptotic behavior.

A rigidity result in the presence of a non-compact boundary

A rigidity result in the presence of a non-compact boundary

- As a consequence of the rigidity statement of a PMT for asymptotically flat manifolds modeled at infinity on $\left(\mathbb{R}_{+}^{n}, \delta\right)$, where $\mathbb{R}_{+}^{n}=\left\{x \in \mathbb{R}^{n} ; x_{1} \geq 0\right\}$, the following rigidity result in the presence of a non-compact boundary has been established.

A rigidity result in the presence of a non-compact boundary

- As a consequence of the rigidity statement of a PMT for asymptotically flat manifolds modeled at infinity on ($\left.\mathbb{R}_{+}^{n}, \delta\right)$, where $\mathbb{R}_{+}^{n}=\left\{x \in \mathbb{R}^{n} ; x_{1} \geq 0\right\}$, the following rigidity result in the presence of a non-compact boundary has been established.

Theorem (Almaraz, Barbosa, -, 2016)
Let g be a Riemannian metric in \mathbb{R}_{+}^{n} such that

- its scalar curvature R_{g} is non-negative everywhere;
- the mean curvature H_{g} of the boundary is non-negative everywhere;
- $g=\delta$ outside a compact set.

Then $g=\delta$ everywhere.

A rigidity result in the presence of a non-compact boundary

- As a consequence of the rigidity statement of a PMT for asymptotically flat manifolds modeled at infinity on $\left(\mathbb{R}_{+}^{n}, \delta\right)$, where $\mathbb{R}_{+}^{n}=\left\{x \in \mathbb{R}^{n} ; x_{1} \geq 0\right\}$, the following rigidity result in the presence of a non-compact boundary has been established.

Theorem (Almaraz, Barbosa, -, 2016)
Let g be a Riemannian metric in \mathbb{R}_{+}^{n} such that

- its scalar curvature R_{g} is non-negative everywhere;
- the mean curvature H_{g} of the boundary is non-negative everywhere;
- $g=\delta$ outside a compact set.

Then $g=\delta$ everywhere.

- The condition $H_{g} \geq 0$ may be viewed as the boundary counterpart of the classical Dominant Energy Condition (DEC) $R_{g} \geq 0$ that we usually impose in the interior.

A rigidity result in the presence of a non-compact boundary

- As a consequence of the rigidity statement of a PMT for asymptotically flat manifolds modeled at infinity on $\left(\mathbb{R}_{+}^{n}, \delta\right)$, where $\mathbb{R}_{+}^{n}=\left\{x \in \mathbb{R}^{n} ; x_{1} \geq 0\right\}$, the following rigidity result in the presence of a non-compact boundary has been established.

Theorem (Almaraz, Barbosa, -, 2016)
Let g be a Riemannian metric in \mathbb{R}_{+}^{n} such that

- its scalar curvature R_{g} is non-negative everywhere;
- the mean curvature H_{g} of the boundary is non-negative everywhere;
- $g=\delta$ outside a compact set.

Then $g=\delta$ everywhere.

- The condition $H_{g} \geq 0$ may be viewed as the boundary counterpart of the classical Dominant Energy Condition (DEC) $R_{g} \geq 0$ that we usually impose in the interior.
- Again, in order to reach the same conclusion, it suffices to require that the convergence $g \rightarrow \delta$ is supercritical as above, as this implies that the mass invariant of $\left(\mathbb{R}_{+}^{n}, g\right)$ we defined in the paper vanishes as well.

A rigidity result in the presence of a non-compact boundary

- As a consequence of the rigidity statement of a PMT for asymptotically flat manifolds modeled at infinity on $\left(\mathbb{R}_{+}^{n}, \delta\right)$, where $\mathbb{R}_{+}^{n}=\left\{x \in \mathbb{R}^{n} ; x_{1} \geq 0\right\}$, the following rigidity result in the presence of a non-compact boundary has been established.

Theorem (Almaraz, Barbosa, -, 2016)
Let g be a Riemannian metric in \mathbb{R}_{+}^{n} such that

- its scalar curvature R_{g} is non-negative everywhere;
- the mean curvature H_{g} of the boundary is non-negative everywhere;
- $g=\delta$ outside a compact set.

Then $g=\delta$ everywhere.

- The condition $H_{g} \geq 0$ may be viewed as the boundary counterpart of the classical Dominant Energy Condition (DEC) $R_{g} \geq 0$ that we usually impose in the interior.
- Again, in order to reach the same conclusion, it suffices to require that the convergence $g \rightarrow \delta$ is supercritical as above, as this implies that the mass invariant of $\left(\mathbb{R}_{+}^{n}, g\right)$ we defined in the paper vanishes as well.

A purely extrinsic rigidity result

A purely extrinsic rigidity result

- The previous theorem clearly implies the following (purely extrinsic) rigidity result.

A purely extrinsic rigidity result

- The previous theorem clearly implies the following (purely extrinsic) rigidity result.

Theorem (Almaraz, Barbosa, -, 2016)
A hyperplane $\mathbb{R}^{n-1} \hookrightarrow \mathbb{R}^{n}$ can not be compactly deformed (as a hypersurface of \mathbb{R}^{n}) while keeping it mean convex (that is, with non-negative mean curvature everywhere).

A purely extrinsic rigidity result

- The previous theorem clearly implies the following (purely extrinsic) rigidity result.

Theorem (Almaraz, Barbosa, -, 2016)
A hyperplane $\mathbb{R}^{n-1} \hookrightarrow \mathbb{R}^{n}$ can not be compactly deformed (as a hypersurface of \mathbb{R}^{n}) while keeping it mean convex (that is, with non-negative mean curvature everywhere).

- A direct proof of this result may be obtained by symmetrization (as pointed out by Gromov). Another (elementary) proof may be obtained by means of Alexandrov's reflection (as pointed out by Souam).

A purely extrinsic rigidity result

The previous theorem clearly implies the following (purely extrinsic) rigidity result.
Theorem (Almaraz, Barbosa, -, 2016)
A hyperplane $\mathbb{R}^{n-1} \hookrightarrow \mathbb{R}^{n}$ can not be compactly deformed (as a hypersurface of \mathbb{R}^{n}) while keeping it mean convex (that is, with non-negative mean curvature everywhere).

- A direct proof of this result may be obtained by symmetrization (as pointed out by Gromov). Another (elementary) proof may be obtained by means of Alexandrov's reflection (as pointed out by Souam).
- We emphasize, however, that these elementary arguments fail to cover general supercritical deformations.

A purely extrinsic rigidity result

The previous theorem clearly implies the following (purely extrinsic) rigidity result.
Theorem (Almaraz, Barbosa, -, 2016)
A hyperplane $\mathbb{R}^{n-1} \hookrightarrow \mathbb{R}^{n}$ can not be compactly deformed (as a hypersurface of \mathbb{R}^{n}) while keeping it mean convex (that is, with non-negative mean curvature everywhere).

- A direct proof of this result may be obtained by symmetrization (as pointed out by Gromov). Another (elementary) proof may be obtained by means of Alexandrov's reflection (as pointed out by Souam).
- We emphasize, however, that these elementary arguments fail to cover general supercritical deformations.

Rigidity in the hyperbolic setting

Rigidity in the hyperbolic setting

- More recently, a PMT for manifolds modeled at infinity on the hyperbolic half-space $\left(\mathbb{H}_{+}^{n}, b\right)$ (which is obtained by cutting hyperbolic space $\left(\mathbb{H}^{n}, b\right)$ along a totally geodesic hypersurface) has been established. As a consequence of the corresponding rigidity statement, the following result has been obtained.

Rigidity in the hyperbolic setting

- More recently, a PMT for manifolds modeled at infinity on the hyperbolic half-space $\left(\mathbb{H}_{+}^{n}, b\right)$ (which is obtained by cutting hyperbolic space $\left(\mathbb{H}^{n}, b\right)$ along a totally geodesic hypersurface) has been established. As a consequence of the corresponding rigidity statement, the following result has been obtained.

Theorem (Almaraz, —, 2020, hyperbolic rigidity with a boundary)
Let g be a Riemannian metric in \mathbb{H}_{+}^{n} such that

- $R_{g} \geq-n(n-1)$ everywhere;
- $H_{g} \geq 0$ along the boundary;
- $g=b$ outside a compact set.

Then $g=b$ everywhere.

Rigidity in the hyperbolic setting

- More recently, a PMT for manifolds modeled at infinity on the hyperbolic half-space $\left(\mathbb{H}_{+}^{n}, b\right)$ (which is obtained by cutting hyperbolic space $\left(\mathbb{H}^{n}, b\right)$ along a totally geodesic hypersurface) has been established. As a consequence of the corresponding rigidity statement, the following result has been obtained.

Theorem (Almaraz, —, 2020, hyperbolic rigidity with a boundary)
Let g be a Riemannian metric in \mathbb{H}_{+}^{n} such that

- $R_{g} \geq-n(n-1)$ everywhere;
- $H_{g} \geq 0$ along the boundary;
- $g=b$ outside a compact set.

Then $g=b$ everywhere.

- It suffices to assume that $|g-b|_{b}=O_{2}\left(e^{-\sigma r}\right), \sigma>n$.

Rigidity in the hyperbolic setting

- More recently, a PMT for manifolds modeled at infinity on the hyperbolic half-space $\left(\mathbb{H}_{+}^{n}, b\right)$ (which is obtained by cutting hyperbolic space $\left(\mathbb{H}^{n}, b\right)$ along a totally geodesic hypersurface) has been established. As a consequence of the corresponding rigidity statement, the following result has been obtained.

Theorem (Almaraz, —, 2020, hyperbolic rigidity with a boundary)
Let g be a Riemannian metric in \mathbb{H}_{+}^{n} such that

- $R_{g} \geq-n(n-1)$ everywhere;
- $H_{g} \geq 0$ along the boundary;
- $g=b$ outside a compact set.

Then $g=b$ everywhere.

- It suffices to assume that $|g-b|_{b}=O_{2}\left(e^{-\sigma r}\right), \sigma>n$.

Corollary (Extrinsic hyperbolic rigidity)
A totally geodesic hypersurface $\mathbb{H}^{n-1} \hookrightarrow \mathbb{H}^{n}$ can not be compactly deformed (as a hypersurface of \mathbb{H}^{n}) while keeping it mean convex.

Rigidity in the hyperbolic setting

- More recently, a PMT for manifolds modeled at infinity on the hyperbolic half-space $\left(\mathbb{H}_{+}^{n}, b\right)$ (which is obtained by cutting hyperbolic space $\left(\mathbb{H}^{n}, b\right)$ along a totally geodesic hypersurface) has been established. As a consequence of the corresponding rigidity statement, the following result has been obtained.

Theorem (Almaraz, —, 2020, hyperbolic rigidity with a boundary)
Let g be a Riemannian metric in \mathbb{H}_{+}^{n} such that

- $R_{g} \geq-n(n-1)$ everywhere;
- $H_{g} \geq 0$ along the boundary;
- $g=b$ outside a compact set.

Then $g=b$ everywhere.

- It suffices to assume that $|g-b|_{b}=O_{2}\left(e^{-\sigma r}\right), \sigma>n$.

Corollary (Extrinsic hyperbolic rigidity)
A totally geodesic hypersurface $\mathbb{H}^{n-1} \hookrightarrow \mathbb{H}^{n}$ can not be compactly deformed (as a hypersurface of \mathbb{H}^{n}) while keeping it mean convex.

- At least for compactly supported deformations, this kind of rigidity has also been rediscovered recently by Souam ${ }^{1}$, who used the Alexandrov's reflection to this end.

[^0]
Rigidity in the hyperbolic setting

- More recently, a PMT for manifolds modeled at infinity on the hyperbolic half-space $\left(\mathbb{H}_{+}^{n}, b\right)$ (which is obtained by cutting hyperbolic space $\left(\mathbb{H}^{n}, b\right)$ along a totally geodesic hypersurface) has been established. As a consequence of the corresponding rigidity statement, the following result has been obtained.

Theorem (Almaraz, —, 2020, hyperbolic rigidity with a boundary)
Let g be a Riemannian metric in \mathbb{H}_{+}^{n} such that

- $R_{g} \geq-n(n-1)$ everywhere;
- $H_{g} \geq 0$ along the boundary;
- $g=b$ outside a compact set.

Then $g=b$ everywhere.

- It suffices to assume that $|g-b|_{b}=O_{2}\left(e^{-\sigma r}\right), \sigma>n$.

Corollary (Extrinsic hyperbolic rigidity)
A totally geodesic hypersurface $\mathbb{H}^{n-1} \hookrightarrow \mathbb{H}^{n}$ can not be compactly deformed (as a hypersurface of \mathbb{H}^{n}) while keeping it mean convex.

- At least for compactly supported deformations, this kind of rigidity has also been rediscovered recently by Souam ${ }^{1}$, who used the Alexandrov's reflection to this end.

Einstein field equations in the presence of a time-like boundary

Einstein field equations in the presence of a time-like boundary

- We consider a manifold \widetilde{M}^{n+1} endowed with a boundary $\partial \widetilde{M}$. On the space of all Lorentzian metrics \widetilde{g} on \widetilde{M} such that $\partial \widetilde{M}$ is time-like, we may consider the Gibbons-Hawking-York functional

$$
\mathcal{A}: \widetilde{g} \mapsto \int_{\widetilde{M}}\left(R_{\tilde{g}}-2 \widetilde{\Lambda}\right) d v_{\tilde{g}}+2 \int_{\partial \widetilde{M}}\left(H_{\widetilde{g}}-\widetilde{\lambda}\right) d \sigma_{\widetilde{g}},
$$

where $\pi_{\widetilde{g}}$ is the second fundamental form of $\partial \widetilde{M} \hookrightarrow \widetilde{M}, H_{\widetilde{g}}=\left.\operatorname{tr}_{\widetilde{g}}\right|_{\partial \widetilde{M}} \pi_{\widetilde{g}}$ is the mean curvature and $(\widetilde{\Lambda}, \widetilde{\lambda})$ are the cosmological constants.

Einstein field equations in the presence of a time-like boundary

- We consider a manifold \widetilde{M}^{n+1} endowed with a boundary $\partial \widetilde{M}$. On the space of all Lorentzian metrics \widetilde{g} on \widetilde{M} such that $\partial \widetilde{M}$ is time-like, we may consider the Gibbons-Hawking-York functional

$$
\mathcal{A}: \widetilde{g} \mapsto \int_{\widetilde{M}}\left(R_{\tilde{g}}-2 \widetilde{\Lambda}\right) d v_{\tilde{g}}+2 \int_{\partial \widetilde{M}}\left(H_{\widetilde{g}}-\widetilde{\lambda}\right) d \sigma_{\widetilde{g}},
$$

where $\pi_{\widetilde{g}}$ is the second fundamental form of $\partial \widetilde{M} \hookrightarrow \widetilde{M}, H_{\widetilde{g}}=\left.\operatorname{tr}_{\widetilde{g}}\right|_{\partial \widetilde{M}} \pi_{\widetilde{g}}$ is the mean curvature and $(\widetilde{\Lambda}, \widetilde{\lambda})$ are the cosmological constants.

- Critical metrics for \mathcal{A} give rise to solutions of Einstein field equations in vacuum:

$$
\operatorname{Ric}_{\widetilde{g}}-\frac{1}{2} R_{\widetilde{g}} \widetilde{g}+\widetilde{\Lambda} \widetilde{g}=0, \quad \pi_{\widetilde{g}}-\left.H_{\widetilde{g}} \tilde{g}\right|_{\partial \widetilde{M}}+\left.\widetilde{\lambda} \widetilde{g}\right|_{\partial \widetilde{M}}=0
$$

Einstein field equations in the presence of a time-like boundary

- We consider a manifold \widetilde{M}^{n+1} endowed with a boundary $\partial \widetilde{M}$. On the space of all Lorentzian metrics \widetilde{g} on \widetilde{M} such that $\partial \widetilde{M}$ is time-like, we may consider the Gibbons-Hawking-York functional

$$
\mathcal{A}: \widetilde{g} \mapsto \int_{\widetilde{M}}\left(R_{\tilde{g}}-2 \widetilde{\Lambda}\right) d v_{\tilde{g}}+2 \int_{\partial \widetilde{M}}\left(H_{\widetilde{g}}-\widetilde{\lambda}\right) d \sigma_{\widetilde{g}}
$$

where $\pi_{\tilde{g}}$ is the second fundamental form of $\partial \widetilde{M} \hookrightarrow \widetilde{M}, H_{\widetilde{g}}=\left.\operatorname{tr}_{\tilde{g}}\right|_{\partial \tilde{M}} \pi_{\tilde{g}}$ is the mean curvature and $(\widetilde{\Lambda}, \widetilde{\lambda})$ are the cosmological constants.

- Critical metrics for \mathcal{A} give rise to solutions of Einstein field equations in vacuum:

$$
\operatorname{Ric}_{\widetilde{g}}-\frac{1}{2} R_{\widetilde{g}} \widetilde{g}+\widetilde{\Lambda} \widetilde{g}=0, \quad \pi_{\widetilde{g}}-\left.H_{\widetilde{g}} \tilde{g}\right|_{\partial \widetilde{M}}+\left.\widetilde{\lambda} \widetilde{g}\right|_{\partial \widetilde{M}}=0
$$

- By tracing these equations, we obtain the equivalent system

$$
\left\{\begin{array}{l}
\operatorname{Ric}_{\widetilde{g}}=\Lambda \widetilde{g}, \quad \Lambda=\frac{2}{n-1} \widetilde{\Lambda} \\
\pi_{\widetilde{g}}=\left.\widetilde{\lambda} \widetilde{g}\right|_{\partial \widetilde{M}}, \quad \lambda=\frac{1}{n-1} \widetilde{\lambda}
\end{array}\right.
$$

Einstein field equations in the presence of a time-like boundary

- We consider a manifold \widetilde{M}^{n+1} endowed with a boundary $\partial \widetilde{M}$. On the space of all Lorentzian metrics \widetilde{g} on \widetilde{M} such that $\partial \widetilde{M}$ is time-like, we may consider the Gibbons-Hawking-York functional

$$
\mathcal{A}: \widetilde{g} \mapsto \int_{\widetilde{M}}\left(R_{\tilde{g}}-2 \widetilde{\Lambda}\right) d v_{\tilde{g}}+2 \int_{\partial \widetilde{M}}\left(H_{\widetilde{g}}-\widetilde{\lambda}\right) d \sigma_{\widetilde{g}}
$$

where $\pi_{\tilde{g}}$ is the second fundamental form of $\partial \widetilde{M} \hookrightarrow \widetilde{M}, H_{\widetilde{g}}=\left.\operatorname{tr}_{\tilde{g}}\right|_{\partial \widetilde{M}} \pi_{\tilde{g}}$ is the mean curvature and $(\widetilde{\Lambda}, \widetilde{\lambda})$ are the cosmological constants.

- Critical metrics for \mathcal{A} give rise to solutions of Einstein field equations in vacuum:

$$
\operatorname{Ric}_{\widetilde{g}}-\frac{1}{2} R_{\widetilde{g}} \widetilde{g}+\widetilde{\Lambda} \widetilde{g}=0, \quad \pi_{\widetilde{g}}-\left.H_{\widetilde{g}} \tilde{g}\right|_{\partial \widetilde{M}}+\left.\widetilde{\lambda} \widetilde{g}\right|_{\partial \widetilde{M}}=0
$$

- By tracing these equations, we obtain the equivalent system

$$
\left\{\begin{array}{l}
\operatorname{Ric}_{\widetilde{g}}=\Lambda \widetilde{g}, \quad \Lambda=\frac{2}{n-1} \widetilde{\Lambda} \\
\pi_{\widetilde{g}}=\left.\widetilde{\lambda} \widetilde{g}\right|_{\partial \widetilde{M}}, \quad \lambda=\frac{1}{n-1} \widetilde{\lambda}
\end{array}\right.
$$

- We may assume that $\underset{\sim}{\Lambda}=\epsilon n, \epsilon=0, \pm 1$. Here, we will be mainly interested in the case $\epsilon=-1$, so that $\widetilde{\Lambda}=-n(n-1) / 2$.

Einstein field equations in the presence of a time-like boundary

- We consider a manifold \widetilde{M}^{n+1} endowed with a boundary $\partial \widetilde{M}$. On the space of all Lorentzian metrics \widetilde{g} on \widetilde{M} such that $\partial \widetilde{M}$ is time-like, we may consider the Gibbons-Hawking-York functional

$$
\mathcal{A}: \widetilde{g} \mapsto \int_{\widetilde{M}}\left(R_{\tilde{g}}-2 \widetilde{\Lambda}\right) d v_{\tilde{g}}+2 \int_{\partial \widetilde{M}}\left(H_{\widetilde{g}}-\widetilde{\lambda}\right) d \sigma_{\widetilde{g}}
$$

where $\pi_{\tilde{g}}$ is the second fundamental form of $\partial \widetilde{M} \hookrightarrow \widetilde{M}, H_{\widetilde{g}}=\left.\operatorname{tr}_{\tilde{g}}\right|_{\partial \widetilde{M}} \pi_{\tilde{g}}$ is the mean curvature and $(\widetilde{\Lambda}, \widetilde{\lambda})$ are the cosmological constants.

- Critical metrics for \mathcal{A} give rise to solutions of Einstein field equations in vacuum:

$$
\operatorname{Ric}_{\widetilde{g}}-\frac{1}{2} R_{\widetilde{g}} \widetilde{g}+\widetilde{\Lambda} \widetilde{g}=0, \quad \pi_{\widetilde{g}}-\left.H_{\widetilde{g}} \tilde{g}\right|_{\partial \widetilde{M}}+\left.\widetilde{\lambda} \widetilde{g}\right|_{\partial \widetilde{M}}=0
$$

- By tracing these equations, we obtain the equivalent system

$$
\left\{\begin{array}{l}
\operatorname{Ric}_{\widetilde{g}}=\Lambda \widetilde{g}, \quad \Lambda=\frac{2}{n-1} \widetilde{\Lambda} \\
\pi_{\widetilde{g}}=\left.\widetilde{\lambda} \widetilde{g}\right|_{\partial \widetilde{M}}, \quad \lambda=\frac{1}{n-1} \widetilde{\lambda}
\end{array}\right.
$$

- We may assume that $\underset{\sim}{\Lambda}=\epsilon n, \epsilon=0, \pm 1$. Here, we will be mainly interested in the case $\epsilon=-1$, so that $\widetilde{\Lambda}=-n(n-1) / 2$.

Static manifolds (with a boundary)

Static manifolds (with a boundary)

- Assume that $(\widetilde{M}, \widetilde{g})$ as above carries a time-like Killing vector field Y whose orthogonal distribution is integrable and which is tangent to $\partial \widetilde{M}$.

Static manifolds (with a boundary)

- Assume that $(\widetilde{M}, \widetilde{g})$ as above carries a time-like Killing vector field Y whose orthogonal distribution is integrable and which is tangent to $\partial \widetilde{M}$.
- Around some space-like leaf $M \hookrightarrow \widetilde{M}$, we may write

$$
\widetilde{g}=-V^{2} d t^{2}+g, \quad g=\left.\widetilde{g}\right|_{M}
$$

where $V=\sqrt{-\widetilde{g}(Y, Y)}$ satisfies

$$
\left\{\begin{array}{l}
\nabla_{g}^{2} V+\Lambda V g-V \operatorname{Ric}_{g}=0 \\
\Delta_{g} V+\Lambda V=0
\end{array}\right.
$$

subject to the boundary conditions along $\partial M=M \cap \partial \widetilde{M}$

$$
\left\{\begin{array}{l}
\pi_{g}-\lambda \bar{g}=0 \\
\frac{\partial}{\partial \eta} V-\lambda V=0
\end{array}\right.
$$

Here, $\bar{g}=\left.g\right|_{\partial M}, \pi_{g}$ is the second fundamental form of $\partial M \hookrightarrow M$ and η is the outward unit co-normal vector to ∂M.

Static manifolds (with a boundary)

- Assume that $(\widetilde{M}, \widetilde{g})$ as above carries a time-like Killing vector field Y whose orthogonal distribution is integrable and which is tangent to $\partial \widetilde{M}$.
- Around some space-like leaf $M \hookrightarrow \widetilde{M}$, we may write

$$
\widetilde{g}=-V^{2} d t^{2}+g, \quad g=\left.\widetilde{g}\right|_{M}
$$

where $V=\sqrt{-\widetilde{g}(Y, Y)}$ satisfies

$$
\left\{\begin{array}{l}
\nabla_{g}^{2} V+\Lambda V g-V \operatorname{Ric}_{g}=0 \\
\Delta_{g} V+\Lambda V=0
\end{array}\right.
$$

subject to the boundary conditions along $\partial M=M \cap \partial \widetilde{M}$

$$
\left\{\begin{array}{l}
\pi_{g}-\lambda \bar{g}=0, \\
\frac{\partial}{\partial \eta} V-\lambda V=0
\end{array}\right.
$$

Here, $\bar{g}=\left.g\right|_{\partial M}, \pi_{g}$ is the second fundamental form of $\partial M \hookrightarrow M$ and η is the outward unit co-normal vector to ∂M.

Definition

We say that a bordered Riemannian manifold $(M, g, \partial M)$ is a static manifold with boundary, with the pair $(\widetilde{\Lambda}, \widetilde{\lambda})$ as cosmological constants, if there exists $V \neq 0$ such that the equations above are satisfied. In this case, each such V is termed a static potential.

Static manifolds (with a boundary)

- Assume that $(\widetilde{M}, \widetilde{g})$ as above carries a time-like Killing vector field Y whose orthogonal distribution is integrable and which is tangent to $\partial \widetilde{M}$.
- Around some space-like leaf $M \hookrightarrow \widetilde{M}$, we may write

$$
\widetilde{g}=-V^{2} d t^{2}+g, \quad g=\left.\widetilde{g}\right|_{M}
$$

where $V=\sqrt{-\widetilde{g}(Y, Y)}$ satisfies

$$
\left\{\begin{array}{l}
\nabla_{g}^{2} V+\Lambda V g-V \operatorname{Ric}_{g}=0 \\
\Delta_{g} V+\Lambda V=0
\end{array}\right.
$$

subject to the boundary conditions along $\partial M=M \cap \partial \widetilde{M}$

$$
\left\{\begin{array}{l}
\pi_{g}-\lambda \bar{g}=0, \\
\frac{\partial}{\partial \eta} V-\lambda V=0
\end{array}\right.
$$

Here, $\bar{g}=\left.g\right|_{\partial M}, \pi_{g}$ is the second fundamental form of $\partial M \hookrightarrow M$ and η is the outward unit co-normal vector to ∂M.

Definition

We say that a bordered Riemannian manifold $(M, g, \partial M)$ is a static manifold with boundary, with the pair $(\widetilde{\Lambda}, \widetilde{\lambda})$ as cosmological constants, if there exists $V \neq 0$ such that the equations above are satisfied. In this case, each such V is termed a static potential.

Examples of non-compact static manifolds as rigid backgrounds

Examples of non-compact static manifolds as rigid backgrounds

- As we shall see below, under appropriate conditions a mass-type invariant may be attached to a manifold which is asymptotic at infinity to a suitably chosen static manifold. Typically, this invariant is a linear functional on the space of static potentials (or a subspace thereof).

Examples of non-compact static manifolds as rigid backgrounds

- As we shall see below, under appropriate conditions a mass-type invariant may be attached to a manifold which is asymptotic at infinity to a suitably chosen static manifold. Typically, this invariant is a linear functional on the space of static potentials (or a subspace thereof).
- $\left(\mathbb{R}_{+}^{n}, \delta\right)$ is a static manifold with $(\widetilde{\Lambda}, \widetilde{\lambda})=(0,0)$. The corresponding PMT has been proved in [Almaraz, Barbosa, -, 2016] and its rigidity statement leads to (a sharper version of) the extrinsic rigidity result mentioned earlier.

Examples of non-compact static manifolds as rigid backgrounds

- As we shall see below, under appropriate conditions a mass-type invariant may be attached to a manifold which is asymptotic at infinity to a suitably chosen static manifold. Typically, this invariant is a linear functional on the space of static potentials (or a subspace thereof).
- $\left(\mathbb{R}_{+}^{n}, \delta\right)$ is a static manifold with $(\widetilde{\Lambda}, \widetilde{\lambda})=(0,0)$. The corresponding PMT has been proved in [Almaraz, Barbosa, -, 2016] and its rigidity statement leads to (a sharper version of) the extrinsic rigidity result mentioned earlier.
- As another example, $\left(\mathbb{H}_{+}^{n}, b\right)$ is a static manifold with $(\widetilde{\Lambda}, \widetilde{\lambda})=(-n(n-1) / 2,0)$. The corresponding PMT has been proved in [Almaraz, -, 2020] and its rigidity statement leads to (a sharper version of) the result rediscovered by Souam.

Examples of non-compact static manifolds as rigid backgrounds

- As we shall see below, under appropriate conditions a mass-type invariant may be attached to a manifold which is asymptotic at infinity to a suitably chosen static manifold. Typically, this invariant is a linear functional on the space of static potentials (or a subspace thereof).
- $\left(\mathbb{R}_{+}^{n}, \delta\right)$ is a static manifold with $(\widetilde{\Lambda}, \widetilde{\lambda})=(0,0)$. The corresponding PMT has been proved in [Almaraz, Barbosa, -, 2016] and its rigidity statement leads to (a sharper version of) the extrinsic rigidity result mentioned earlier.
- As another example, $\left(\mathbb{H}_{+}^{n}, b\right)$ is a static manifold with $(\widetilde{\Lambda}, \widetilde{\lambda})=(-n(n-1) / 2,0)$. The corresponding PMT has been proved in [Almaraz, -, 2020] and its rigidity statement leads to (a sharper version of) the result rediscovered by Souam.
- Our aim here is twofold:

1. to extend the PMT in [Almaraz, -, 2020] to manifolds modeled at infinity on the much larger class of non-compact static domains in \mathbb{H}^{n} (obtained by cutting it along a totally umbilical hypersurface).
2. in doing so, to put all the extrinsic rigidity results above in their proper conceptual framework (in particular, sharper results will be obtained along the way).

Examples of non-compact static manifolds as rigid backgrounds

- As we shall see below, under appropriate conditions a mass-type invariant may be attached to a manifold which is asymptotic at infinity to a suitably chosen static manifold. Typically, this invariant is a linear functional on the space of static potentials (or a subspace thereof).
- $\left(\mathbb{R}_{+}^{n}, \delta\right)$ is a static manifold with $(\widetilde{\Lambda}, \widetilde{\lambda})=(0,0)$. The corresponding PMT has been proved in [Almaraz, Barbosa, -, 2016] and its rigidity statement leads to (a sharper version of) the extrinsic rigidity result mentioned earlier.
- As another example, $\left(\mathbb{H}_{+}^{n}, b\right)$ is a static manifold with $(\widetilde{\Lambda}, \widetilde{\lambda})=(-n(n-1) / 2,0)$. The corresponding PMT has been proved in [Almaraz, -, 2020] and its rigidity statement leads to (a sharper version of) the result rediscovered by Souam.
- Our aim here is twofold:

1. to extend the PMT in [Almaraz, -, 2020] to manifolds modeled at infinity on the much larger class of non-compact static domains in \mathbb{H}^{n} (obtained by cutting it along a totally umbilical hypersurface).
2. in doing so, to put all the extrinsic rigidity results above in their proper conceptual framework (in particular, sharper results will be obtained along the way).

Equidistant hypersurfaces in \mathbb{H}^{n}

Equidistant hypersurfaces in \mathbb{H}^{n}

Recall that hyperbolic n-space $\left(\mathbb{H}^{n}, b\right)$ is defined by

$$
\mathbb{H}^{n}=\left\{x \in \mathbb{R}^{1, n} \mid\langle x, x\rangle_{1, n}=-1\right\} \subset \mathbb{R}^{1, n}
$$

where $\mathbb{R}^{1, n}$ is the Minkowski space with the flat metric

$$
\begin{aligned}
\langle x, x\rangle_{1, n} & =-x_{0}^{2}+x_{1}^{2}+\ldots+x_{n}^{2} \\
& =-x_{0}^{2}+r^{2}
\end{aligned}
$$

where $x=\left(x_{0}, x_{1}, \cdots, x_{n}\right) \in \mathbb{R}^{1, n}$ and b is the induced (Riemannian) metric.

Equidistant hypersurfaces in \mathbb{H}^{n}

Recall that hyperbolic n-space $\left(\mathbb{H}^{n}, b\right)$ is defined by

$$
\mathbb{H}^{n}=\left\{x \in \mathbb{R}^{1, n} \mid\langle x, x\rangle_{1, n}=-1\right\} \subset \mathbb{R}^{1, n}
$$

where $\mathbb{R}^{1, n}$ is the Minkowski space with the flat metric

$$
\begin{aligned}
\langle x, x\rangle_{1, n} & =-x_{0}^{2}+x_{1}^{2}+\ldots+x_{n}^{2} \\
& =-x_{0}^{2}+r^{2}
\end{aligned}
$$

where $x=\left(x_{0}, x_{1}, \cdots, x_{n}\right) \in \mathbb{R}^{1, n}$ and b is the induced (Riemannian) metric.

- For each $s \in \mathbb{R}$ set $\mathbb{H}_{s}^{n}=\left\{x \in \mathbb{H}^{n} ; x_{1} \leq s\right\}$ and $\Sigma_{s}=\partial \mathbb{H}_{s}^{n}$.

Equidistant hypersurfaces in \mathbb{H}^{n}

Recall that hyperbolic n-space $\left(\mathbb{H}^{n}, b\right)$ is defined by

$$
\mathbb{H}^{n}=\left\{x \in \mathbb{R}^{1, n} \mid\langle x, x\rangle_{1, n}=-1\right\} \subset \mathbb{R}^{1, n},
$$

where $\mathbb{R}^{1, n}$ is the Minkowski space with the flat metric

$$
\begin{aligned}
\langle x, x\rangle_{1, n} & =-x_{0}^{2}+x_{1}^{2}+\ldots+x_{n}^{2} \\
& =-x_{0}^{2}+r^{2}
\end{aligned}
$$

where $x=\left(x_{0}, x_{1}, \cdots, x_{n}\right) \in \mathbb{R}^{1, n}$ and b is the induced (Riemannian) metric.

- For each $s \in \mathbb{R}$ set $\mathbb{H}_{s}^{n}=\left\{x \in \mathbb{H}^{n} ; x_{1} \leq s\right\}$ and $\Sigma_{s}=\partial \mathbb{H}_{s}^{n}$.
- the hypersurfaces in the family $\left\{\Sigma_{s}\right\}_{s \neq 0}$ are totally umbilical and constitute the equidistant hypersurfaces of Σ_{0}, which is totally geodesic. In fact, the associated second fundamental form is

$$
\Pi_{s}=\lambda_{s} \gamma_{s}, \quad \lambda_{s}=\frac{s}{\sqrt{1+s^{2}}}, \quad \gamma_{s}=\left.b\right|_{\Sigma_{s}}
$$

Equidistant hypersurfaces in \mathbb{H}^{n}

Recall that hyperbolic n-space $\left(\mathbb{H}^{n}, b\right)$ is defined by

$$
\mathbb{H}^{n}=\left\{x \in \mathbb{R}^{1, n} \mid\langle x, x\rangle_{1, n}=-1\right\} \subset \mathbb{R}^{1, n},
$$

where $\mathbb{R}^{1, n}$ is the Minkowski space with the flat metric

$$
\begin{aligned}
\langle x, x\rangle_{1, n} & =-x_{0}^{2}+x_{1}^{2}+\ldots+x_{n}^{2} \\
& =-x_{0}^{2}+r^{2}
\end{aligned}
$$

where $x=\left(x_{0}, x_{1}, \cdots, x_{n}\right) \in \mathbb{R}^{1, n}$ and b is the induced (Riemannian) metric.

- For each $s \in \mathbb{R}$ set $\mathbb{H}_{s}^{n}=\left\{x \in \mathbb{H}^{n} ; x_{1} \leq s\right\}$ and $\Sigma_{s}=\partial \mathbb{H}_{s}^{n}$.
- the hypersurfaces in the family $\left\{\Sigma_{s}\right\}_{s \neq 0}$ are totally umbilical and constitute the equidistant hypersurfaces of Σ_{0}, which is totally geodesic. In fact, the associated second fundamental form is

$$
\Pi_{s}=\lambda_{s} \gamma_{s}, \quad \lambda_{s}=\frac{s}{\sqrt{1+s^{2}}}, \quad \gamma_{s}=\left.b\right|_{\Sigma_{s}}
$$

\mathbb{H}_{s}^{n} as a static manifold

\mathbb{H}_{s}^{n} as a static manifold

The isometry group of each \mathbb{H}_{s}^{n} may be identified to $O^{\uparrow}(1, n-1)$, the full isometry group of $\Sigma_{0}=\mathbb{H}^{n-1} \subset \mathbb{R}^{1, n-1}$. In the picture, it is realized as the group of time-oriented Lorentzian "rotations" fixing the axis x_{1}. Let us set $V_{(i)}=\left.x_{i}\right|_{\mathbb{H}_{s}^{n}}$, $0 \leq i \leq n$.

\mathbb{H}_{s}^{n} as a static manifold

The isometry group of each \mathbb{H}_{s}^{n} may be identified to $O^{\uparrow}(1, n-1)$, the full isometry group of $\Sigma_{0}=\mathbb{H}^{n-1} \subset \mathbb{R}^{1, n-1}$. In the picture, it is realized as the group of time-oriented Lorentzian "rotations" fixing the axis x_{1}. Let us set $V_{(i)}=\left.x_{i}\right|_{\mathbb{H}_{s}^{n}}$, $0 \leq i \leq n$.

Proposition

$\left(\mathbb{H}_{s}^{n}, b, \Sigma_{s}\right)$ is a static manifold with boundary such that

$$
(\tilde{\Lambda}, \tilde{\lambda})=\left(-n(n-1) / 2,(n-1) \lambda_{s}\right)
$$

and the corresponding space of static potentials is

$$
\mathcal{N}_{b, s}=\left[V_{(0)}, V_{(2)}, \cdots, V_{(n)}\right]
$$

\mathbb{H}_{s}^{n} as a static manifold

The isometry group of each \mathbb{H}_{s}^{n} may be identified to $O^{\uparrow}(1, n-1)$, the full isometry group of $\Sigma_{0}=\mathbb{H}^{n-1} \subset \mathbb{R}^{1, n-1}$. In the picture, it is realized as the group of time-oriented Lorentzian "rotations" fixing the axis x_{1}. Let us set $V_{(i)}=\left.x_{i}\right|_{\mathbb{H}_{s}^{n}}$, $0 \leq i \leq n$.

Proposition

$\left(\mathbb{H}_{s}^{n}, b, \Sigma_{s}\right)$ is a static manifold with boundary such that

$$
(\tilde{\Lambda}, \tilde{\lambda})=\left(-n(n-1) / 2,(n-1) \lambda_{s}\right)
$$

and the corresponding space of static potentials is

$$
\mathcal{N}_{b, s}=\left[V_{(0)}, V_{(2)}, \cdots, V_{(n)}\right]
$$

- There exists a natural irreducible representation of $O^{\uparrow}(1, n-1)$ on $\mathcal{N}_{b, s}$ given by

$$
\rho_{A}^{s}(V)=V \circ A^{-1}, \quad A \in O^{\uparrow}(1, n-1)
$$

\mathbb{H}_{s}^{n} as a static manifold

The isometry group of each \mathbb{H}_{s}^{n} may be identified to $O^{\uparrow}(1, n-1)$, the full isometry group of $\Sigma_{0}=\mathbb{H}^{n-1} \subset \mathbb{R}^{1, n-1}$. In the picture, it is realized as the group of time-oriented Lorentzian "rotations" fixing the axis x_{1}. Let us set $V_{(i)}=\left.x_{i}\right|_{\mathbb{H}_{s}^{n}}$, $0 \leq i \leq n$.

Proposition

$\left(\mathbb{H}_{s}^{n}, b, \Sigma_{s}\right)$ is a static manifold with boundary such that

$$
(\tilde{\Lambda}, \tilde{\lambda})=\left(-n(n-1) / 2,(n-1) \lambda_{s}\right)
$$

and the corresponding space of static potentials is

$$
\mathcal{N}_{b, s}=\left[V_{(0)}, V_{(2)}, \cdots, V_{(n)}\right]
$$

- There exists a natural irreducible representation of $O^{\uparrow}(1, n-1)$ on $\mathcal{N}_{b, s}$ given by

$$
\rho_{A}^{s}(V)=V \circ A^{-1}, \quad A \in O^{\uparrow}(1, n-1)
$$

Asymptotically hyperbolic manifolds modeled on \mathbb{H}_{s}^{n}

Asymptotically hyperbolic manifolds modeled on \mathbb{H}_{s}^{n}

We now consider the class of manifolds we will be interested in. Given $s \in \mathbb{R}$ as above, let us set $\mathbb{H}_{s, r_{0}}^{n}=\left\{x \in \mathbb{H}_{s}^{n} ; r(x) \geq r_{0}\right\}$ for all r_{0} large enough.

Asymptotically hyperbolic manifolds modeled on \mathbb{H}_{s}^{n}

We now consider the class of manifolds we will be interested in. Given $s \in \mathbb{R}$ as above, let us set $\mathbb{H}_{s, r_{0}}^{n}=\left\{x \in \mathbb{H}_{s}^{n} ; r(x) \geq r_{0}\right\}$ for all r_{0} large enough.

Definition
We say that (M^{n}, g, Σ) is s-asymptotically hyperbolic (s-AH) if there exists an asymptotic region $M_{\text {ext }} \subset M$ and a diffeomorphism (a chart at infinity) $F: \mathbb{H}_{s, r_{0}}^{n} \rightarrow M_{\text {ext }}$, for some $r_{0}>0$, such that

$$
\left|F^{*} g-b\right|_{b}=O_{2}\left(e^{-\sigma r}\right), \quad \sigma>n / 2
$$

We also assume that $e^{r}\left(R_{g}+n(n-1)\right) \in L^{1}(M)$ and $e^{r}\left(H-(n-1) \lambda_{s}\right) \in L^{1}(\Sigma)$.

Asymptotically hyperbolic manifolds modeled on \mathbb{H}_{s}^{n}

We now consider the class of manifolds we will be interested in. Given $s \in \mathbb{R}$ as above, let us set $\mathbb{H}_{s, r_{0}}^{n}=\left\{x \in \mathbb{H}_{s}^{n} ; r(x) \geq r_{0}\right\}$ for all r_{0} large enough.

Definition

We say that (M^{n}, g, Σ) is s-asymptotically hyperbolic (s-AH) if there exists an asymptotic region $M_{\text {ext }} \subset M$ and a diffeomorphism (a chart at infinity)
$F: \mathbb{H}_{s, r_{0}}^{n} \rightarrow M_{\text {ext }}$, for some $r_{0}>0$, such that

$$
\left|F^{*} g-b\right|_{b}=O_{2}\left(e^{-\sigma r}\right), \quad \sigma>n / 2
$$

We also assume that $e^{r}\left(R_{g}+n(n-1)\right) \in L^{1}(M)$ and $e^{r}\left(H-(n-1) \lambda_{s}\right) \in L^{1}(\Sigma)$.
Theorem (Almaraz,—,2022)
Let $\left(M^{n}, g, \Sigma\right)$ be an $s-A H$ spin manifold with $R_{g} \geq-n(n-1)$ and $H_{g} \geq(n-1) \lambda_{s}$. Assume further that $\sigma>n$. Then $\left(M^{n}, g, \Sigma\right)=\left(\mathbb{H}_{s}^{n}, b, \Sigma_{s}\right)$ isometrically.

Asymptotically hyperbolic manifolds modeled on \mathbb{H}_{s}^{n}

We now consider the class of manifolds we will be interested in. Given $s \in \mathbb{R}$ as above, let us set $\mathbb{H}_{s, r_{0}}^{n}=\left\{x \in \mathbb{H}_{s}^{n} ; r(x) \geq r_{0}\right\}$ for all r_{0} large enough.

Definition

We say that (M^{n}, g, Σ) is s-asymptotically hyperbolic (s-AH) if there exists an asymptotic region $M_{\text {ext }} \subset M$ and a diffeomorphism (a chart at infinity)
$F: \mathbb{H}_{s, r_{0}}^{n} \rightarrow M_{\text {ext }}$, for some $r_{0}>0$, such that

$$
\left|F^{*} g-b\right|_{b}=O_{2}\left(e^{-\sigma r}\right), \quad \sigma>n / 2
$$

We also assume that $e^{r}\left(R_{g}+n(n-1)\right) \in L^{1}(M)$ and $e^{r}\left(H-(n-1) \lambda_{s}\right) \in L^{1}(\Sigma)$.
Theorem (Almaraz,—,2022)
Let $\left(M^{n}, g, \Sigma\right)$ be an $s-A H$ spin manifold with $R_{g} \geq-n(n-1)$ and $H_{g} \geq(n-1) \lambda_{s}$. Assume further that $\sigma>n$. Then $\left(M^{n}, g, \Sigma\right)=\left(\mathbb{H}_{s}^{n}, b, \Sigma_{s}\right)$ isometrically.

- Clearly, this implies that the appropriate rigidity statement holds true for $\left(\mathbb{H}_{s}^{n}, b, \Sigma_{s}\right)$. In particular, this extends Souam's results mentioned previously.

Asymptotically hyperbolic manifolds modeled on \mathbb{H}_{s}^{n}

We now consider the class of manifolds we will be interested in. Given $s \in \mathbb{R}$ as above, let us set $\mathbb{H}_{s, r_{0}}^{n}=\left\{x \in \mathbb{H}_{s}^{n} ; r(x) \geq r_{0}\right\}$ for all r_{0} large enough.

Definition

We say that (M^{n}, g, Σ) is s-asymptotically hyperbolic (s-AH) if there exists an asymptotic region $M_{\text {ext }} \subset M$ and a diffeomorphism (a chart at infinity)
$F: \mathbb{H}_{s, r_{0}}^{n} \rightarrow M_{\text {ext }}$, for some $r_{0}>0$, such that

$$
\left|F^{*} g-b\right|_{b}=O_{2}\left(e^{-\sigma r}\right), \quad \sigma>n / 2
$$

We also assume that $e^{r}\left(R_{g}+n(n-1)\right) \in L^{1}(M)$ and $e^{r}\left(H-(n-1) \lambda_{s}\right) \in L^{1}(\Sigma)$.
Theorem (Almaraz,—,2022)
Let $\left(M^{n}, g, \Sigma\right)$ be an $s-A H$ spin manifold with $R_{g} \geq-n(n-1)$ and $H_{g} \geq(n-1) \lambda_{s}$. Assume further that $\sigma>n$. Then $\left(M^{n}, g, \Sigma\right)=\left(\mathbb{H}_{s}^{n}, b, \Sigma_{s}\right)$ isometrically.

- Clearly, this implies that the appropriate rigidity statement holds true for $\left(\mathbb{H}_{s}^{n}, b, \Sigma_{s}\right)$. In particular, this extends Souam's results mentioned previously.

The mass functional

The mass functional

The mass functional

Theorem

Let (M, g, Σ) be an s-AH manifold. If F is a chart at infinity, let us identify g to $F^{*} g$ and set $e:=g-b$. Then

$$
\mathfrak{m}_{s, F}(V):=\lim _{r \rightarrow+\infty}\left[\int_{S_{r,+}^{n-1}}\langle\mathbb{U}(V, e), \mu\rangle d S_{r,+}^{n-1}-\int_{S_{r}^{n-2}} V e(\eta, \vartheta) d S_{r}^{n-2}\right], \quad V \in \mathcal{N}_{b, s}
$$

exists and is finite. Here,

$$
\mathbb{U}(V, e)=V\left(\operatorname{div}_{b} e-d \operatorname{tr}_{b} e\right)-\iota \nabla_{b} V e+\operatorname{tr}_{b} e d V
$$

The mass functional

Theorem

Let (M, g, Σ) be an s-AH manifold. If F is a chart at infinity, let us identify g to $F^{*} g$ and set $e:=g-b$. Then

$$
\mathfrak{m}_{s, F}(V):=\lim _{r \rightarrow+\infty}\left[\int_{S_{r,+}^{n-1}}\langle\mathbb{U}(V, e), \mu\rangle d S_{r,+}^{n-1}-\int_{S_{r}^{n-2}} V e(\eta, \vartheta) d S_{r}^{n-2}\right], \quad V \in \mathcal{N}_{b, s}
$$

exists and is finite. Here,

$$
\mathbb{U}(V, e)=V\left(\operatorname{div}_{b} e-d \operatorname{tr}_{b} e\right)-\iota \nabla_{b} V e+\operatorname{tr}_{b} e d V
$$

- Thus, $\mathfrak{m}_{s, F}$ is a linear functional on $\mathcal{N}_{b, s}$. The question now is: how does it depend on the given chart F ?

The mass functional

Theorem

Let (M, g, Σ) be an s-AH manifold. If F is a chart at infinity, let us identify g to $F^{*} g$ and set $e:=g-b$. Then

$$
\mathfrak{m}_{s, F}(V):=\lim _{r \rightarrow+\infty}\left[\int_{S_{r,+}^{n-1}}\langle\mathbb{U}(V, e), \mu\rangle d S_{r,+}^{n-1}-\int_{S_{r}^{n-2}} V e(\eta, \vartheta) d S_{r}^{n-2}\right], \quad V \in \mathcal{N}_{b, s}
$$

exists and is finite. Here,

$$
\mathbb{U}(V, e)=V\left(\operatorname{div}_{b} e-d \operatorname{tr}_{b} e\right)-\iota \nabla_{b} V e+\operatorname{tr}_{b} e d V
$$

- Thus, $\mathfrak{m}_{s, F}$ is a linear functional on $\mathcal{N}_{b, s}$. The question now is: how does it depend on the given chart F ?

Invariance of the mass vector

Invariance of the mass vector

- If F_{1} and F_{2} are charts at infinity then $F_{12}:=F_{1}^{-1} \circ F_{2}: \mathbb{H}_{s}^{n} \rightarrow \mathbb{H}_{s}^{n}$ satisfies $F_{12}^{*} b=b+O_{2}\left(r^{-\sigma}\right)$. Because \mathbb{H}_{s}^{n} is "rigid" at infinity, there exists $A \in O^{\uparrow}(1, n-1)$ such that $F_{12}=A+O_{2}\left(r^{-\sigma}\right)$

Invariance of the mass vector

- If F_{1} and F_{2} are charts at infinity then $F_{12}:=F_{1}^{-1} \circ F_{2}: \mathbb{H}_{s}^{n} \rightarrow \mathbb{H}_{s}^{n}$ satisfies $F_{12}^{*} b=b+O_{2}\left(r^{-\sigma}\right)$. Because \mathbb{H}_{s}^{n} is "rigid" at infinity, there exists $A \in O^{\uparrow}(1, n-1)$ such that $F_{12}=A+O_{2}\left(r^{-\sigma}\right)$

Proposition (equivariance of the mass)
Under the conditions above,

$$
\mathfrak{m}_{s, F_{1}}=\rho_{A^{-1}}^{s *}\left(\mathfrak{m}_{s, F_{2}}\right)
$$

where $\rho^{s *}$ is the dual representation.

Invariance of the mass vector

- If F_{1} and F_{2} are charts at infinity then $F_{12}:=F_{1}^{-1} \circ F_{2}: \mathbb{H}_{s}^{n} \rightarrow \mathbb{H}_{s}^{n}$ satisfies $F_{12}^{*} b=b+O_{2}\left(r^{-\sigma}\right)$. Because \mathbb{H}_{s}^{n} is "rigid" at infinity, there exists $A \in O^{\uparrow}(1, n-1)$ such that $F_{12}=A+O_{2}\left(r^{-\sigma}\right)$

Proposition (equivariance of the mass)
Under the conditions above,

$$
\mathfrak{m}_{s, F_{1}}=\rho_{A^{-1}}^{s *}\left(\mathfrak{m}_{s, F_{2}}\right),
$$

where $\rho^{s *}$ is the dual representation.

- We may identify $\mathcal{N}_{b, s} \equiv \mathbb{R}^{n-1,1}$ by introducing the "' Lorentzian" metric $\langle,\rangle_{n-1,1}^{s}$ and declaring that $V_{(0)}$ is "time-like" (in the sense that $\left\langle V_{(0)}, V_{(0)}\right\rangle_{n-1,1}^{s}=1$) and $\left\langle V_{(a)}, V_{(b)}\right\rangle_{n-1,1}^{s}=-\delta_{a, b}, 2 \leq a, b \leq n$.

Invariance of the mass vector

- If F_{1} and F_{2} are charts at infinity then $F_{12}:=F_{1}^{-1} \circ F_{2}: \mathbb{H}_{s}^{n} \rightarrow \mathbb{H}_{s}^{n}$ satisfies $F_{12}^{*} b=b+O_{2}\left(r^{-\sigma}\right)$. Because \mathbb{H}_{s}^{n} is "rigid" at infinity, there exists $A \in O^{\uparrow}(1, n-1)$ such that $F_{12}=A+O_{2}\left(r^{-\sigma}\right)$

Proposition (equivariance of the mass)
Under the conditions above,

$$
\mathfrak{m}_{s, F_{1}}=\rho_{A^{-1}}^{s *}\left(\mathfrak{m}_{s, F_{2}}\right),
$$

where $\rho^{s *}$ is the dual representation.

- We may identify $\mathcal{N}_{b, s} \equiv \mathbb{R}^{n-1,1}$ by introducing the "'Lorentzian" metric $\langle,\rangle_{n-1,1}^{s}$ and declaring that $V_{(0)}$ is "time-like" (in the sense that $\left\langle V_{(0)}, V_{(0)}\right\rangle_{n-1,1}^{s}=1$) and $\left\langle V_{(a)}, V_{(b)}\right\rangle_{n-1,1}^{s}=-\delta_{a, b}, 2 \leq a, b \leq n$.

It follows that ρ^{s} acts isometrically on $\left(\mathcal{N}_{b, s},\langle,\rangle_{n-1,1}^{s}\right)$. In particular, the causal properties of $\mathfrak{m}_{s, F}$ are chart independent.

Invariance of the mass vector

- If F_{1} and F_{2} are charts at infinity then $F_{12}:=F_{1}^{-1} \circ F_{2}: \mathbb{H}_{s}^{n} \rightarrow \mathbb{H}_{s}^{n}$ satisfies $F_{12}^{*} b=b+O_{2}\left(r^{-\sigma}\right)$. Because \mathbb{H}_{s}^{n} is "rigid" at infinity, there exists $A \in O^{\uparrow}(1, n-1)$ such that $F_{12}=A+O_{2}\left(r^{-\sigma}\right)$

Proposition (equivariance of the mass)
Under the conditions above,

$$
\mathfrak{m}_{s, F_{1}}=\rho_{A^{-1}}^{s *}\left(\mathfrak{m}_{s, F_{2}}\right),
$$

where $\rho^{s *}$ is the dual representation.

- We may identify $\mathcal{N}_{b, s} \equiv \mathbb{R}^{n-1,1}$ by introducing the "'Lorentzian" metric $\langle,\rangle_{n-1,1}^{s}$ and declaring that $V_{(0)}$ is "time-like" (in the sense that $\left\langle V_{(0)}, V_{(0)}\right\rangle_{n-1,1}^{s}=1$) and $\left\langle V_{(a)}, V_{(b)}\right\rangle_{n-1,1}^{s}=-\delta_{a, b}, 2 \leq a, b \leq n$.

It follows that ρ^{s} acts isometrically on $\left(\mathcal{N}_{b, s},\langle,\rangle_{n-1,1}^{s}\right)$. In particular, the causal properties of $\mathfrak{m}_{s, F}$ are chart independent.

The positive mass theorem

The positive mass theorem

Theorem (Almaraz, —, 2022)
Let (M, g, Σ) be an $s-A H$ spin manifold with $R_{g} \geq-n(n-1)$ and $H_{g} \geq(n-1) \lambda_{s}$. Then, for any chart F as above, the mass vector $\mathfrak{m}_{s, F}$ is time-like and future directed unless it vanishes, in which case (M, g, Σ) is isometric to $\left(\mathbb{H}_{s}^{n}, b, \Sigma_{s}\right)$.

The positive mass theorem

Theorem (Almaraz, —, 2022)
Let (M, g, Σ) be an $s-A H$ spin manifold with $R_{g} \geq-n(n-1)$ and $H_{g} \geq(n-1) \lambda_{s}$. Then, for any chart F as above, the mass vector $\mathfrak{m}_{s, F}$ is time-like and future directed unless it vanishes, in which case (M, g, Σ) is isometric to $\left(\mathbb{H}_{s}^{n}, b, \Sigma_{s}\right)$.

- The terminology is justified by the fact that the numerical invariant

$$
\mathfrak{m}_{s}:=\sqrt{\left\langle\mathfrak{m}_{s, F}, \mathfrak{m}_{s, F}\right\rangle_{1, n}^{s}},
$$

does not depend on the chosen chart and may be regarded as the total mass of the isolated gravitational system whose (time-symmetric) initial data set is (M, g, Σ). Hence, $\mathfrak{m}_{s} \geq 0$ with the equality holding if and only if (M, g, Σ) is isometric to $\left(\mathbb{H}_{s}^{n}, b, \Sigma_{s}\right)$.

The positive mass theorem

Theorem (Almaraz, —, 2022)
Let (M, g, Σ) be an $s-A H$ spin manifold with $R_{g} \geq-n(n-1)$ and $H_{g} \geq(n-1) \lambda_{s}$. Then, for any chart F as above, the mass vector $\mathfrak{m}_{s, F}$ is time-like and future directed unless it vanishes, in which case (M, g, Σ) is isometric to $\left(\mathbb{H}_{s}^{n}, b, \Sigma_{s}\right)$.

- The terminology is justified by the fact that the numerical invariant

$$
\mathfrak{m}_{s}:=\sqrt{\left\langle\mathfrak{m}_{s, F}, \mathfrak{m}_{s, F}\right\rangle_{1, n}^{s}},
$$

does not depend on the chosen chart and may be regarded as the total mass of the isolated gravitational system whose (time-symmetric) initial data set is (M, g, Σ). Hence, $\mathfrak{m}_{s} \geq 0$ with the equality holding if and only if (M, g, Σ) is isometric to $\left(\mathbb{H}_{s}^{n}, b, \Sigma_{s}\right)$.

The spin machinery (Witten's method)

The spin machinery (Witten's method)

- Assume that M is a spin manifold with a fixed spin structure. In the presence of a metric g, there exists a canonical hermitean vector bundle $\mathbb{S} M \rightarrow M$, the spinor bundle of (M, g), endowed with a compatible connection ∇. Elements of $\Gamma(\mathbb{S} M)$ are called spinors.

The spin machinery (Witten's method)

- Assume that M is a spin manifold with a fixed spin structure. In the presence of a metric g, there exists a canonical hermitean vector bundle $\mathbb{S} M \rightarrow M$, the spinor bundle of (M, g), endowed with a compatible connection ∇. Elements of $\Gamma(\mathbb{S} M)$ are called spinors.
- Define the Killing connection by

$$
\nabla_{X}^{ \pm}=\nabla_{X} \pm \frac{\mathbf{i}}{2} \mathfrak{c}(X)
$$

where \mathfrak{c} is Clifford multiplication, and the corresponding Killing-Dirac operators by $D^{ \pm}: \Gamma(\mathbb{S} M) \rightarrow \Gamma(\mathbb{S} M)$ by the composition

$$
\Gamma(\mathbb{S} M) \xrightarrow{\nabla^{ \pm}} \Gamma\left(T^{*} M \otimes \mathbb{S} M\right) \xrightarrow{g} \Gamma(T M \otimes \mathbb{S} M) \xrightarrow{c} \Gamma(\mathbb{S} M)
$$

Locally,

$$
D^{ \pm}=\sum_{i=1}^{n} \mathfrak{c}\left(e_{i}\right) \nabla_{e_{i}}^{ \pm}=D \mp \frac{n \mathbf{i}}{2}
$$

The spin machinery (Witten's method)

- Assume that M is a spin manifold with a fixed spin structure. In the presence of a metric g, there exists a canonical hermitean vector bundle $\mathbb{S} M \rightarrow M$, the spinor bundle of (M, g), endowed with a compatible connection ∇. Elements of $\Gamma(\mathbb{S} M)$ are called spinors.
- Define the Killing connection by

$$
\nabla_{X}^{ \pm}=\nabla_{X} \pm \frac{\mathbf{i}}{2} \mathfrak{c}(X)
$$

where \mathfrak{c} is Clifford multiplication, and the corresponding Killing-Dirac operators by $D^{ \pm}: \Gamma(\mathbb{S} M) \rightarrow \Gamma(\mathbb{S} M)$ by the composition

$$
\Gamma(\mathbb{S} M) \xrightarrow{\nabla^{ \pm}} \Gamma\left(T^{*} M \otimes \mathbb{S} M\right) \xrightarrow{g} \Gamma(T M \otimes \mathbb{S} M) \xrightarrow{c} \Gamma(\mathbb{S} M)
$$

Locally,

$$
D^{ \pm}=\sum_{i=1}^{n} \mathfrak{c}\left(e_{i}\right) \nabla_{e_{i}}^{ \pm}=D \mp \frac{n \mathbf{i}}{2}
$$

- This formalism is justified by the validity of the following integral version of the fundamental Lichnerowicz formula, namely,
$\int_{\Omega}\left(\left|\nabla^{ \pm} \Psi\right|^{2}-\left|D^{ \pm} \Psi\right|^{2}+\frac{R_{g}+n(n-1)}{4}|\Psi|^{2}\right) d M=\operatorname{Re} \int_{\partial \Omega}\left\langle\mathcal{W}^{ \pm}(\nu) \Psi, \Psi\right\rangle d \partial \Omega$,
where Ω is compact, ν is the inward pointing unit normal to $\partial \Omega$ and

$$
\mathcal{W}^{ \pm}(\nu)=-\left(\nabla_{\nu}^{ \pm}+\mathfrak{c}(\nu) D^{ \pm}\right)
$$

The spin machinery (Witten's method)

- Assume that M is a spin manifold with a fixed spin structure. In the presence of a metric g, there exists a canonical hermitean vector bundle $\mathbb{S} M \rightarrow M$, the spinor bundle of (M, g), endowed with a compatible connection ∇. Elements of $\Gamma(\mathbb{S} M)$ are called spinors.
- Define the Killing connection by

$$
\nabla_{X}^{ \pm}=\nabla_{X} \pm \frac{\mathbf{i}}{2} \mathfrak{c}(X)
$$

where \mathfrak{c} is Clifford multiplication, and the corresponding Killing-Dirac operators by $D^{ \pm}: \Gamma(\mathbb{S} M) \rightarrow \Gamma(\mathbb{S} M)$ by the composition

$$
\Gamma(\mathbb{S} M) \xrightarrow{\nabla^{ \pm}} \Gamma\left(T^{*} M \otimes \mathbb{S} M\right) \xrightarrow{g} \Gamma(T M \otimes \mathbb{S} M) \xrightarrow{c} \Gamma(\mathbb{S} M)
$$

Locally,

$$
D^{ \pm}=\sum_{i=1}^{n} \mathfrak{c}\left(e_{i}\right) \nabla_{e_{i}}^{ \pm}=D \mp \frac{n \mathbf{i}}{2}
$$

- This formalism is justified by the validity of the following integral version of the fundamental Lichnerowicz formula, namely,
$\int_{\Omega}\left(\left|\nabla^{ \pm} \Psi\right|^{2}-\left|D^{ \pm} \Psi\right|^{2}+\frac{R_{g}+n(n-1)}{4}|\Psi|^{2}\right) d M=\operatorname{Re} \int_{\partial \Omega}\left\langle\mathcal{W}^{ \pm}(\nu) \Psi, \Psi\right\rangle d \partial \Omega$,
where Ω is compact, ν is the inward pointing unit normal to $\partial \Omega$ and

$$
\mathcal{W}^{ \pm}(\nu)=-\left(\nabla_{\nu}^{ \pm}+\mathfrak{c}(\nu) D^{ \pm}\right)
$$

The θ-boundary condition (in even dimension)

The θ-boundary condition (in even dimension)

- If $n=2 k$ the complex volume element

$$
Q=\mathbf{i}^{k} \mathfrak{c}\left(e_{1}\right) \cdots \mathfrak{c}\left(e_{n}\right)
$$

defines a (pointwise) self-adjoint involution on spinors which is parallel and anti-commutes with Clifford multiplication by tangent vectors (a chirality operator).

The θ-boundary condition (in even dimension)

- If $n=2 k$ the complex volume element

$$
Q=\mathbf{i}^{k} \mathfrak{c}\left(e_{1}\right) \cdots \mathfrak{c}\left(e_{n}\right)
$$

defines a (pointwise) self-adjoint involution on spinors which is parallel and anti-commutes with Clifford multiplication by tangent vectors (a chirality operator).

- We now fix $\kappa \in(0,1]$ and set $\tau=\tau_{\kappa}= \pm \sqrt{1-\kappa^{2}} \in(-1,1)$, so that $e^{\mathbf{i} \theta}=\kappa+\tau \mathbf{i}$, where $\kappa=\cos \theta$ and $\tau=\sin \theta, \theta \in(-\pi / 2, \pi / 2)$.

The θ-boundary condition (in even dimension)

- If $n=2 k$ the complex volume element

$$
Q=\mathbf{i}^{k} \mathfrak{c}\left(e_{1}\right) \cdots \mathfrak{c}\left(e_{n}\right)
$$

defines a (pointwise) self-adjoint involution on spinors which is parallel and anti-commutes with Clifford multiplication by tangent vectors (a chirality operator).

- We now fix $\kappa \in(0,1]$ and set $\tau=\tau_{\kappa}= \pm \sqrt{1-\kappa^{2}} \in(-1,1)$, so that $e^{\mathbf{i} \theta}=\kappa+\tau \mathbf{i}$, where $\kappa=\cos \theta$ and $\tau=\sin \theta, \theta \in(-\pi / 2, \pi / 2)$.

Definition

If ($\Omega, g, \partial \Omega$) is as in the previous slide (with $n=2 k$), we define the θ-boundary operator $Q_{\theta}: \Gamma\left(\left.\mathbb{S} M\right|_{\partial \Omega}\right) \rightarrow \Gamma\left(\left.\mathbb{S} M\right|_{\partial \Omega}\right)$ associated to Q by

$$
Q_{\theta}=e^{\mathbf{i} \theta Q} Q \mathfrak{c}(\nu) \stackrel{Q^{2}=1}{=} \kappa Q \mathfrak{c}(\nu)+\tau \mathbf{i c}(\nu) .
$$

We then say that $\psi \in \Gamma(\mathbb{S} \Omega)$ satisfies a θ-boundary condition if its restriction to Σ satisfies $Q_{\theta} \Psi= \pm \Psi$ [this uses that Q_{θ} is an involution].

The θ-boundary condition (in even dimension)

- If $n=2 k$ the complex volume element

$$
Q=\mathbf{i}^{k} \mathfrak{c}\left(e_{1}\right) \cdots \mathfrak{c}\left(e_{n}\right)
$$

defines a (pointwise) self-adjoint involution on spinors which is parallel and anti-commutes with Clifford multiplication by tangent vectors (a chirality operator).

- We now fix $\kappa \in(0,1]$ and set $\tau=\tau_{\kappa}= \pm \sqrt{1-\kappa^{2}} \in(-1,1)$, so that $e^{\mathbf{i} \theta}=\kappa+\tau \mathbf{i}$, where $\kappa=\cos \theta$ and $\tau=\sin \theta, \theta \in(-\pi / 2, \pi / 2)$.

Definition

If ($\Omega, g, \partial \Omega$) is as in the previous slide (with $n=2 k$), we define the θ-boundary operator $Q_{\theta}: \Gamma\left(\left.\mathbb{S} M\right|_{\partial \Omega}\right) \rightarrow \Gamma\left(\left.\mathbb{S} M\right|_{\partial \Omega}\right)$ associated to Q by

$$
Q_{\theta}=e^{\mathbf{i} \theta Q} Q \mathfrak{c}(\nu) \stackrel{Q^{2}=1}{=} \kappa Q \mathfrak{c}(\nu)+\tau \mathbf{i c}(\nu) .
$$

We then say that $\Psi \in \Gamma(\mathbb{S} \Omega)$ satisfies a θ-boundary condition if its restriction to Σ satisfies $Q_{\theta} \Psi= \pm \Psi$ [this uses that Q_{θ} is an involution].

Proposition

If $\Psi \in \Gamma(\mathbb{S} \Omega)$ satisfies a θ-boundary condition then

$$
\operatorname{Re} \int_{\partial \Omega}\left\langle\mathcal{W}^{ \pm}(\nu) \Psi, \Psi\right\rangle d \partial \Omega=\frac{1}{2} \int_{\partial \Omega}((n-1) \underbrace{\sin \theta}_{=\tau}-H_{g}) d \partial \Omega,
$$

where H_{g} is the mean curvature of $\partial \Omega$.

The θ-boundary condition (in even dimension)

- If $n=2 k$ the complex volume element

$$
Q=\mathbf{i}^{k} \mathfrak{c}\left(e_{1}\right) \cdots \mathfrak{c}\left(e_{n}\right)
$$

defines a (pointwise) self-adjoint involution on spinors which is parallel and anti-commutes with Clifford multiplication by tangent vectors (a chirality operator).

- We now fix $\kappa \in(0,1]$ and set $\tau=\tau_{\kappa}= \pm \sqrt{1-\kappa^{2}} \in(-1,1)$, so that $e^{\mathbf{i} \theta}=\kappa+\tau \mathbf{i}$, where $\kappa=\cos \theta$ and $\tau=\sin \theta, \theta \in(-\pi / 2, \pi / 2)$.

Definition

If ($\Omega, g, \partial \Omega$) is as in the previous slide (with $n=2 k$), we define the θ-boundary operator $Q_{\theta}: \Gamma\left(\left.\mathbb{S} M\right|_{\partial \Omega}\right) \rightarrow \Gamma\left(\left.\mathbb{S} M\right|_{\partial \Omega}\right)$ associated to Q by

$$
Q_{\theta}=e^{\mathbf{i} \theta Q} Q \mathfrak{c}(\nu) \stackrel{Q^{2}=1}{=} \kappa Q \mathfrak{c}(\nu)+\tau \mathbf{i c}(\nu) .
$$

We then say that $\Psi \in \Gamma(\mathbb{S} \Omega)$ satisfies a θ-boundary condition if its restriction to Σ satisfies $Q_{\theta} \Psi= \pm \Psi$ [this uses that Q_{θ} is an involution].

Proposition

If $\Psi \in \Gamma(\mathbb{S} \Omega)$ satisfies a θ-boundary condition then

$$
\operatorname{Re} \int_{\partial \Omega}\left\langle\mathcal{W}^{ \pm}(\nu) \Psi, \Psi\right\rangle d \partial \Omega=\frac{1}{2} \int_{\partial \Omega}((n-1) \underbrace{\sin \theta}_{=\tau}-H_{g}) d \partial \Omega,
$$

where H_{g} is the mean curvature of $\partial \Omega$.

A mass formula I

A mass formula I

We apply the previous integral formula to $\Omega=\Omega_{r}$ as in the figure, assuming that ψ satisfies a θ-boundary condition along Σ, where (M, g, Σ) is s - AH with

$$
\lambda_{s}=\sin \theta=\tau
$$

[recall that λ_{s} is the extrinsic curvature of $\Sigma_{s} \hookrightarrow \mathbb{H}_{s}^{n}$, so that the identity

$$
\kappa^{2}+\tau^{2}=1 \Longleftrightarrow-\kappa^{2}=-1+\tau^{2}
$$

is just Gauss equation in disguise].

A mass formula I

We apply the previous integral formula to $\Omega=\Omega_{r}$ as in the figure, assuming that Ψ satisfies a θ-boundary condition along Σ, where (M, g, Σ) is s - AH with

$$
\lambda_{s}=\sin \theta=\tau
$$

[recall that λ_{s} is the extrinsic curvature of $\Sigma_{s} \hookrightarrow \mathbb{H}_{s}^{n}$, so that the identity

$$
\kappa^{2}+\tau^{2}=1 \Longleftrightarrow-\kappa^{2}=-1+\tau^{2}
$$

is just Gauss equation in disguise].

- We thus obtain

$$
\begin{aligned}
& \operatorname{Re} \int_{S_{r,+}^{n-1}}\left\langle\mathcal{W}^{ \pm}(\nu) \Psi, \Psi\right\rangle d S_{r,+}^{n-1}= \int_{\Omega_{r}} \\
&\left(\left|\nabla^{ \pm} \Psi\right|^{2}-\left|D^{ \pm} \Psi\right|^{2}+\frac{R_{g}+n(n-1)}{4}|\Psi|^{2}\right) d M \\
&+\frac{1}{2} \int_{\Sigma_{r}}\left(H_{g}-(n-1) \lambda_{s}\right)|\Psi|^{2} d \Sigma
\end{aligned}
$$

A mass formula I

We apply the previous integral formula to $\Omega=\Omega_{r}$ as in the figure, assuming that Ψ satisfies a θ-boundary condition along Σ, where (M, g, Σ) is s - AH with

$$
\lambda_{s}=\sin \theta=\tau
$$

[recall that λ_{s} is the extrinsic curvature of $\Sigma_{s} \hookrightarrow \mathbb{H}_{s}^{n}$, so that the identity

$$
\kappa^{2}+\tau^{2}=1 \Longleftrightarrow-\kappa^{2}=-1+\tau^{2}
$$

is just Gauss equation in disguise].

- We thus obtain

$$
\begin{aligned}
\operatorname{Re} \int_{S_{r,+}^{n-1}}\left\langle\mathcal{W}^{ \pm}(\nu) \Psi, \Psi\right\rangle d S_{r,+}^{n-1}=\int_{\Omega_{r}} & \left(\left|\nabla^{ \pm} \Psi\right|^{2}-\left|D^{ \pm} \Psi\right|^{2}+\frac{R_{g}+n(n-1)}{4}|\Psi|^{2}\right) d N \\
& +\frac{1}{2} \int_{\Sigma_{r}}\left(H_{g}-(n-1) \lambda_{s}\right)|\Psi|^{2} d \Sigma .
\end{aligned}
$$

- It remains:

1. to make sure that, as $r \rightarrow+\infty$, the left-hand side converges to the mass functional evaluated at some $V \in \mathcal{N}_{b, s}$ (depending on Ψ);
2. to get rid of the term involving $D^{ \pm} \Psi$, as it has the wrong sign.

A mass formula I

We apply the previous integral formula to $\Omega=\Omega_{r}$ as in the figure, assuming that ψ satisfies a θ-boundary condition along Σ, where (M, g, Σ) is s - AH with

$$
\lambda_{s}=\sin \theta=\tau
$$

[recall that λ_{s} is the extrinsic curvature of $\Sigma_{s} \hookrightarrow \mathbb{H}_{s}^{n}$, so that the identity

$$
\kappa^{2}+\tau^{2}=1 \Longleftrightarrow-\kappa^{2}=-1+\tau^{2}
$$

is just Gauss equation in disguise].

- We thus obtain

$$
\begin{aligned}
\operatorname{Re} \int_{S_{r,+}^{n-1}}\left\langle\mathcal{W}^{ \pm}(\nu) \Psi, \Psi\right\rangle d S_{r,+}^{n-1}=\int_{\Omega_{r}} & \left(\left|\nabla^{ \pm} \Psi\right|^{2}-\left|D^{ \pm} \Psi\right|^{2}+\frac{R_{g}+n(n-1)}{4}|\Psi|^{2}\right) d N \\
& +\frac{1}{2} \int_{\Sigma_{r}}\left(H_{g}-(n-1) \lambda_{s}\right)|\Psi|^{2} d \Sigma .
\end{aligned}
$$

- It remains:

1. to make sure that, as $r \rightarrow+\infty$, the left-hand side converges to the mass functional evaluated at some $V \in \mathcal{N}_{b, s}$ (depending on Ψ);
2. to get rid of the term involving $D^{ \pm} \Psi$, as it has the wrong sign.

- Both goals are achieved by a judicious choice of Ψ.

A mass formula I

We apply the previous integral formula to $\Omega=\Omega_{r}$ as in the figure, assuming that ψ satisfies a θ-boundary condition along Σ, where (M, g, Σ) is s - AH with

$$
\lambda_{s}=\sin \theta=\tau
$$

[recall that λ_{s} is the extrinsic curvature of $\Sigma_{s} \hookrightarrow \mathbb{H}_{s}^{n}$, so that the identity

$$
\kappa^{2}+\tau^{2}=1 \Longleftrightarrow-\kappa^{2}=-1+\tau^{2}
$$

is just Gauss equation in disguise].

- We thus obtain

$$
\begin{aligned}
\operatorname{Re} \int_{S_{r,+}^{n-1}}\left\langle\mathcal{W}^{ \pm}(\nu) \Psi, \Psi\right\rangle d S_{r,+}^{n-1}=\int_{\Omega_{r}} & \left(\left|\nabla^{ \pm} \Psi\right|^{2}-\left|D^{ \pm} \Psi\right|^{2}+\frac{R_{g}+n(n-1)}{4}|\Psi|^{2}\right) d N \\
& +\frac{1}{2} \int_{\Sigma_{r}}\left(H_{g}-(n-1) \lambda_{s}\right)|\Psi|^{2} d \Sigma .
\end{aligned}
$$

- It remains:

1. to make sure that, as $r \rightarrow+\infty$, the left-hand side converges to the mass functional evaluated at some $V \in \mathcal{N}_{b, s}$ (depending on Ψ);
2. to get rid of the term involving $D^{ \pm} \Psi$, as it has the wrong sign.

- Both goals are achieved by a judicious choice of Ψ.

A mass formula II

A mass formula II

- It turns out that ($\mathbb{H}_{s}^{n}, b, \Sigma_{s}$) carries a lot of Killing spinors (that is, solutions of $\nabla_{b}^{ \pm} \Phi=0$) satisfying a θ-boudary condition [recall that we are assuming that $\left.\lambda_{s}=\sin \theta=\tau\right]$. In fact, such spinors trivialize $\mathbb{S H}_{s}^{n}$. Any such spinor may be transplanted to a spinor Φ_{*} in the asymptotic region of (M, g, Σ) by means of a chart F.

A mass formula II

- It turns out that ($\mathbb{H}_{s}^{n}, b, \Sigma_{s}$) carries a lot of Killing spinors (that is, solutions of $\nabla_{b}^{ \pm} \Phi=0$) satisfying a θ-boudary condition [recall that we are assuming that $\left.\lambda_{s}=\sin \theta=\tau\right]$. In fact, such spinors trivialize $\mathbb{S H}_{s}^{n}$. Any such spinor may be transplanted to a spinor Φ_{*} in the asymptotic region of (M, g, Σ) by means of a chart F.

Theorem

Under the DECs $R_{g} \geq-n(n-1)$ and $H_{g} \geq(n-1) \lambda_{s}$, there exists a unique
$\Psi_{\Phi} \in \Gamma(\mathbb{S} M)$ such that:

1. Ψ_{Φ} is Killing-harmonic in the sense that $D^{ \pm} \Psi_{\Phi}=0$;
2. Ψ_{Φ} satisfies a θ-boundary condition along Σ;
3. $\Psi_{\Phi} \rightarrow \Phi_{*}$ at infinity (in a suitable sense).

A mass formula II

- It turns out that $\left(\mathbb{H}_{s}^{n}, b, \Sigma_{s}\right)$ carries a lot of Killing spinors (that is, solutions of $\nabla_{b}^{ \pm} \Phi=0$) satisfying a θ-boudary condition [recall that we are assuming that $\left.\lambda_{s}=\sin \theta=\tau\right]$. In fact, such spinors trivialize $\mathbb{S H}_{s}^{n}$. Any such spinor may be transplanted to a spinor Φ_{*} in the asymptotic region of (M, g, Σ) by means of a chart F.

Theorem

Under the DECs $R_{g} \geq-n(n-1)$ and $H_{g} \geq(n-1) \lambda_{s}$, there exists a unique $\Psi_{\Phi} \in \Gamma(\mathbb{S} M)$ such that:

1. Ψ_{ϕ} is Killing-harmonic in the sense that $D^{ \pm} \Psi_{\phi}=0$;
2. Ψ_{Φ} satisfies a θ-boundary condition along Σ;
3. $\Psi_{\Phi} \rightarrow \Phi_{*}$ at infinity (in a suitable sense).

Theorem (Witten-Chruściel-Herzlich-type mass formula)
Under the conditions above, there holds

$$
\begin{aligned}
\frac{1}{4} \mathfrak{m}_{s, F}\left(V_{\Phi}\right)= & \int_{M} \\
& \left(\left|\nabla^{ \pm} \Psi_{\Phi}\right|^{2}+\frac{R_{g}+n(n-1)}{4}\left|\Psi_{\phi}\right|^{2}\right) d M \\
& +\frac{1}{2} \int_{\Sigma}\left(H_{g}-(n-1) \lambda_{s}\right)\left|\Psi_{\Phi}\right|^{2} d \Sigma
\end{aligned}
$$

where $V_{\Phi}:=|\Phi|^{2} \in \mathcal{C}_{b, s}^{\uparrow} \subset \mathcal{N}_{b, s}$.

A mass formula II

- It turns out that $\left(\mathbb{H}_{s}^{n}, b, \Sigma_{s}\right)$ carries a lot of Killing spinors (that is, solutions of $\nabla_{b}^{ \pm} \Phi=0$) satisfying a θ-boudary condition [recall that we are assuming that $\left.\lambda_{s}=\sin \theta=\tau\right]$. In fact, such spinors trivialize $\mathbb{S H}_{s}^{n}$. Any such spinor may be transplanted to a spinor Φ_{*} in the asymptotic region of (M, g, Σ) by means of a chart F.

Theorem

Under the DECs $R_{g} \geq-n(n-1)$ and $H_{g} \geq(n-1) \lambda_{s}$, there exists a unique $\Psi_{\Phi} \in \Gamma(\mathbb{S} M)$ such that:

1. Ψ_{ϕ} is Killing-harmonic in the sense that $D^{ \pm} \Psi_{\phi}=0$;
2. Ψ_{Φ} satisfies a θ-boundary condition along Σ;
3. $\Psi_{\Phi} \rightarrow \Phi_{*}$ at infinity (in a suitable sense).

Theorem (Witten-Chruściel-Herzlich-type mass formula)
Under the conditions above, there holds

$$
\begin{aligned}
\frac{1}{4} \mathfrak{m}_{s, F}\left(V_{\Phi}\right)= & \int_{M} \\
& \left(\left|\nabla^{ \pm} \Psi_{\Phi}\right|^{2}+\frac{R_{g}+n(n-1)}{4}\left|\Psi_{\phi}\right|^{2}\right) d M \\
& +\frac{1}{2} \int_{\Sigma}\left(H_{g}-(n-1) \lambda_{s}\right)\left|\Psi_{\Phi}\right|^{2} d \Sigma
\end{aligned}
$$

where $V_{\Phi}:=|\Phi|^{2} \in \mathcal{C}_{b, s}^{\uparrow} \subset \mathcal{N}_{b, s}$.

How the mass formula implies our main result I

How the mass formula implies our main result I

- Since any $V \in \mathcal{C}_{b, s}^{\uparrow}$ is of the form $V=V_{\Phi}$ for some Killing spinor Φ on \mathbb{H}_{s}^{n}, we have seen that, for any such V,

$$
\begin{aligned}
\frac{1}{4}\left\langle\mathfrak{m}_{s, F}, V\right\rangle_{n, 1}= & \int_{M}\left(\left|\nabla^{ \pm} \Psi\right|^{2}+\frac{R_{g}+n(n-1)}{4}|\Psi|^{2}\right) d M \\
& +\frac{1}{2} \int_{\Sigma}\left(H_{g}-(n-1) \lambda_{s}\right)|\Psi|^{2} d \Sigma, \quad \Psi=\Psi_{\Phi}
\end{aligned}
$$

How the mass formula implies our main result I

- Since any $V \in \mathcal{C}_{b, s}^{\uparrow}$ is of the form $V=V_{\Phi}$ for some Killing spinor Φ on \mathbb{H}_{s}^{n}, we have seen that, for any such V,

$$
\begin{aligned}
\frac{1}{4}\left\langle\mathfrak{m}_{s, F}, V\right\rangle_{n, 1}= & \int_{M}\left(\left|\nabla^{ \pm} \Psi\right|^{2}+\frac{R_{g}+n(n-1)}{4}|\Psi|^{2}\right) d M \\
& +\frac{1}{2} \int_{\Sigma}\left(H_{g}-(n-1) \lambda_{s}\right)|\Psi|^{2} d \Sigma, \quad \Psi=\Psi_{\Phi}
\end{aligned}
$$

The DECS then imply that $\left\langle\mathfrak{m}_{s, F}, V\right\rangle_{n, 1} \geq 0$, for any $V \in \mathcal{C}_{b, s}^{\uparrow}$, which means that $\mathfrak{m}_{s, F}$ is is time-like unless there exists a Killing spinor $\Psi^{\theta} \not \equiv 0$ on M meeting the corresponding θ-boundary condition along Σ.

- The existence of Ψ^{θ} implies that g is Einstein ($\operatorname{Ric}_{g}=-(n-1) g$) and Σ is totally umbilical (with $H_{g}=(n-1) \lambda_{s}$). In particular, $\Sigma \hookrightarrow M$ has the same second fundamental form as $\Sigma_{s} \hookrightarrow \mathbb{H}_{s}^{n}$.

How the mass formula implies our main result I

- Since any $V \in \mathcal{C}_{b, s}^{\uparrow}$ is of the form $V=V_{\Phi}$ for some Killing spinor Φ on \mathbb{H}_{s}^{n}, we have seen that, for any such V,

$$
\begin{aligned}
\frac{1}{4}\left\langle\mathfrak{m}_{s, F}, V\right\rangle_{n, 1}= & \int_{M}\left(\left|\nabla^{ \pm} \Psi\right|^{2}+\frac{R_{g}+n(n-1)}{4}|\Psi|^{2}\right) d M \\
& +\frac{1}{2} \int_{\Sigma}\left(H_{g}-(n-1) \lambda_{s}\right)|\Psi|^{2} d \Sigma, \quad \Psi=\Psi_{\Phi}
\end{aligned}
$$

The DECS then imply that $\left\langle\mathfrak{m}_{s, F}, V\right\rangle_{n, 1} \geq 0$, for any $V \in \mathcal{C}_{b, s}^{\uparrow}$, which means that $\mathfrak{m}_{s, F}$ is is time-like unless there exists a Killing spinor $\Psi^{\theta} \not \equiv 0$ on M meeting the corresponding θ-boundary condition along Σ.

- The existence of Ψ^{θ} implies that g is Einstein ($\operatorname{Ric}_{g}=-(n-1) g$) and Σ is totally umbilical (with $H_{g}=(n-1) \lambda_{s}$). In particular, $\Sigma \hookrightarrow M$ has the same second fundamental form as $\Sigma_{s} \hookrightarrow \mathbb{H}_{s}^{n}$.

How the mass formula implies our main result II

How the mass formula implies our main result II

- It turns out that $\Sigma \hookrightarrow M$ also has the same first fundamental form as $\Sigma_{s} \hookrightarrow \mathbb{H}_{s}^{n}$.

How the mass formula implies our main result II

- It turns out that $\Sigma \hookrightarrow M$ also has the same first fundamental form as $\Sigma_{s} \hookrightarrow \mathbb{H}_{s}^{n}$.
- The proof of this claim uses in a crucial way the known properties of Ψ^{θ}, namely, $\nabla^{ \pm} \psi^{\theta}=0$ and $Q_{\theta, g} \psi^{\theta}= \pm \psi^{\theta}$.

How the mass formula implies our main result II

- It turns out that $\Sigma \hookrightarrow M$ also has the same first fundamental form as $\Sigma_{s} \hookrightarrow \mathbb{H}_{s}^{n}$.
- The proof of this claim uses in a crucial way the known properties of Ψ^{θ}, namely, $\nabla^{ \pm} \psi^{\theta}=0$ and $Q_{\theta, g} \psi^{\theta}= \pm \Psi^{\theta}$.

This allows us to glue (M, g, Σ) to ($\mathbb{H}_{-s}^{n}, b, \Sigma_{-s}$) along the common boundary $\Sigma=\Sigma_{-s}$ to obtain a boundaryless n-manifold which is AH (with \mathbb{H}^{n} as its model at infinity), Einstein and carries a Killing spinor Ψ^{θ}. We conclude that this glued manifold is isometric to (\mathbb{H}^{n}, b) and hence (M, g, Σ) is isometric to $\left(\mathbb{H}_{s}^{n}, b, \Sigma_{s}\right)$, as desired.

The horospherical case

The horospherical case

By means of the hyperboloid model $\mathbb{H}^{n} \hookrightarrow \mathbb{R}^{1, n}$, we consider the horoball

$$
\mathbb{H}_{h}^{n}=\left\{x \in \mathbb{H}^{n} ; x_{0}-x_{1} \leq 1\right\}
$$

We denote by Σ_{h} its boundary.

The horospherical case

By means of the hyperboloid model $\mathbb{H}^{n} \hookrightarrow \mathbb{R}^{1, n}$, we consider the horoball

$$
\mathbb{H}_{h}^{n}=\left\{x \in \mathbb{H}^{n} ; x_{0}-x_{1} \leq 1\right\} .
$$

We denote by Σ_{h} its boundary.

Proposition

$\left(\mathbb{H}_{h}^{n}, b, \Sigma_{h}\right)$ is a static domain whose boundary Σ_{h} is a horosphere (with mean curvature $n-1$). In this case, $(\widetilde{\Lambda}, \widetilde{\lambda})=(-n(n-1) / 2, n-1)$ and the corresponding space of static potentials is

$$
\mathcal{N}_{b, h}=\left[V_{h}, V_{(2)}, \cdots, V_{(n)}\right], \quad V_{h}=\left.\left(x_{0}-x_{1}\right)\right|_{\mathbb{H}_{h}^{n}} .
$$

The horospherical case

By means of the hyperboloid model $\mathbb{H}^{n} \hookrightarrow \mathbb{R}^{1, n}$, we consider the horoball

$$
\mathbb{H}_{h}^{n}=\left\{x \in \mathbb{H}^{n} ; x_{0}-x_{1} \leq 1\right\} .
$$

We denote by Σ_{h} its boundary.

Proposition

$\left(\mathbb{H}_{h}^{n}, b, \Sigma_{h}\right)$ is a static domain whose boundary Σ_{h} is a horosphere (with mean curvature $n-1$). In this case, $(\widetilde{\Lambda}, \widetilde{\lambda})=(-n(n-1) / 2, n-1)$ and the corresponding space of static potentials is

$$
\mathcal{N}_{b, h}=\left[V_{h}, V_{(2)}, \cdots, V_{(n)}\right], \quad V_{h}=\left.\left(x_{0}-x_{1}\right)\right|_{\mathbb{H} n} ^{h}
$$

- Recall that the isometry group of \mathbb{H}_{h}^{n} may be identified to $O(n-1) \ltimes \mathbb{R}^{n-1}$, the group of euclidean motions of \mathbb{R}^{n-1}. Thus, we obtain a natural representation ρ^{h} of $O(n-1) \ltimes \mathbb{R}^{n-1}$ on $\mathcal{N}_{b, h}$ given by $\rho_{A}^{h}(V)=V \circ A^{-1}$.

The horospherical case

By means of the hyperboloid model $\mathbb{H}^{n} \hookrightarrow \mathbb{R}^{1, n}$, we consider the horoball

$$
\mathbb{H}_{h}^{n}=\left\{x \in \mathbb{H}^{n} ; x_{0}-x_{1} \leq 1\right\} .
$$

We denote by Σ_{h} its boundary.

Proposition

$\left(\mathbb{H}_{h}^{n}, b, \Sigma_{h}\right)$ is a static domain whose boundary Σ_{h} is a horosphere (with mean curvature $n-1$). In this case, $(\widetilde{\Lambda}, \widetilde{\lambda})=(-n(n-1) / 2, n-1)$ and the corresponding space of static potentials is

$$
\mathcal{N}_{b, h}=\left[V_{h}, V_{(2)}, \cdots, V_{(n)}\right], \quad V_{h}=\left.\left(x_{0}-x_{1}\right)\right|_{\mathbb{H} n} ^{h}
$$

- Recall that the isometry group of \mathbb{H}_{h}^{n} may be identified to $O(n-1) \ltimes \mathbb{R}^{n-1}$, the group of euclidean motions of \mathbb{R}^{n-1}. Thus, we obtain a natural representation ρ^{h} of $O(n-1) \ltimes \mathbb{R}^{n-1}$ on $\mathcal{N}_{b, h}$ given by $\rho_{A}^{h}(V)=V \circ A^{-1}$.

The horospherical mass

The horospherical mass

Proposition

$\mathcal{N}_{b, h}$ splits into two irreducible representations under ρ^{h}, namely,

$$
\mathcal{N}_{b, h}=\left[V_{h}\right] \oplus\left[V_{(2)}, \cdots, V_{(n)}\right]
$$

with $\left.\rho^{h}\right|_{\left[V_{h}\right]}$ being trivial (that is, $\rho_{A}^{h}\left(V_{h}\right)=V_{h}$ for any A).

The horospherical mass

Proposition

$\mathcal{N}_{b, h}$ splits into two irreducible representations under ρ^{h}, namely,

$$
\mathcal{N}_{b, h}=\left[V_{h}\right] \oplus\left[V_{(2)}, \cdots, V_{(n)}\right]
$$

with $\left.\rho^{h}\right|_{\left[V_{h}\right]}$ being trivial (that is, $\rho_{A}^{h}\left(V_{h}\right)=V_{h}$ for any A).

- As before, we may consider an asymptotically hyperbolic manifold, say (M, g, Σ), modeled at infinity on ($\mathbb{H}_{h}^{n}, b, \Sigma_{h}$), whose horospherical mass is

$$
\mathfrak{m}_{h, F}\left(V_{h}\right)=\lim _{r \rightarrow+\infty}\left[\int_{\mathcal{S}_{r,+}^{n-1}}\left\langle\mathbb{U}\left(V_{h}, e\right), \mu\right\rangle d \mathcal{S}_{r,+}^{n-1}-\int_{\mathcal{S}_{r}^{n-2}} V_{h} e(\eta, \vartheta) d \mathcal{S}_{r}^{n-2}\right],
$$

where F is a chart at infinity. Hence, $\mathfrak{m}_{h}=\mathfrak{m}_{h, F}\left(V_{h}\right) \in \mathbb{R}$ does not depend on F.

The horospherical mass

Proposition

$\mathcal{N}_{b, h}$ splits into two irreducible representations under ρ^{h}, namely,

$$
\mathcal{N}_{b, h}=\left[V_{h}\right] \oplus\left[V_{(2)}, \cdots, V_{(n)}\right]
$$

with $\left.\rho^{h}\right|_{\left[V_{h}\right]}$ being trivial (that is, $\rho_{A}^{h}\left(V_{h}\right)=V_{h}$ for any A).

- As before, we may consider an asymptotically hyperbolic manifold, say (M, g, Σ), modeled at infinity on ($\mathbb{H}_{h}^{n}, b, \Sigma_{h}$), whose horospherical mass is

$$
\mathfrak{m}_{h, F}\left(V_{h}\right)=\lim _{r \rightarrow+\infty}\left[\int_{\mathcal{S}_{r,+}^{n-1}}\left\langle\mathbb{U}\left(V_{h}, e\right), \mu\right\rangle d \mathcal{S}_{r,+}^{n-1}-\int_{\mathcal{S}_{r}^{n-2}} V_{h} e(\eta, \vartheta) d \mathcal{S}_{r}^{n-2}\right],
$$

where F is a chart at infinity. Hence, $\mathfrak{m}_{h}=\mathfrak{m}_{h, F}\left(V_{h}\right) \in \mathbb{R}$ does not depend on F.

- By exploring the corresponding $\pi / 2$-boundary condition, we have

$$
\begin{aligned}
\frac{1}{4} \mathfrak{m}_{h}=\int_{M} & \left(\left|\nabla^{ \pm} \Psi_{\Phi}\right|^{2}+\frac{R_{g}+n(n-1)}{4}|\Psi|^{2}\right) d M \\
& +\frac{1}{2} \int_{\Sigma}\left(H_{g}-(n-1)\right)|\Psi|^{2} d \Sigma
\end{aligned}
$$

from which the corresponding rigidity statements follow.

The horospherical mass

Proposition

$\mathcal{N}_{b, h}$ splits into two irreducible representations under ρ^{h}, namely,

$$
\mathcal{N}_{b, h}=\left[V_{h}\right] \oplus\left[V_{(2)}, \cdots, V_{(n)}\right]
$$

with $\left.\rho^{h}\right|_{\left[V_{h}\right]}$ being trivial (that is, $\rho_{A}^{h}\left(V_{h}\right)=V_{h}$ for any A).

- As before, we may consider an asymptotically hyperbolic manifold, say (M, g, Σ), modeled at infinity on ($\mathbb{H}_{h}^{n}, b, \Sigma_{h}$), whose horospherical mass is

$$
\mathfrak{m}_{h, F}\left(V_{h}\right)=\lim _{r \rightarrow+\infty}\left[\int_{\mathcal{S}_{r,+}^{n,-1}}\left\langle\mathbb{U}\left(V_{h}, e\right), \mu\right\rangle d \mathcal{S}_{r,+}^{n-1}-\int_{\mathcal{S}_{r}^{n-2}} V_{h} e(\eta, \vartheta) d \mathcal{S}_{r}^{n-2}\right],
$$

where F is a chart at infinity. Hence, $\mathfrak{m}_{h}=\mathfrak{m}_{h, F}\left(V_{h}\right) \in \mathbb{R}$ does not depend on F.

- By exploring the corresponding $\pi / 2$-boundary condition, we have

$$
\begin{gathered}
\frac{1}{4} \mathfrak{m}_{h}=\int_{M}\left(\left|\nabla^{ \pm} \Psi_{\Phi}\right|^{2}+\frac{R_{g}+n(n-1)}{4}|\Psi|^{2}\right) d M \\
+\frac{1}{2} \int_{\Sigma}\left(H_{g}-(n-1)\right)|\Psi|^{2} d \Sigma
\end{gathered}
$$

from which the corresponding rigidity statements follow.

- As an extra bonus, $\left.\mathfrak{m}\right|_{\left[V_{(2)}, \cdots, v_{(n)}\right]}$ defines a sort of center of mass for (M, g, Σ).

The horospherical mass

Proposition

$\mathcal{N}_{b, h}$ splits into two irreducible representations under ρ^{h}, namely,

$$
\mathcal{N}_{b, h}=\left[V_{h}\right] \oplus\left[V_{(2)}, \cdots, V_{(n)}\right]
$$

with $\left.\rho^{h}\right|_{\left[V_{h}\right]}$ being trivial (that is, $\rho_{A}^{h}\left(V_{h}\right)=V_{h}$ for any A).

- As before, we may consider an asymptotically hyperbolic manifold, say (M, g, Σ), modeled at infinity on ($\mathbb{H}_{h}^{n}, b, \Sigma_{h}$), whose horospherical mass is

$$
\mathfrak{m}_{h, F}\left(V_{h}\right)=\lim _{r \rightarrow+\infty}\left[\int_{\mathcal{S}_{r,+}^{n,-1}}\left\langle\mathbb{U}\left(V_{h}, e\right), \mu\right\rangle d \mathcal{S}_{r,+}^{n-1}-\int_{\mathcal{S}_{r}^{n-2}} V_{h} e(\eta, \vartheta) d \mathcal{S}_{r}^{n-2}\right],
$$

where F is a chart at infinity. Hence, $\mathfrak{m}_{h}=\mathfrak{m}_{h, F}\left(V_{h}\right) \in \mathbb{R}$ does not depend on F.

- By exploring the corresponding $\pi / 2$-boundary condition, we have

$$
\begin{gathered}
\frac{1}{4} \mathfrak{m}_{h}=\int_{M}\left(\left|\nabla^{ \pm} \Psi_{\Phi}\right|^{2}+\frac{R_{g}+n(n-1)}{4}|\Psi|^{2}\right) d M \\
+\frac{1}{2} \int_{\Sigma}\left(H_{g}-(n-1)\right)|\Psi|^{2} d \Sigma
\end{gathered}
$$

from which the corresponding rigidity statements follow.

- As an extra bonus, $\left.\mathfrak{m}\right|_{\left[V_{(2)}, \cdots, v_{(n)}\right]}$ defines a sort of center of mass for (M, g, Σ).

Thanks for your attention!

Thanks for your attention!

[^0]: ${ }^{1}$ R. Souam, Mean curvature rigidity of horospheres, hyperspheres, and hyperplanes, Archiv der Mathematik, 2021.

