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Outline of the talk

▶ Based on joint work with S. Almaraz (arXiv:2206.09768).

▶ The basic ideas we put forward in this work are contained in the following
diagram.

Prove a PMT in
this setting (under
suitable DECs)

Pick a suitable static
manifold and use it
to define a mass-
type invariant for

asymptotic manifolds

Make sure that your
PMT comes with
a corresponding
rigidity statement

Interpret the previous
result as a rigidity
statement for the

original static manifold
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A rigidity result for (Rn, δ) via the classical PMT

▶ We start our journey with the following rigidity result for (Rn, δ), which for a long
time was known as Geroch’s conjecture.

Theorem (Schoen-Yau, Witten, Gromov-Lawson)

Let g be a Riemannian metric in Rn such that

▶ its scalar curvature Rg is non-negative everywhere;

▶ g = δ outside a compact set.

Then g = δ everywhere.

▶ The (independent) arguments by Schoen-Yau and Witten retrieve the result as a
consequence of a proof of the classical Positive Mass Theorem (PMT) for
(time-symmetric) asymptotically flat manifolds. In particular, in order to reach
the same conclusion, it suffices to require that the convergence g → δ is
supercritical in the sense that

|g − δ|δ = O2(r
−σ), σ > n − 2,

as this implies that the ADM mass of (Rn, g) vanishes.

▶ Since Rg may be viewed as the energy density in GR, this result confirms that one
can not inject energy into the static gravitational system modeled by (Rn, δ)
while still keeping the supercritical asymptotic behavior.
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A rigidity result in the presence of a non-compact boundary

▶ As a consequence of the rigidity statement of a PMT for asymptotically flat
manifolds modeled at infinity on (Rn

+, δ), where Rn
+ = {x ∈ Rn; x1 ≥ 0}, the

following rigidity result in the presence of a non-compact boundary has been
established.

Theorem (Almaraz, Barbosa, —, 2016)

Let g be a Riemannian metric in Rn
+ such that

▶ its scalar curvature Rg is non-negative everywhere;

▶ the mean curvature Hg of the boundary is non-negative everywhere;

▶ g = δ outside a compact set.

Then g = δ everywhere.

▶ The condition Hg ≥ 0 may be viewed as the boundary counterpart of the classical
Dominant Energy Condition (DEC) Rg ≥ 0 that we usually impose in the interior.

▶ Again, in order to reach the same conclusion, it suffices to require that the
convergence g → δ is supercritical as above, as this implies that the mass
invariant of (Rn

+, g) we defined in the paper vanishes as well.
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A purely extrinsic rigidity result

▶ The previous theorem clearly implies the following (purely extrinsic) rigidity result.

Theorem (Almaraz, Barbosa, –, 2016)

A hyperplane Rn−1 ↪→ Rn can not be compactly deformed (as a hypersurface of Rn)
while keeping it mean convex (that is, with non-negative mean curvature everywhere).

▶ A direct proof of this result may be obtained by symmetrization (as pointed out
by Gromov). Another (elementary) proof may be obtained by means of
Alexandrov’s reflection (as pointed out by Souam).

▶ We emphasize, however, that these elementary arguments fail to cover general
supercritical deformations.
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Rigidity in the hyperbolic setting

▶ More recently, a PMT for manifolds modeled at infinity on the hyperbolic
half-space (Hn

+, b) (which is obtained by cutting hyperbolic space (Hn, b) along a
totally geodesic hypersurface) has been established. As a consequence of the
corresponding rigidity statement, the following result has been obtained.

Theorem (Almaraz, —, 2020, hyperbolic rigidity with a boundary)

Let g be a Riemannian metric in Hn
+ such that

▶ Rg ≥ −n(n − 1) everywhere;

▶ Hg ≥ 0 along the boundary;

▶ g = b outside a compact set.

Then g = b everywhere.

▶ It suffices to assume that |g − b|b = O2(e−σr ), σ > n.

Corollary (Extrinsic hyperbolic rigidity)

A totally geodesic hypersurface Hn−1 ↪→ Hn can not be compactly deformed (as a
hypersurface of Hn) while keeping it mean convex.

▶ At least for compactly supported deformations, this kind of rigidity has also been
rediscovered recently by Souam1, who used the Alexandrov’s reflection to this
end.

1R. Souam, Mean curvature rigidity of horospheres, hyperspheres, and hyperplanes, Archiv der Mathematik,
2021.

6/24



Rigidity in the hyperbolic setting

▶ More recently, a PMT for manifolds modeled at infinity on the hyperbolic
half-space (Hn

+, b) (which is obtained by cutting hyperbolic space (Hn, b) along a
totally geodesic hypersurface) has been established. As a consequence of the
corresponding rigidity statement, the following result has been obtained.

Theorem (Almaraz, —, 2020, hyperbolic rigidity with a boundary)

Let g be a Riemannian metric in Hn
+ such that

▶ Rg ≥ −n(n − 1) everywhere;

▶ Hg ≥ 0 along the boundary;

▶ g = b outside a compact set.

Then g = b everywhere.

▶ It suffices to assume that |g − b|b = O2(e−σr ), σ > n.

Corollary (Extrinsic hyperbolic rigidity)

A totally geodesic hypersurface Hn−1 ↪→ Hn can not be compactly deformed (as a
hypersurface of Hn) while keeping it mean convex.

▶ At least for compactly supported deformations, this kind of rigidity has also been
rediscovered recently by Souam1, who used the Alexandrov’s reflection to this
end.

1R. Souam, Mean curvature rigidity of horospheres, hyperspheres, and hyperplanes, Archiv der Mathematik,
2021.

6/24



Rigidity in the hyperbolic setting

▶ More recently, a PMT for manifolds modeled at infinity on the hyperbolic
half-space (Hn

+, b) (which is obtained by cutting hyperbolic space (Hn, b) along a
totally geodesic hypersurface) has been established. As a consequence of the
corresponding rigidity statement, the following result has been obtained.

Theorem (Almaraz, —, 2020, hyperbolic rigidity with a boundary)

Let g be a Riemannian metric in Hn
+ such that

▶ Rg ≥ −n(n − 1) everywhere;

▶ Hg ≥ 0 along the boundary;

▶ g = b outside a compact set.

Then g = b everywhere.

▶ It suffices to assume that |g − b|b = O2(e−σr ), σ > n.

Corollary (Extrinsic hyperbolic rigidity)

A totally geodesic hypersurface Hn−1 ↪→ Hn can not be compactly deformed (as a
hypersurface of Hn) while keeping it mean convex.

▶ At least for compactly supported deformations, this kind of rigidity has also been
rediscovered recently by Souam1, who used the Alexandrov’s reflection to this
end.

1R. Souam, Mean curvature rigidity of horospheres, hyperspheres, and hyperplanes, Archiv der Mathematik,
2021.

6/24



Rigidity in the hyperbolic setting

▶ More recently, a PMT for manifolds modeled at infinity on the hyperbolic
half-space (Hn

+, b) (which is obtained by cutting hyperbolic space (Hn, b) along a
totally geodesic hypersurface) has been established. As a consequence of the
corresponding rigidity statement, the following result has been obtained.

Theorem (Almaraz, —, 2020, hyperbolic rigidity with a boundary)

Let g be a Riemannian metric in Hn
+ such that

▶ Rg ≥ −n(n − 1) everywhere;

▶ Hg ≥ 0 along the boundary;

▶ g = b outside a compact set.

Then g = b everywhere.

▶ It suffices to assume that |g − b|b = O2(e−σr ), σ > n.

Corollary (Extrinsic hyperbolic rigidity)

A totally geodesic hypersurface Hn−1 ↪→ Hn can not be compactly deformed (as a
hypersurface of Hn) while keeping it mean convex.

▶ At least for compactly supported deformations, this kind of rigidity has also been
rediscovered recently by Souam1, who used the Alexandrov’s reflection to this
end.

1R. Souam, Mean curvature rigidity of horospheres, hyperspheres, and hyperplanes, Archiv der Mathematik,
2021.

6/24



Rigidity in the hyperbolic setting

▶ More recently, a PMT for manifolds modeled at infinity on the hyperbolic
half-space (Hn

+, b) (which is obtained by cutting hyperbolic space (Hn, b) along a
totally geodesic hypersurface) has been established. As a consequence of the
corresponding rigidity statement, the following result has been obtained.

Theorem (Almaraz, —, 2020, hyperbolic rigidity with a boundary)

Let g be a Riemannian metric in Hn
+ such that

▶ Rg ≥ −n(n − 1) everywhere;

▶ Hg ≥ 0 along the boundary;

▶ g = b outside a compact set.

Then g = b everywhere.

▶ It suffices to assume that |g − b|b = O2(e−σr ), σ > n.

Corollary (Extrinsic hyperbolic rigidity)

A totally geodesic hypersurface Hn−1 ↪→ Hn can not be compactly deformed (as a
hypersurface of Hn) while keeping it mean convex.

▶ At least for compactly supported deformations, this kind of rigidity has also been
rediscovered recently by Souam1, who used the Alexandrov’s reflection to this
end.

1R. Souam, Mean curvature rigidity of horospheres, hyperspheres, and hyperplanes, Archiv der Mathematik,
2021.

6/24



Rigidity in the hyperbolic setting

▶ More recently, a PMT for manifolds modeled at infinity on the hyperbolic
half-space (Hn

+, b) (which is obtained by cutting hyperbolic space (Hn, b) along a
totally geodesic hypersurface) has been established. As a consequence of the
corresponding rigidity statement, the following result has been obtained.

Theorem (Almaraz, —, 2020, hyperbolic rigidity with a boundary)

Let g be a Riemannian metric in Hn
+ such that

▶ Rg ≥ −n(n − 1) everywhere;

▶ Hg ≥ 0 along the boundary;

▶ g = b outside a compact set.

Then g = b everywhere.

▶ It suffices to assume that |g − b|b = O2(e−σr ), σ > n.

Corollary (Extrinsic hyperbolic rigidity)

A totally geodesic hypersurface Hn−1 ↪→ Hn can not be compactly deformed (as a
hypersurface of Hn) while keeping it mean convex.

▶ At least for compactly supported deformations, this kind of rigidity has also been
rediscovered recently by Souam1, who used the Alexandrov’s reflection to this
end.

1R. Souam, Mean curvature rigidity of horospheres, hyperspheres, and hyperplanes, Archiv der Mathematik,
2021.

6/24



Rigidity in the hyperbolic setting

▶ More recently, a PMT for manifolds modeled at infinity on the hyperbolic
half-space (Hn

+, b) (which is obtained by cutting hyperbolic space (Hn, b) along a
totally geodesic hypersurface) has been established. As a consequence of the
corresponding rigidity statement, the following result has been obtained.

Theorem (Almaraz, —, 2020, hyperbolic rigidity with a boundary)

Let g be a Riemannian metric in Hn
+ such that

▶ Rg ≥ −n(n − 1) everywhere;

▶ Hg ≥ 0 along the boundary;

▶ g = b outside a compact set.

Then g = b everywhere.

▶ It suffices to assume that |g − b|b = O2(e−σr ), σ > n.

Corollary (Extrinsic hyperbolic rigidity)

A totally geodesic hypersurface Hn−1 ↪→ Hn can not be compactly deformed (as a
hypersurface of Hn) while keeping it mean convex.

▶ At least for compactly supported deformations, this kind of rigidity has also been
rediscovered recently by Souam1, who used the Alexandrov’s reflection to this
end.

1R. Souam, Mean curvature rigidity of horospheres, hyperspheres, and hyperplanes, Archiv der Mathematik,
2021.

6/24



Einstein field equations in the presence of a time-like boundary

▶ We consider a manifold M̃n+1 endowed with a boundary ∂M̃. On the space of all
Lorentzian metrics g̃ on M̃ such that ∂M̃ is time-like, we may consider the
Gibbons-Hawking-York functional

A : g̃ 7→
∫
M̃
(Rg̃ − 2Λ̃)dvg̃ + 2

∫
∂M̃

(Hg̃ − λ̃) dσg̃ ,

where πg̃ is the second fundamental form of ∂M̃ ↪→ M̃, Hg̃ = trg̃|
∂M̃

πg̃ is the

mean curvature and (Λ̃, λ̃) are the cosmological constants.

▶ Critical metrics for A give rise to solutions of Einstein field equations in vacuum:

Ricg̃ −
1

2
Rg̃ g̃ + Λ̃g̃ = 0, πg̃ − Hg̃ g̃ |∂M̃ + λ̃g̃ |

∂M̃
= 0.

▶ By tracing these equations, we obtain the equivalent system{
Ricg̃ = Λg̃ , Λ = 2

n−1
Λ̃

πg̃ = λ̃g̃ |
∂M̃

, λ = 1
n−1

λ̃

▶ We may assume that Λ = ϵn, ϵ = 0,±1. Here, we will be mainly interested in the
case ϵ = −1, so that Λ̃ = −n(n − 1)/2.
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Static manifolds (with a boundary)

▶ Assume that (M̃, g̃) as above carries a time-like Killing vector field Y whose

orthogonal distribution is integrable and which is tangent to ∂M̃.

▶ Around some space-like leaf M ↪→ M̃, we may write

g̃ = −V 2dt2 + g , g = g̃ |M ,

where V =
√

−g̃(Y ,Y ) satisfies{
∇2

gV + ΛVg − VRicg = 0
∆gV + ΛV = 0

subject to the boundary conditions along ∂M = M ∩ ∂M̃{
πg − λḡ = 0,
∂
∂η

V − λV = 0,

Here, g = g |∂M , πg is the second fundamental form of ∂M ↪→ M and η is the
outward unit co-normal vector to ∂M.

Definition
We say that a bordered Riemannian manifold (M, g , ∂M) is a static manifold with

boundary, with the pair (Λ̃, λ̃) as cosmological constants, if there exists V ̸= 0 such
that the equations above are satisfied. In this case, each such V is termed a static
potential.
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Examples of non-compact static manifolds as rigid backgrounds

▶ As we shall see below, under appropriate conditions a mass-type invariant may be
attached to a manifold which is asymptotic at infinity to a suitably chosen static
manifold. Typically, this invariant is a linear functional on the space of static
potentials (or a subspace thereof).

▶ (Rn
+, δ) is a static manifold with (Λ̃, λ̃) = (0, 0). The corresponding PMT has

been proved in [Almaraz, Barbosa, —, 2016] and its rigidity statement leads to (a
sharper version of) the extrinsic rigidity result mentioned earlier.

▶ As another example, (Hn
+, b) is a static manifold with (Λ̃, λ̃) = (−n(n − 1)/2, 0).

The corresponding PMT has been proved in [Almaraz, —, 2020] and its rigidity
statement leads to (a sharper version of) the result rediscovered by Souam.

▶ Our aim here is twofold:
1. to extend the PMT in [Almaraz, —, 2020] to manifolds modeled at infinity on the

much larger class of non-compact static domains in Hn (obtained by cutting it along a
totally umbilical hypersurface).

2. in doing so, to put all the extrinsic rigidity results above in their proper conceptual
framework (in particular, sharper results will be obtained along the way).
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Equidistant hypersurfaces in Hn

Recall that hyperbolic n-space (Hn, b) is
defined by

Hn = {x ∈ R1,n | ⟨x , x⟩1,n = −1} ⊂ R1,n,

where R1,n is the Minkowski space with
the flat metric

⟨x , x⟩1,n = −x20 + x21 + ...+ x2n

= −x20 + r2,

where x = (x0, x1, · · · , xn) ∈ R1,n and b is
the induced (Riemannian) metric.

▶ For each s ∈ R set Hn
s = {x ∈ Hn; x1 ≤ s} and Σs = ∂Hn

s .

▶ the hypersurfaces in the family {Σs}s ̸=0 are totally umbilical and constitute the
equidistant hypersurfaces of Σ0, which is totally geodesic. In fact, the associated
second fundamental form is

Πs = λsγs , λs =
s

√
1 + s2

, γs = b|Σs .
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Hn
s as a static manifold

The isometry group of each Hn
s may be

identified to O↑(1, n − 1), the full isometry
group of Σ0 = Hn−1 ⊂ R1,n−1. In the
picture, it is realized as the group of
time-oriented Lorentzian ‘’rotations” fixing
the axis x1. Let us set V(i) = xi |Hn

s
,

0 ≤ i ≤ n.

Proposition

(Hn
s , b,Σs) is a static manifold with boundary such that

(Λ̃, λ̃) = (−n(n − 1)/2, (n − 1)λs),

and the corresponding space of static potentials is

Nb,s =
[
V(0),V(2), · · · ,V(n)

]
.

▶ There exists a natural irreducible representation of O↑(1, n − 1) on Nb,s given by

ρsA(V ) = V ◦ A−1, A ∈ O↑(1, n − 1).
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Proposition

(Hn
s , b,Σs) is a static manifold with boundary such that

(Λ̃, λ̃) = (−n(n − 1)/2, (n − 1)λs),

and the corresponding space of static potentials is

Nb,s =
[
V(0),V(2), · · · ,V(n)

]
.

▶ There exists a natural irreducible representation of O↑(1, n − 1) on Nb,s given by

ρsA(V ) = V ◦ A−1, A ∈ O↑(1, n − 1).
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Asymptotically hyperbolic manifolds modeled on Hn
s

We now consider the class of manifolds we
will be interested in. Given s ∈ R as above,
let us set Hn

s,r0
= {x ∈ Hn

s ; r(x) ≥ r0} for
all r0 large enough.

Definition
We say that (Mn, g ,Σ) is s-asymptotically hyperbolic (s-AH) if there exists an
asymptotic region Mext ⊂ M and a diffeomorphism (a chart at infinity)
F : Hn

s,r0
→ Mext, for some r0 > 0, such that

|F∗g − b|b = O2(e
−σr ), σ > n/2.

We also assume that er (Rg + n(n − 1)) ∈ L1(M) and er (H − (n − 1)λs) ∈ L1(Σ).

Theorem (Almaraz,—,2022)

Let (Mn, g ,Σ) be an s-AH spin manifold with Rg ≥ −n(n − 1) and Hg ≥ (n − 1)λs .
Assume further that σ > n. Then (Mn, g ,Σ) = (Hn

s , b,Σs) isometrically.

▶ Clearly, this implies that the appropriate rigidity statement holds true for
(Hn

s , b,Σs). In particular, this extends Souam’s results mentioned previously.
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The mass functional

Theorem
Let (M, g ,Σ) be an s-AH manifold. If F is a chart at infinity, let us identify g to F∗g

and set e := g − b . Then

ms,F (V ) := lim
r→+∞

[∫
Sn−1
r,+

⟨U(V , e), µ⟩dSn−1
r,+ −

∫
Sn−2
r

Ve(η, ϑ)dSn−2
r

]
, V ∈ Nb,s ,

exists and is finite. Here,

U(V , e) = V (divbe − dtrbe)− ι∇bV e + trbe dV .

▶ Thus, ms,F is a linear functional on Nb,s . The question now is: how does it
depend on the given chart F?
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Invariance of the mass vector

▶ If F1 and F2 are charts at infinity then F12 := F−1
1 ◦ F2 : Hn

s → Hn
s satisfies

F∗
12b = b + O2(r−σ). Because Hn

s is ‘’rigid” at infinity, there exists

A ∈ O↑(1, n − 1) such that F12 = A+ O2(r−σ)

Proposition (equivariance of the mass)

Under the conditions above,

ms,F1 = ρs∗
A−1 (ms,F2 ),

where ρs∗ is the dual representation.

▶ We may identify Nb,s ≡ Rn−1,1 by introducing the ‘”Lorentzian” metric ⟨ , ⟩sn−1,1

and declaring that V(0) is ‘’time-like” (in the sense that ⟨V(0),V(0)⟩sn−1,1 = 1) and

⟨V(a),V(b)⟩sn−1,1 = −δa,b, 2 ≤ a, b ≤ n.

It follows that ρs acts isometrically on
(Nb,s , ⟨ , ⟩sn−1,1). In particular, the causal
properties of ms,F are chart independent.
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The positive mass theorem

Theorem (Almaraz, —, 2022)

Let (M, g ,Σ) be an s-AH spin manifold with Rg ≥ −n(n − 1) and Hg ≥ (n − 1)λs .
Then, for any chart F as above, the mass vector ms,F is time-like and future directed
unless it vanishes, in which case (M, g ,Σ) is isometric to (Hn

s , b,Σs).

▶ The terminology is justified by the fact that the numerical invariant

ms :=
√

⟨ms,F ,ms,F ⟩s1,n,

does not depend on the chosen chart and may be regarded as the total mass of
the isolated gravitational system whose (time-symmetric) initial data set is
(M, g ,Σ). Hence, ms ≥ 0 with the equality holding if and only if (M, g ,Σ) is
isometric to (Hn

s , b,Σs).
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The spin machinery (Witten’s method)

▶ Assume that M is a spin manifold with a fixed spin structure. In the presence of a
metric g , there exists a canonical hermitean vector bundle SM → M, the spinor
bundle of (M, g), endowed with a compatible connection ∇. Elements of Γ(SM)
are called spinors.

▶ Define the Killing connection by

∇±
X = ∇X ±

i

2
c(X ),

where c is Clifford multiplication, and the corresponding Killing-Dirac operators
by D± : Γ(SM) → Γ(SM) by the composition

Γ(SM)
∇±
−→ Γ(T∗M ⊗ SM)

g−→ Γ(TM ⊗ SM)
c−→ Γ(SM)

Locally,

D± =
n∑

i=1

c(ei )∇±
ei

= D ∓
ni

2
.

▶ This formalism is justified by the validity of the following integral version of the
fundamental Lichnerowicz formula, namely,∫
Ω

(
|∇±Ψ|2 − |D±Ψ|2 +

Rg + n(n − 1)

4
|Ψ|2

)
dM = Re

∫
∂Ω

〈
W±(ν)Ψ,Ψ

〉
d∂Ω,

where Ω is compact, ν is the inward pointing unit normal to ∂Ω and

W±(ν) = −(∇±
ν + c(ν)D±).
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bundle of (M, g), endowed with a compatible connection ∇. Elements of Γ(SM)
are called spinors.

▶ Define the Killing connection by

∇±
X = ∇X ±

i

2
c(X ),

where c is Clifford multiplication, and the corresponding Killing-Dirac operators
by D± : Γ(SM) → Γ(SM) by the composition

Γ(SM)
∇±
−→ Γ(T∗M ⊗ SM)

g−→ Γ(TM ⊗ SM)
c−→ Γ(SM)

Locally,

D± =
n∑

i=1

c(ei )∇±
ei

= D ∓
ni

2
.

▶ This formalism is justified by the validity of the following integral version of the
fundamental Lichnerowicz formula, namely,∫
Ω

(
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4
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The θ-boundary condition (in even dimension)

▶ If n = 2k the complex volume element

Q = ik c(e1) · · · c(en)
defines a (pointwise) self-adjoint involution on spinors which is parallel and
anti-commutes with Clifford multiplication by tangent vectors (a chirality
operator).

▶ We now fix κ ∈ (0, 1] and set τ = τκ = ±
√
1− κ2 ∈ (−1, 1), so that

e iθ = κ+ τ i, where κ = cos θ and τ = sin θ, θ ∈ (−π/2, π/2).

Definition
If (Ω, g , ∂Ω) is as in the previous slide (with n = 2k), we define the θ-boundary
operator Qθ : Γ(SM|∂Ω) → Γ(SM|∂Ω) associated to Q by

Qθ = e iθQQc(ν)
Q2=1
= κQc(ν) + τ ic(ν).

We then say that Ψ ∈ Γ(SΩ) satisfies a θ-boundary condition if its restriction to Σ
satisfies QθΨ = ±Ψ [this uses that Qθ is an involution].

Proposition

If Ψ ∈ Γ(SΩ) satisfies a θ-boundary condition then

Re

∫
∂Ω

〈
W±(ν)Ψ,Ψ

〉
d∂Ω =

1

2

∫
∂Ω

(
(n − 1) sin θ︸︷︷︸

=τ

− Hg

)
d∂Ω,

where Hg is the mean curvature of ∂Ω.
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A mass formula I

We apply the previous integral formula to
Ω = Ωr as in the figure, assuming that Ψ
satisfies a θ-boundary condition along Σ,
where (M, g ,Σ) is s-AH with

λs = sin θ = τ

[recall that λs is the extrinsic curvature of
Σs ↪→ Hn

s , so that the identity

κ2 + τ2 = 1 ⇐⇒ −κ2 = −1 + τ2

is just Gauss equation in disguise].
▶ We thus obtain

Re

∫
Sn−1
r,+

〈
W±(ν)Ψ,Ψ

〉
dSn−1

r,+ =

∫
Ωr

(
|∇±Ψ|2 − |D±Ψ|2 +

Rg + n(n − 1)

4
|Ψ|2

)
dM

+
1

2

∫
Σr

(Hg − (n − 1)λs) |Ψ|2dΣ.

▶ It remains:
1. to make sure that, as r → +∞, the left-hand side converges to the mass functional

evaluated at some V ∈ Nb,s (depending on Ψ);

2. to get rid of the term involving D±Ψ, as it has the wrong sign.

▶ Both goals are achieved by a judicious choice of Ψ.
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A mass formula II

▶ It turns out that (Hn
s , b,Σs) carries a lot of Killing spinors (that is, solutions of

∇±
b Φ = 0) satisfying a θ-boudary condition [recall that we are assuming that

λs = sin θ = τ ]. In fact, such spinors trivialize SHn
s . Any such spinor may be

transplanted to a spinor Φ∗ in the asymptotic region of (M, g ,Σ) by means of a
chart F .

Theorem
Under the DECs Rg ≥ −n(n − 1) and Hg ≥ (n − 1)λs , there exists a unique
ΨΦ ∈ Γ(SM) such that:

1. ΨΦ is Killing-harmonic in the sense that D±ΨΦ = 0;

2. ΨΦ satisfies a θ-boundary condition along Σ;

3. ΨΦ → Φ∗ at infinity (in a suitable sense).

Theorem (Witten-Chruściel-Herzlich-type mass formula)

Under the conditions above, there holds

1

4
ms,F (VΦ) =

∫
M

(
|∇±ΨΦ|2 +

Rg + n(n − 1)

4
|ΨΦ|2

)
dM

+
1

2

∫
Σ
(Hg − (n − 1)λs) |ΨΦ|2dΣ,

where VΦ := |Φ|2 ∈ C↑
b,s ⊂ Nb,s .
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How the mass formula implies our main result I

▶ Since any V ∈ C↑
b,s is of the form V = VΦ for some Killing spinor Φ on Hn

s ,

we have seen that, for any such V ,

1

4
⟨ms,F ,V ⟩n,1 =

∫
M

(
|∇±Ψ|2 +

Rg + n(n − 1)

4
|Ψ|2

)
dM

+
1

2

∫
Σ
(Hg − (n − 1)λs) |Ψ|2dΣ, Ψ = ΨΦ.

The DECS then imply that

⟨ms,F ,V ⟩n,1 ≥ 0, for any V ∈ C↑
b,s , which

means that ms,F is is time-like unless there

exists a Killing spinor Ψθ ̸≡ 0 on M
meeting the corresponding θ-boundary
condition along Σ.

▶ The existence of Ψθ implies that g is Einstein (Ricg = −(n − 1)g) and Σ is
totally umbilical (with Hg = (n − 1)λs). In particular, Σ ↪→ M has the same
second fundamental form as Σs ↪→ Hn
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How the mass formula implies our main result II

▶ It turns out that Σ ↪→ M also has the same first fundamental form as Σs ↪→ Hn
s .

▶ The proof of this claim uses in a crucial way the known properties of Ψθ, namely,
∇±Ψθ = 0 and Qθ,gΨ

θ = ±Ψθ.

This allows us to glue (M, g ,Σ) to
(Hn

−s , b,Σ−s) along the common boundary
Σ = Σ−s to obtain a boundaryless
n-manifold which is AH (with Hn as its
model at infinity), Einstein and carries a
Killing spinor Ψθ. We conclude that this
glued manifold is isometric to (Hn, b) and
hence (M, g ,Σ) is isometric to (Hn

s , b,Σs),
as desired.
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The horospherical case

By means of the hyperboloid model
Hn ↪→ R1,n, we consider the horoball

Hn
h = {x ∈ Hn; x0 − x1 ≤ 1} .

We denote by Σh its boundary.

Proposition

(Hn
h, b,Σh) is a static domain whose boundary Σh is a horosphere (with mean

curvature n − 1). In this case, (Λ̃, λ̃) = (−n(n − 1)/2, n − 1) and the corresponding
space of static potentials is

Nb,h = [Vh,V(2), · · · ,V(n)], Vh = (x0 − x1)|Hn
h
.

▶ Recall that the isometry group of Hn
h may be identified to O(n − 1) ⋉ Rn−1, the

group of euclidean motions of Rn−1. Thus, we obtain a natural representation ρh

of O(n − 1) ⋉ Rn−1 on Nb,h given by ρhA(V ) = V ◦ A−1.
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The horospherical mass

Proposition

Nb,h splits into two irreducible representations under ρh, namely,

Nb,h = [Vh]⊕ [V(2), · · · ,V(n)],

with ρh|[Vh ]
being trivial (that is, ρhA(Vh) = Vh for any A).

▶ As before, we may consider an asymptotically hyperbolic manifold, say (M, g ,Σ),
modeled at infinity on (Hn

h, b,Σh), whose horospherical mass is

mh,F (Vh) = lim
r→+∞

[∫
Sn−1
r,+

⟨U(Vh, e), µ⟩dSn−1
r,+ −

∫
Sn−2
r

Vhe(η, ϑ)dSn−2
r

]
,

where F is a chart at infinity. Hence, mh = mh,F (Vh) ∈ R does not depend on F .

▶ By exploring the corresponding π/2-boundary condition, we have

1

4
mh =

∫
M

(
|∇±ΨΦ|2 +

Rg + n(n − 1)

4
|Ψ|2

)
dM

+
1

2

∫
Σ
(Hg − (n − 1))|Ψ|2dΣ,

from which the corresponding rigidity statements follow.

▶ As an extra bonus, m|[V(2),··· ,V(n)]
defines a sort of center of mass for (M, g ,Σ).
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