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Special Lagrangian

I Let (X ,!,⌦) be a Kähler manifold with a nowhere vanishing
holomorphic volume form. An n-dimensional submanifold (or
some weaker notion, eg. integral current) is called special
Lagrangian, if

!|L = 0, Im(e�i ✓̂⌦)|L = 0.



Volume minimizer

I We assume the metric is Calabi-Yau. Then L is a minimal
submanifold.

I In fact, any submanifold in the same homology class satisfies
Z

L
Re(e�i ✓̂⌦) 

Z

L
dvol = Vol(L),

saturated precisely by special Lagrangians.

I Thus if a special Lagrangian exists then it is an absolute
volume minimizer.
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Almost calibrated Lagrangians

I Recall the Lagrangian angle is defined by

⌦|L = e i✓dvolL.

Here ✓ : L ! S1 is assumed to lift to R (graded
Lagrangians).

I Special Lagrangians have constant phase angle ✓ = ✓̂.
I Almost calibrated means the Lagrangian angle is inside the

interval (�⇡
2 ,

⇡
2 ). Thus L is automatically graded.

I Quantitative almost calibrated means ✓ 2 (�⇡
2 + ✏, ⇡2 � ✏).

It implies an apriori volume bound

Vol(L)  1
sin ✏

Z

L
Re⌦.



I However, the volume minimizer within a given homology class
needs not be a special Lagrangian (Schoen, Wolfson). ‘Direct
minimization of volume is not good enough.’

I The known construction techniques: high symmetry, gluing
style constructions, integrable system (reduce to ODE or
Riemann surface), Cartan-Kähler theory.

I Existence question is a major open problem in general.



What is Thomas-Yau conjecture?

I Thomas-Yau principle: ‘The existence and uniqueness of
unobstructed special Lagrangian branes should be
governed by a stability condition on the (derived)
Fukaya category.’

I Thomas-Yau’s main motivations: mirror analogy with stable
vector bundles.

I Their main evidence: uniqueness theorem (further developed
by Joyce-Imagi-Santos, Imagi, Abouzaid-Imagi).



Potential significance of the Thomas-Yau philosophy:
I Produce special Lagrangians.
I Mirror symmetry beyond homological mirror symmetry.
I (Far beyond the current technology) special Lagrangian

enumerative invariants?



Caveats:
I The notion of stability is meant to be tentative in

Thomas-Yau’s proposal.
I The mirror version of stability is not really meant to be

µ-stability for Hermitian-Yang-Mills connections. A slightly
better mirror candidate is deformed Hermitian-Yang-Mills,
though I expect it is also only approximate.



Joyce’s update

The most significant progress since Thomas-Yau was the update by
Dominic Joyce.
I Joyce says there should be a Bridgeland stability condition

on the derived Fukaya category, such that the semistable
objects of given phase ✓̂ are represented by Lagrangian branes
with arbitrarily small phase oscillation |✓ � ✓̂| ⌧ 1. (Morally,
represented by special Lagrangian branes, although these may
be too singular).

I Joyce says the way to construct this stability condition is to
run Lagrangian mean curvature flow with surgery, and take
the infinite time limit.

I Joyce says the role of unobstructed brane structure and the
Fukaya category machinery is to rule out the worst singularities
in the flow.
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Joyce’s picture seems to have rather strong consequences:
I The derived Fukaya category is supposedly idempotent closed

automatically.

I The subcategory generated by almost calibrated Lagrangians is
supposedly the heart of a bounded t-structure, and in
particular is an abelian category, and generates the entire
DbFuk .

I Joyce hopes the Lagrangian mean curvature flow only
encounters finitely many surgeries.
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Question: Can we formulate the Thomas-Yau conjecture in a
version circumventing these strong predictions?



Thomas-Yau conjecture

My attempted interpretation of Thomas-Yau:
I All Lagrangian branes involved are almost calibrated and

unobstructed by assumption. They can be immersed (or
perhaps more singular).

I We say L is Thomas-Yau semistable if for any exact triangle
of almost calibrated branes

L1 ! L ! L2 ! L1[1],

we have the phase angle inequality

✓̂1 =

Z

L1

⌦  ✓̂2 =

Z

L2

⌦.arg arg



Thomas-Yau conjecture

Thomas-Yau conjecture: consider the quantitatively almost
calibrated Lagrangians inside a given DbFuk(X ) class, which is
nonempty by assumption. There is a special Lagrangian inside the
geometric measure theoretic closure, if and only if the DbFuk(X )
class is Thomas-Yau semistable.
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Question
What are the Floer theoretic obstructions to special Lagrangians?
(i.e. when can we rule out the existence of special Lagrangians in
certain derived Fukaya category classes?)

Question
(time permitting) What is the functional governing the existence of
special Lagrangians?

Main message: you should look at (n � 1)-dimensional moduli
spaces of holomorphic curves, and the current swept out by the
(n + 1)-dimensional family.
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Setting

I We work in the exact setting. The ambient manifold is a
Stein complex manifold ! =

p
�1@@̄�, with a nowhere

vanishing holomorphic volume form ⌦.
I The Lagrangians are exact, compact, and almost

calibrated.

I Recall exactness means

d� = !, dfL = �|L.

Caveat: we do not require fL to take the same value at self
intersections of immersed Lagrangians. There can be teardrop
curves. Almost calibrated means

�⇡

2
< ✓ <

⇡

2
.
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Symplectic background

I Floer cohomology of immersed Lagrangian is defined by
Joyce-Akaho (cf. also Woodward-Palmer, ...).

I The Floer degrees at intersection points: (different from Seidel
convention!)

µL,L0(p) =
1
⇡
(

nX

1

�i + ✓L(p)� ✓L0(p)),

where

TpL = Rn ⇢ Cn, TpL
0 = (e i�1 , . . . e i�n)Rn.
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Symplectic backgrounds: open-closed map

A basic ingredient for the Thomas-Yau conjecture is that the
central charge function

Z (L) =

Z

L
⌦

needs to be well defined on the derived Fukaya category class. In
fact there is a well defined map from the Grothendieck group of
D

b
Fuk(X ) to the middle homology:

L 7! [L] 2 Hn(X ).

This is known to experts as a special case of the open-closed map.
In particular, isomorphism in D

b
Fuk(X ) implies being homologous,

and exact triangle L1 ! L ! L2 implies [L] = [L1] + [L2].

2C L I
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Open-closed map

Question
Given L, L0 isomorphic in D

b
Fuk , why are they homologous?

I Oversimplified answer: take the generators ↵ 2 HF
0(L, L0),

and � 2 HF
0(L, L0), whose compositions are the identities.

The moduli space of (perturbed) holomorphic curves between
intersections contributing to ↵,� are (n � 1)-dimensional, so
the universal family of these curves gives rise to an
(n + 1)-dimensional integration current C. Its boundary is
L� L

0.

I More accurately, one needs to take into account the bounding
cochain data, and the difference between cohomological units
and geometric units.
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Two assumptions

I Automatic transversality assumption: all the holomorphic
curves (no perturbation!) involved in the construction of the
‘bordism current’ C are smooth points of the moduli space.

I Generally speaking, there are many (n � 1)-dim moduli spaces
corresponding to the many Lagrangian intersection points in
the HF

0 generators ↵,�. The moduli spaces come with
orientations, and upon the evaluation of @⌃ ! L [ L

0, we can
compare this orientation with the orientation of L and L

0.
I Positivity condition: all holomorphic curves contribute to

@C = L� L
0 with the same orientation sign.
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Morse theory analogy

In Morse theory, the fundamental class of a compact oriented
manifold L can be viewed as follows:
I The generators of the zeroth and the n-th Morse cohomology

are given by the sum of local maxima/minima.
I The fundamental cycle [L] 2 Hn(L) is the integration current

swept out by the union of the (n � 1)-dim moduli space of
gradient flowlines between local maxima and local minima.

I Notice at each generic point on L, there is only one gradient
flowline passing through. We do not have cancellation of ±
oriented flowline contributions!

Question
Is there a general criterion for the positivity condition in the Floer
theory setting, eg. assuming almost calibrated Lagrangians etc?
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A priori expectation for obstructions

Recall the short proof why Hermitian-Yang-Mills implies slope
semistability:
I Curvature decreases in holomorphic subbundles-> HYM

connection leads to a pointwise inequality.
I Integrate over the Kähler manifold to derive a global Chern

number inequality-> slope stability.

B side

maps pts_x

A side
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A priori expectations for obstructions

A priori we expect the following features for the Floer theoretic
obstruction (based on analogy with Hermitian-Yang-Mills and its
deformed versions):

I The obstruction is asociated with the positivity of signs,
depending essentially on the integrability of the complex
structure.

I The obstruction involves an integration over a moduli
space of worldsheet instantons (ie holo curves), and the sign
comes from the pointwise positivity of the integrand on the
moduli space.

I The inputs from Floer theory are exact triangles in the
derived Fukaya category.

I The role of holomorphic volume forms enters via
cohomological integrals.
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Looking for obstructions

Concretely: given an exact triangle L1 ! L ! L2 of exact, almost
calibrated, compact, unobstructed Lagrangians. Destabilizing
condition:

✓̂1 = arg

Z

L1

⌦ > ✓̂2 = arg

Z

L2

⌦.

Question
Does the existence of a destabilizing exact triangle rule out the
possibility of L being a special Lagrangian?

MIEN EE
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An unsatisfactory answer: if we know L1, L2 are represented by
special Lagrangians of phase ✓̂1, ✓̂2, then

sup
L

✓ � ✓̂1, inf
L
✓  ✓̂2.

I Reason: if supL ✓ < ✓̂1, the formula for the Floer degrees of
Lagrangian intersection points implies CF

0(L1, L) = 0. Thus
the holomorphic curves contributing to the bordism current C
with @C = L� L1 � L2 cannot pass from L1 to L. Any curve
passing through L1 is stuck on L1, which is impossible for
almost calibrated Lagrangians due to the absence of
CF

�1(L1, L1) intersection points.
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An unsatisfactory answer

I This answer is unsatisfactory because when we are looking for
special Lagrangians, we are not supposed to assume the
existence of any special Lagrangians.

I If one believes in Joyce’s picture of Bridgeland stability, then
one can consider the Harder-Narasimhan filtration of L1, L2,
and a version of the above arguments suggests the existence of
the destabilizing exact triangle indeed rules out L being special
Lagrangian.
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Looking for obstructions

Question
Can destabilizing exact triangles obstruct the existence of special
Lagrangians without Lagrangian angle assumptions on L1, L2
beyond being almost calibrated?

I Answer: Yes, if we assume the automatic transversality and
the positivity condition on the bordism current C between L

and L1 + L2.
I Technique: integration over moduli space.

1 4Th
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Theorem
Assume automatic transversality+ positivity condition+
destabilizing exact triangle. Then

sup
L

✓ � ✓̂1 > ✓̂2 � inf
L
✓.

In particular L cannot be a special Lagrangian.



Moduli integral technique

I Strategy: express the period integrals
R
L1

⌦,
R
L2

⌦ in terms of
integrals over the n � 1 dim moduli spaces of holomorphic
curves.

I Try to derive integral inequalities based on some pointwise
inequality on the moduli space.



Recall some basic deformation theory of holomorphic discs
⌃ ! X with boundary on Lagrangians (and corners at Lagrangian
intersection points/bounding cochain elements):
I First order deformation vector fields are solutions to the

extended linearized Cauchy-Riemann equation.
I Let v1, . . . vn�1 be first order deformations of holomorphic

curves. Then vi define holomorphic vector fields in the normal
bundle of the image of ⌃.

I The (1, 0)-form on ⌃ defined by ⌦(·, v1, . . . vn�1) is therefore
holomorphic. It must be the differential of a holomorphic
function F on the domain ⌃.



I In clockwise order (in my conventions), the Lagrangian
boundary of ⌃ encounters L, L2, L1. (More generally, there is a
possibility to skip L1 or L2.)

I The function F is a holomorphic map from the disc ⌃ to C.
Along @⌃, the incline angle of dF is equal to the
Lagrangian angle of the Lagrangian boundary condition.

I Feature of almost calibrated Lagrangians+ positivity
condition: clockwise along @⌃, the function ReF increases on
the L boundary portion, and decreases on the L

0 = L1 [ L2
boundary portion.

I Here the fact that ReF cannot turn from increasing to
decreasing, has to do with almost calibratedness, while
whether it is increasing or decreasing is the content of the
positivity condition.
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I Consequence by elementary complex analysis: the image
F (⌃) ⇢ C lies above its L1 [ L2 portion, and below the L

portion.

Remark
(Partial justification for automatic transversality assumption) In
fact, by some index computation, one can show that
I Either F is constant on ⌃,
I Or ⌃ ! X is a smooth point of the moduli space, and

morever dF has no zero inside the interior or the boundary of
⌃ and only vanishes to minimal order at the corner.
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In 11 dim mad

4 may



I Since the current @C sweeps out almost every point on
L� L1 � L2 precisely once in the sense of counting, the period
integral

R
Li
⌦ can be expressed as an integral over the n � 1

dim moduli space. Notice F is proportional to v1 ^ . . . vn�1,
which means its proper interpretation is a family of complex
valued volume forms on the moduli space.

I For each corner of ⌃ mapping to the CF
1(L2, L1) point, we

can find some point on the L portion of @⌃, with the same
value of ReF , and bigger value of ImF .

I When this fact is integrated over the moduli space, it says
that there is a subset A of L, with

Re
Z

A
⌦ = Re

Z

L1

⌦ > 0, Im
Z

A
⌦ � Im

Z

L1

⌦.

This implies supL ✓ > ✓̂1 = arg
R
L1

⌦.
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Solomon functional

Jake Solomon introduced a functional among a fixed Hamiltonian
isotopy class of Lagrangians, with the property that its first
variation for the Hamiltonian deformation H is

�S =

Z

L
HIm(e�i ✓̂⌦),

where ✓̂ = arg
R
L⌦.

Question
Can we make sense of this functional for Lagrangians inside a fixed
derived category class?



Solomon functional

Answer 1: suppose L is isomorphic to L0 in D
b
Fuk , so in particular

homologous. We take C so that @C = L� L0. Recall L is an exact
Lagrangian with potential fL.

S(L) =
Z

L
fLIm(e�i ✓̂⌦)�

Z

L0

fL0 Im(e�i ✓̂⌦)�
Z

C
� ^ Im(e�i ✓̂⌦).

Remark
Changing C by any exact integration current does not affect the
functional.

Remark
This formula is more useful for the variational method, and is the
starting point of the more geometric measure theoretic aspects.
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Solomon functional

Answer 2 (equivalent answer, under the automatic transversality
assumption) The Solomon functional can be expressed as an
integral over the n � 1 dim moduli spaces M of holomorphic discs

S(L) =
Z

M
I,

I = Im
Z

⌃
e
�i ✓̂

F! + Im
X

corners

e
�i ✓̂

Ff |+�,

where f |+� signifies the jump in the Lagrangian potentials at the
corner, and F is the holomorphic function on ⌃ constructed from

dF = ⌦(·, v1, . . . , vn�1).

kwtk.rs
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Solomon functional

Consequence of moduli space integral formula for the Solomon
functional: if L0 is a special Lagrangian, and L is almost calibrated,
and assuming automatic transversality+positivity condition on the
bordism current, then

S(L) � S(L0).

I Reason: Im(e�i ✓̂
F ) is zero on the L0 boundary portion of ⌃,

and non-negative on ⌃. Morever, the bounding cochain
elements on L satisfy the Novikov exponent positivity f |+� � 0.

I Moral: special Lagrangians should be absolute minimizers of
the Solomon functional.


