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Very brief intro to Floer theory

@ The central branch of symplectic topology is Floer theory.

@ It studies Hamiltonian flows ("symplectic gradient”) on symplectic
manifolds (Y,w).

e Given a Hamiltonian H : Y — R, its Floer chain complex CF*(H) is
generated by Hamiltonian orbits (x = Xp(x)) and differential is given
by Xy-perturbed pseudoholomorphic cylinders
(Osu+ 1(Oru — Xy) = 0).

@ Upshot: One gets homology theory, which for closed manifolds
recovers the singular homology HF*(H) = H*(Y)

@ For open manifolds Y and a “small” Hamiltonian still get
HF*(H) =2 H*(Y)
@ but for non-small H issue: non-compactness — need careful

choice of H + further constraints on ¥ = get symplectic
cohomology SH*(Y).



What good can the existence of a pseudo-holomorphic contracting
C*-action on (Y, w) give to a symplectic topologist?

Some possible answers (but there may be more!):

@ In the presence of orthogonal holomorphic symplectic structure wc of
homogeneity 1 (t-wc = twe) = get special exact we-Lagrangian
submanifolds [Z.'22].

@ Can construct symplectic cohomology and, consequentially, induce a
filtration on ordinary/quantum cohomology of Y [Ritter - Z.'23].

Today, | will talk about the latter.



Basic example: C”, three observations

(C", wstg = Y, dx; A dy;), standard C*-action t -z = tz. The S —moment
map (=Hamiltonian) is H = %||z|[%.

Observation |

@ There is a certain maximum principle (C" is Liouville) —
o well defined HF(F), for F = AH at infinity
o well-defined continuation maps HF(F1) — HF(F2), for A(F1) < A(F2).

e Define SH(C") := lim HF(F).
A(F)—o0
Observation 11
e ¢1(C") =0 + HYC") = 0 = canonical Z-grading on HF* and SH*.
@ SH*(C™) = limy_y00 HF*(AH) = lim)—50(0)[2n| A]] = 0.



Basic example: C”, three observations

Observation 11

e “Convex” Hamiltonians Hy = ¢(H), ¢ convex and = AH at oc.

o CF*(H,) filtered (by An, ), and the filtration follows the value of H.

@ Morse-Bott—Floer spectral sequence EF? = SHPI(C"),
EX = HI(C™), EPT = HI(S2"-1)[2pn]

praw| H*(C) | H'(S")[2] [H'(S")[4] | H'(S")I6]
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-1 \m
-2 (O
-3
-4 [oR
-5 ©
6 ©

Questions:

1. Generalise beyond C" such that Observations I-11l hold?
2. Applications?

Let us start answering Question 1 first.



Symplectic C*-manifolds

Definition

Symplectic C*-manifold is a connected symplectic manifold (Y, w, /)
admitting a pseudoholomorphic C*-action ¢ whose S!-part is Hamiltonian.

@ Assume C*-action is contracting, § := Y*" is compact and
Vy,3 lim t-y €5.
C*3t—0

@ The other limit defines the Core(Y):={y €Y |3 lim t-y}.

C*3t—o0

1. Core(Y) is compact and connected.

2. It is deformation retract of Y when (Y, Core(Y)) CW-pair

3. H*(Y) = H*(Core(Y)) (= H*(Core(Y)) when CW complex)
4. Although the moment map H : Y — R might not be proper,
H*(Y) = @, H" (§a)[—Ha] (Atiyah-Bott filtration),

5. In particular 3§ min minimum of H (minimal component).




Symplectic C*-manifolds over a convex base

e Attempt to define SH*(Y) as for C" (Observation 1).
Issue: Usual max principle a priori does not work.

@ Motivated by Conical Symplectic Resolutions, we fix this by imposing
further: Assume that there is a proper map

V: (Y \ compact, /) = (X X [Rp,0), Ig), ViXs1 = (f >0) - Rp.

@ Such (Y,w, I, p, V) we call Symplectic C*-manifolds over a
convex base.

@ In particular, when have a global ¥ : Y — B for a convex B, call Y
globally defined (almost all examples)

@ Main examples: Equivariant projective morphisms p: Y — X to
affine X with a contracting C*-action.
Here equivariantly embed X C C" =: B and compose with p to get W.




@ Equivariant projective morphisms ¥ : Y — X to affine X with a
contracting C*-action.

T*CP' — C?/Zy = V(XY — Z?) c C3

Minimal resolution Y — C2/G, for G < SL(2,C) finite

Crepant resolutions Y — C"/G, for G < SL(n, C) finite.

Conical symplectic resolutions (CSRs) W : (Y,w¢) — X, with

t-we = t57%c. (Springer resolutions, quiver var., hypertoric var.,...)

Higgs moduli spaces, W : M — CN Hitchin fibration.

Kahler quotients W : Y =C"/.G — C" /oG, G < U(n)

In particular, for G = torus = Semiprojective toric varieties,

0 06000

@ Trivial vector bundles B x C" — C", B symplectic

© Negative vector bundles E — B, with W: E\0 — L\O0, for L — P(E)
tautological (only here W is not global)

@ C*-invariant submanifolds, e.g. fixed locus of Z/m < C*.
© Equivariant blow-ups
NB. For 1.(1-5) have ¢i(Y) = 0, for others not in general.



Back to Observations | and Il

Theorem (Construction of SH)

Given a symplectic C*-manifold over a convex base (Y,w, I, ),

SH(Y,¢) = lim HF(F) is a well-defined unital ring (F = \H at infinity)
When W : Y — X is morphism over affine X and actions @1, p> commute,
SH*(Y7 (pl) = SH*(Y, QDQ).

Considering “clean” Hamiltonians AH, for p-generic \, we get:

Proposition

Ifa(Y) =0, SH'(Y,¢) = lim HF*(AH) = 0.

Let Y =C?>"J/;G, G < Sp(n) and L C (Y,w,) a closed exact Lagrangian.
Then H?(L;R) # 0 and ma(L) is infinite.




Application: Filtration on QH*(Y)

Proposition

3 Floer-theoretic filtration ' (QH*(Y)) by ideals on the ring QH*(Y). If
SH*(Y) =0, it exhausts it, otherwise define F{,_ = QH*(Y)

o canonical ¢ : QH*(Y) = HF*(Fsmal slope) — HF*(F,.)

. . © . * m . H ”
o filtration Z\" 1= [\yeneric u>a(kerc;)  “survival time

o .F¥ is compatible with grading = get filtrations .Z¥(H*(Y)).
Although SH*(Y, ) is usually p-independent, .#¥ can depend on ¢!

Specialise at T = 0 (Novikov parameter) = get filtration .Z | of
H*(Y,B) by cup-ideals, rkx. %) = rkg.#p \.

Example: For CSRs get a family of filtrations on H*(Y'), labelled via
convex set of contracting C* < MaxTor(Y)



Lower bounds on filtration

@ Using clean Hamiltonian AH we get the energy spectral sequence
SaH* (Fa)[-1A(Sa)] = HF*(AH)

where 113 (§a) computable via weights T; Y = ¢C,,.
e When H°¥(Y) =0 (e.g. all CSRs), get

@aH*(ga)[_NA(ga)] = HF*()‘H)
@ The continuation maps ¢ : ®o H*(Fa)[—ta] = BaH*(Fa)[— 12 (Fa)]

rk (ZA(H*(Y)) > Zbk o (8a) = br—py (50) (Ba)-

Example: for weight-s CSR get %" = H*(Y) for s > 2, and
FL D HZ2(Y), Ff = H*(Y) for s = 1.



Filtration at integer times: The Q, invariant

o Following [Ritter'14], ¢y = Q;N * -1 QH*(Y) — HF*(Hpn+), where
Q, € QH?(Y) is the generalised Seidel element of (.

— = ker(Q3N x ), and
c*: QH*(Y) = SH*(Y, ) is the localisation at Q..

Proposition

Suppose Y is Kahler Calabi-Yau/monotone, and §min only has weights 0
and 1. If the Euler class of the normal bundle of §min C Y is non-zero,

Qu = PD[Fmin] + (T7° terms) # 0,

in particular F7 # QH*(Y).

Example: Y is a weight-1 CSR. ./ = H=2(Y) C Zf = QH*(Y)



Survival of the minimal component

e Assuming that H°@(Y) = 0, recall the continuation map becomes:
C; : @aH*(ga)[_N(x] — @aH*(Sa)[_NA(ga)]

Proposition

Assume H°%(Y) =0 and A < 1/(maz absolute weight of Fmin).

Ci’H*(Smin) = ldH* (Smin)[_/"/)\(gmin)] + (T>O-terms)’

hence
Zh 5 C DotminH" (Foi B)[—pa(Sa)]-

Example: For weight-1 CSR, §min survives until time 1-.



Compare to Atiyah—Bott filtration

@ Fixed locus Y¥ = LUyFa, Us = upward VH-flow of §, = Y = U, U,
@ Morse breakings induce space filtration
@IWOCW1:UmmC"'CY
@ Restriction maps AB; : H*(Y) — H*(W)
e Filtration on H*(Y) by cup ideals
ker(AB;) = @H(SQ)EH,-H H*(Sa)[—tal
e In particular, 1 € HO(Fmin) lives in the last filtered level, like in .#%.
e Unlike A-B, .#¢ distinguishes different classes in H*(§,) in general.

Example: Resolution of A, sing. C2/Z3 = V(XY — Z3) C C3, with action
t-(X,Y,2) = (tX, t?Y, t2).

T+ H(8a)[-2] € H(8a)[=2] & H*(Smin) € HO(8a)[=2] & H* (Smin),

A-B: HO(§a)[-2] C HO(Ba)[—2] ® H*(Sumin)-




Observation Ill: Filtration on Floer chain complex

@ Recall: On C”, used a convex Hamiltonian that is linear at infinity,
and the action functional on C” (as C" is exact).

Projecting via W : Y — B, can use the modification of [McLean—Ritter'18]
filtration on B to get filtration on CF*(H,), that follows the value of
moment map H, such that the continuation maps CF*(Hy\) C CF*(H,).

There is a Morse—Bott—Floer spectral sequence

@ H*(Sa)[—1a] ® @ H*(Bp,g)[—1p,8] = SH* (Y, ¢).

where LgB, 5 = {H = Hp} N YZ/™, c'(Hp) =: T, = £, (k,m) = 1.

Proposition (Spectral sequence reads the filtration)

x € FY & the columns having T, < A kill x € E)? = H*(Y).
—> (Stability) Z7 = .7/, if there are no outer S*-periods T, € (A, N].




Example 1: Y = T*CP!

Y = T*CP! - X = C?/Z, = V(XY — Z?) € C3 is a blow up.
t-(X,Y,Z) = (tX,tY,tZ) lifts to T*CP?! as fibre-dilation.
Bk = {H=H,} =253/ +id = RP3

The action is free, so no non-integer period columns

p+ap| H(T'CP') H'(B,)[2] H'(B,)[4] H'(B,)[6]
G-
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Example 2: Y = &7%3

e Consider X = C?/Z3 = V(XY — Z3) C C3,
e Y =Blow-upo V(XY — Z3), exceptional locus = CP! v CP!

Three interesting C*-actions:
o (3X,t3Y,t2Z), induced by the standard C* ~ C2.
o (t2X,tY,tZ)
o (tX,t2Y,tZ)

Fixed
locus 3:

Remark: coloured spheres are minimal wc-Lagrangians from [7.'22].



Example 2: Y = m

Morse—Bott manifolds of 1-orbits:
B3 = (C Nislice) = S*
By = (C?/Z3) Nslice = S3/73

Spectral sequence for First action:

H'(X

pralp 23) H'(B,,)I0] H'(B,,)2] H'(B,)[4] H'(B,,)4]
2 | .
1 | Cw—
0 [ P | C—
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Example 2: Y = &7%3

First action:
prap|  H'(X,,) H'(B,,)I0] H'(B,,)I2] H'(B,)[4] H'(B,,)4]
2 )
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Second and third actions:
prap|  H(X,,) H'(B,,)I0] H'(B,)I2] H'(B,,)4] H'(B,)[4]
2| oo
1 O —
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Note how filtration is different on H?(Y)!
More precisely, we have .75 1 = [the non-minimal sphere]
2




Comparing to other filtrations

want to compare .# with other filtrations coming e.g. from algebraic
geometry or representation theory.

Compare degree-wise, on each H¥(Y).

For any projective equivariant morphism over affine ¥ : Y — X
weight filtration is trivial (Y semiprojective).

For certain CSRs there are rep. theoretic filtrations [BS'18].

For A, resolutions C2/(Z/,+1), with a particular o, .Z#(H?(Y))
matches with it rankwise.

For parabolic Higgs bundles W : My — C of dim¢ = 2, filtration
Fp(H2(Y)) is a refinement of the perverse (P=W) filtration of V.



Compare with multiplicity filtration

When 7: Y — X = Core(Y) = 7-(0) = U;m;E; (scheme)
when Core(Y') equidimensional = filtration

Mk = {E,' ’ mj < k} on HtOp(Y).

o Question: My vs F7  on H*P(Y)?
@ dim¢ = 1: only C, equal.
@ dimg = 2:
o Higgs examples (M and 3 others), equal.
e X x C, equal.
o CSR examples = ADE resolutions, Xr — C2/I', T < SL(2,C),
& is a refinement of M,.
e dimc > 3 : Unknown (for now...)



Equivariant comparison: Example of dim¢ = 4 CSR

prap|  H(S,) |H(B)[-2]| H(B,)I0] | H(B,e)0] [ H(Bye)[2] | H(By,)I'T | H(B,e)l4] |H'(B,)I8]
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prap| H(S,) 8 H..(CP") [EH (B, o) 2I[EH (B, IO]|EH (B, 0| EH (B, 21| EH (B, I [EH (B
4 CIC-
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[4][EH'(B,)(8]
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Thank you for listening.



