Filtrations of cohomology rings from Floer theory of contracting \mathbb{C}^* -actions

Filip Živanović Simons Center

Joint work with Alexander F. Ritter
University of Oxford

Geometria em Lisboa Seminar Técnico Lisboa, 12. December 2023.

Very brief intro to Floer theory

- The central branch of symplectic topology is Floer theory.
- It studies Hamiltonian flows ("symplectic gradient") on symplectic manifolds (Y, ω) .
- Given a Hamiltonian $H: Y \to \mathbb{R}$, its Floer chain complex $CF^*(H)$ is generated by Hamiltonian orbits $(\dot{x} = X_H(x))$ and differential is given by X_H -perturbed pseudoholomorphic cylinders $(\partial_s u + I(\partial_t u X_H) = 0)$.
- **Upshot:** One gets homology theory, which for closed manifolds recovers the singular homology $HF^*(H) \cong H^*(Y)$
- For open manifolds Y and a "small" Hamiltonian still get $HF^*(H) \cong H^*(Y)$
- but for non-small H issue: non-compactness \implies need careful choice of H + further constraints on Y \implies get symplectic cohomology $SH^*(Y)$.

Question

What good can the existence of a pseudo-holomorphic *contracting* \mathbb{C}^* -action on (Y, ω) give to a symplectic topologist?

Some possible answers (but there may be more!):

- In the presence of orthogonal **holomorphic** symplectic structure $\omega_{\mathbb{C}}$ of homogeneity 1 $(t \cdot \omega_{\mathbb{C}} = t\omega_{\mathbb{C}}) \implies$ get special exact $\omega_{\mathbb{C}}$ -Lagrangian submanifolds [$\check{\mathbb{Z}}$.'22].
- Can construct symplectic cohomology and, consequentially, induce a filtration on ordinary/quantum cohomology of Y [Ritter - Ž.'23].

Today, I will talk about the latter.

Basic example: \mathbb{C}^n , three observations

 $(\mathbb{C}^n, \omega_{std} = \sum_i dx_i \wedge dy_i)$, standard \mathbb{C}^* -action $t \cdot z = tz$. The S^1 -moment map (=Hamiltonian) is $H = \frac{1}{2}||z||^2$.

Observation I

- There is a certain **maximum principle** (\mathbb{C}^n is Liouville) \Longrightarrow
 - well defined HF(F), for $F = \lambda H$ at infinity
 - well-defined continuation maps $HF(F_1) \to HF(F_2)$, for $\lambda(F_1) < \lambda(F_2)$.
- Define $SH(\mathbb{C}^n) := \lim_{\lambda(F) \to \infty} HF(F)$.

Observation II

- $c_1(\mathbb{C}^n) = 0 + H^1(\mathbb{C}^n) = 0 \Rightarrow$ canonical \mathbb{Z} -grading on HF^* and SH^* .
- $SH^*(\mathbb{C}^n) = \lim_{\lambda \to \infty} HF^*(\lambda H) = \lim_{\lambda \to \infty} \langle 0 \rangle [2n\lfloor \lambda \rfloor] = 0.$

Basic example: \mathbb{C}^n , three observations

Observation III

- "Convex" Hamiltonians $H_{\lambda} = c(H)$, c convex and $= \lambda H$ at ∞ .
- $CF^*(H_{\lambda})$ filtered (by $A_{H_{\lambda}}$), and the filtration follows the value of H.
- Morse–Bott–Floer spectral sequence $E_r^{pq} \Rightarrow SH^{p+q}(\mathbb{C}^n)$, $E_1^{0q} = H^q(\mathbb{C}^n)$, $E_1^{pq} = H^q(S^{2n-1})[2pn]$

p+q\p	H*(C)	H*(S1)[2]	H*(S1)[4]	H*(S1)[6]
0	•			
-1		•		
-2		•		
-3			•	
-4			•	
-5				
-6				•

Questions:

- 1. Generalise beyond \mathbb{C}^n such that Observations I-III hold?
- 2. Applications?

Let us start answering Question 1 first.

Symplectic \mathbb{C}^* -manifolds

Definition

Symplectic \mathbb{C}^* -manifold is a connected symplectic manifold (Y, ω, I) admitting a pseudoholomorphic \mathbb{C}^* -action φ whose S^1 -part is Hamiltonian.

- Assume \mathbb{C}^* -action is *contracting*, $\mathfrak{F}:=Y^{\mathbb{C}^*}$ is compact and $\forall y,\exists \lim_{\mathbb{C}^*\ni t\to 0}t\cdot y\in \mathfrak{F}.$
- The other limit defines the $\operatorname{Core}(Y) := \{ y \in Y \mid \exists \lim_{\mathbb{C}^* \ni t \to \infty} t \cdot y \}.$

Theorem

- 1. Core(Y) is compact and connected.
- 2. It is deformation retract of Y when (Y, Core(Y)) CW-pair
- 3. $H^*(Y) \cong \check{H}^*(\operatorname{Core}(Y)) \ (\cong H^*(\operatorname{Core}(Y)) \ when \ CW \ complex)$
- 4. Although the moment map $H: Y \to \mathbb{R}$ might not be proper, $H^*(Y) \simeq \bigcap_{i \in I} H^*(\mathcal{T}_i)$ (Atival Pott filtration)
- $H^*(Y)\cong \bigoplus_{\alpha} H^*(\mathfrak{F}_{\alpha})[-\mu_{\alpha}]$ (Atiyah–Bott filtration),
- 5. In particular $\exists ! \mathfrak{F}_{\min}$ minimum of H (minimal component).

Symplectic \mathbb{C}^* -manifolds over a convex base

- Attempt to define $SH^*(Y)$ as for \mathbb{C}^n (Observation I). Issue: Usual max principle a priori does not work.
- Motivated by Conical Symplectic Resolutions, we fix this by imposing further: Assume that there is a proper map

$$\Psi: (Y \setminus \mathsf{compact}, I) \to (\Sigma \times [R_0, \infty), I_B), \ \Psi_* X_{S^1} = (f > 0) \cdot \mathcal{R}_B.$$

- Such $(Y, \omega, I, \varphi, \Psi)$ we call **Symplectic** \mathbb{C}^* -manifolds over a convex base.
- In particular, when have a global $\Psi: Y \to B$ for a convex B, call Y globally defined (almost all examples)
- Main examples: Equivariant projective morphisms $p: Y \to X$ to affine X with a contracting \mathbb{C}^* -action.
 - Here equivariantly embed $X \subset \mathbb{C}^n =: B$ and compose with p to get Ψ .

Examples

- **9** Equivariant projective morphisms $\Psi: Y \to X$ to affine X with a contracting \mathbb{C}^* -action.

 - **2** Minimal resolution $Y_G \to \mathbb{C}^2/G$, for $G \leq SL(2,\mathbb{C})$ finite
 - **3** Crepant resolutions $Y \to \mathbb{C}^n/G$, for $G \leq SL(n,\mathbb{C})$ finite.
 - Conical symplectic resolutions (CSRs) $\Psi: (Y, \omega_{\mathbb{C}}) \to X$, with $t \cdot \omega_{\mathbb{C}} = t^{s>0}\omega_{\mathbb{C}}$. (Springer resolutions, quiver var., hypertoric var.,...)
 - **6** Higgs moduli spaces, $\Psi: \mathcal{M} \to \mathbb{C}^N$ Hitchin fibration.
 - Kähler quotients $\Psi: Y = \mathbb{C}^n /\!\!/_{\zeta} G \to \mathbb{C}^n /\!\!/_{0} G$, $G \leq U(n)$ In particular, for $G = \text{torus} \implies \text{Semiprojective toric varieties}$,
- ② Trivial vector bundles $B \times \mathbb{C}^r \to \mathbb{C}^r$, B symplectic
- **3** Negative vector bundles $E \to B$, with $\Psi : E \setminus 0 \to L \setminus 0$, for $L \to \mathbb{P}(E)$ tautological (only here Ψ is not global)
- **4** \mathbb{C}^* -invariant submanifolds, e.g. fixed locus of $\mathbb{Z}/m \leq \mathbb{C}^*$.
- Equivariant blow-ups
- **NB.** For 1.(1-5) have $c_1(Y) = 0$, for others not in general.

Back to Observations I and II

Theorem (Construction of SH)

Given a symplectic \mathbb{C}^* -manifold over a convex base (Y,ω,I,φ) , $SH(Y,\varphi):=\varinjlim_{X} HF(F)$ is a well-defined unital ring $(F=\lambda H)$ at infinity) When $\Psi:Y \to X$ is morphism over affine X and actions φ_1,φ_2 commute, $SH^*(Y,\varphi_1) \cong SH^*(Y,\varphi_2)$.

Considering "clean" Hamiltonians λH , for φ -generic λ , we get:

Proposition

If
$$c_1(Y) = 0$$
, $SH^*(Y, \varphi) = \lim_{\lambda \to \infty} HF^*(\lambda H) = 0$.

Conjecture

Let $Y = \mathbb{C}^{2n} /\!\!/_{\zeta} G$, $G \leq Sp(n)$ and $L \subset (Y, \omega_J)$ a closed exact Lagrangian. Then $H^2(L; \mathbb{R}) \neq 0$ and $\pi_2(L)$ is infinite.

Application: Filtration on $QH^*(Y)$

Proposition

 \exists Floer-theoretic filtration $\mathscr{F}^{\varphi}_{\lambda}(QH^*(Y))$ by ideals on the ring $QH^*(Y)$. If $SH^*(Y)=0$, it exhausts it, otherwise define $\mathscr{F}^{\varphi}_{+\infty}:=QH^*(Y)$

- canonical $c_{\mu}^*: QH^*(Y) \cong HF^*(F_{\mathrm{small slope}}) \rightarrow HF^*(F_{\mu})$
- filtration $\mathscr{F}^{arphi}_{\lambda}:=\bigcap_{\mathrm{generic}\,\mu>\lambda}(\ker c_{\mu}^*)$ "survival time"
- \mathscr{F}^{φ} is compatible with grading \implies get filtrations $\mathscr{F}^{\varphi}(H^k(Y))$.
- Although $SH^*(Y,\varphi)$ is usually φ -independent, \mathscr{F}^{φ} can depend on $\varphi!$
- Specialise at T=0 (Novikov parameter) \Longrightarrow get filtration $\mathscr{F}^{\varphi}_{\mathbb{B},\lambda}$ of $H^*(Y,\mathbb{B})$ by cup-ideals, $\mathrm{rk}_{\mathbb{K}}\mathscr{F}_{\lambda}=\mathrm{rk}_{\mathbb{B}}\mathscr{F}_{\mathbb{B},\lambda}$.

Example: For CSRs get a family of filtrations on $H^*(Y)$, labelled via convex set of contracting $\mathbb{C}^* \leq MaxTor(Y)$

Lower bounds on filtration

ullet Using clean Hamiltonian λH we get the energy spectral sequence

$$\bigoplus_{\alpha} H^*(\mathfrak{F}_{\alpha})[-\mu_{\lambda}(\mathfrak{F}_{\alpha})] \implies HF^*(\lambda H)$$

where $\mu_{\lambda}(\mathfrak{F}_{lpha})$ computable via **weights** $T_{\mathfrak{F}_{lpha}}Y=\oplus\mathbb{C}_{w_{i}}.$

• When $H^{odd}(Y) = 0$ (e.g. all CSRs), get

$$\oplus_{\alpha} H^*(\mathfrak{F}_{\alpha})[-\mu_{\lambda}(\mathfrak{F}_{\alpha})] \cong HF^*(\lambda H)$$

• The continuation maps $c_{\lambda}^*: \oplus_{\alpha} H^*(\mathfrak{F}_{\alpha})[-\mu_{\alpha}] \to \oplus_{\alpha} H^*(\mathfrak{F}_{\alpha})[-\mu_{\lambda}(\mathfrak{F}_{\alpha})]$

$$\operatorname{rk}\left(\mathscr{F}_{\lambda}(H^{k}(Y)) \geq \sum_{\alpha} b_{k-\mu_{\alpha}}(\mathfrak{F}_{\alpha}) - b_{k-\mu_{\lambda}(\mathfrak{F}_{\alpha})}(\mathfrak{F}_{\alpha}).$$

Example: for weight-s CSR get $\mathscr{F}_1^{\varphi} = H^*(Y)$ for $s \geq 2$, and $\mathscr{F}_1^{\varphi} \supset H^{\geq 2}(Y), \ \mathscr{F}_2^{\varphi} = H^*(Y)$ for s = 1.

Filtration at integer times: The Q_{φ} invariant

• Following [Ritter'14], $c_{N^+}^* = Q_{\varphi}^{\star N} \star : QH^*(Y) \to HF^*(H_{N^+})$, where $Q_{\varphi} \in QH^{2\mu}(Y)$ is the generalised Seidel element of φ .

$$\Longrightarrow \mathscr{F}_N^{\varphi} = \ker(Q_{\varphi}^{\star N} \star \cdot), \text{ and}$$

$$c^* : QH^*(Y) \to SH^*(Y, \varphi) \text{ is the localisation at } Q_{\varphi}.$$

Proposition

Suppose Y is Kähler Calabi–Yau/monotone, and \mathfrak{F}_{\min} only has weights 0 and 1. If the Euler class of the normal bundle of $\mathfrak{F}_{\min} \subset Y$ is non-zero,

$$Q_{\varphi} = PD[\mathfrak{F}_{\min}] + (T^{>0} \text{ terms}) \neq 0,$$

in particular $\mathscr{F}_1^{\varphi} \neq QH^*(Y)$.

Example: Y is a weight-1 CSR. $\mathscr{F}_1^{\varphi} = H^{\geq 2}(Y) \subset \mathscr{F}_2^{\varphi} = QH^*(Y)$

Survival of the minimal component

• Assuming that $H^{odd}(Y) = 0$, recall the continuation map becomes: $c_{\lambda}^* : \bigoplus_{\alpha} H^*(\mathfrak{F}_{\alpha})[-\mu_{\alpha}] \to \bigoplus_{\alpha} H^*(\mathfrak{F}_{\alpha})[-\mu_{\lambda}(\mathfrak{F}_{\alpha})]$

Proposition

Assume $H^{odd}(Y) = 0$ and $\lambda < 1/(\max absolute weight of \mathfrak{F}_{\min})$.

$$c_{\lambda}^*|_{H^*(\mathfrak{F}_{min})} = \mathrm{id}_{H^*(\mathfrak{F}_{min})[-\mu_{\lambda}(\mathfrak{F}_{min})]} + (T^{>0}\text{-}terms),$$

hence

$$\mathscr{F}^{\varphi}_{\mathbb{B},\lambda} \subset \bigoplus_{\alpha \neq \min} H^*(\mathfrak{F}_{\alpha};\mathbb{B})[-\mu_{\lambda}(\mathfrak{F}_{\alpha})].$$

Example: For weight-1 CSR, \mathfrak{F}_{\min} survives until time 1-.

Compare to Atiyah–Bott filtration

- Fixed locus $Y^{\varphi} = \sqcup_{\alpha} \mathfrak{F}_{\alpha}, \ U_{\alpha} = \text{upward } \nabla H\text{-flow of } \mathfrak{F}_{\alpha} \Rightarrow Y = \sqcup_{\alpha} U_{\alpha}$
- Morse breakings induce space filtration $\emptyset = W_0 \subset W_1 = U_{\min} \subset \cdots \subset Y$
- Restriction maps $AB_i: H^*(Y) \to H^*(W_i)$
- Filtration on $H^*(Y)$ by cup ideals $\ker(AB_i) = \bigoplus_{H(\mathfrak{F}_{\alpha}) > H_{i+1}} H^*(\mathfrak{F}_{\alpha})[-\mu_{\alpha}]$
- In particular, $1 \in H^0(\mathfrak{F}_{min})$ lives in the last filtered level, like in \mathscr{F}^{φ} .
- Unlike A–B, \mathscr{F}^{φ} distinguishes different classes in $H^*(\mathfrak{F}_{\alpha})$ in general.

Example: Resolution of A_2 sing. $\mathbb{C}^2/\mathbb{Z}_3 \cong V(XY-Z^3) \subset \mathbb{C}^3$, with action $\overline{t \cdot (X,Y,Z)} = (tX,t^2Y,tZ)$.

$$\mathscr{F}_{\mathbb{B}}: H^0(\mathfrak{F}_{\alpha})[-2] \subset H^0(\mathfrak{F}_{\alpha})[-2] \oplus H^2(\mathfrak{F}_{\min}) \subset H^0(\mathfrak{F}_{\alpha})[-2] \oplus H^*(\mathfrak{F}_{\min}),$$

 $\mathsf{A-B} \colon H^0(\mathfrak{F}_\alpha)[-2] \subset H^0(\mathfrak{F}_\alpha)[-2] \oplus H^*(\mathfrak{F}_{\min}).$

Observation III: Filtration on Floer chain complex

• Recall: On \mathbb{C}^n , used a convex Hamiltonian that is linear at infinity, and the action functional on \mathbb{C}^n (as \mathbb{C}^n is exact).

Theorem

Projecting via $\Psi: Y \to B$, can use the modification of [McLean–Ritter'18] filtration on B to get filtration on $CF^*(H_\lambda)$, that follows the value of moment map H, such that the continuation maps $CF^*(H_\lambda) \subset CF^*(H_\lambda')$.

Corollary

There is a Morse-Bott-Floer spectral sequence

$$\bigoplus H^*(\mathfrak{F}_\alpha)[-\mu_\alpha] \oplus \bigoplus H^*(B_{p,\beta})[-\mu_{p,\beta}] \Rightarrow SH^*(Y,\varphi).$$

where $\sqcup_{\beta} B_{p,\beta} = \{ H = H_p \} \cap Y^{\mathbb{Z}/m}, \ c'(H_p) =: T_p = \frac{2\pi k}{m}, \ (k,m) = 1.$

Proposition (Spectral sequence reads the filtration)

$$x \in \mathscr{F}^{\varphi}_{\lambda} \Leftrightarrow \text{ the columns having } T_{p} \leq \lambda \text{ kill } x \in E_{1}^{0,q} = H^{*}(Y).$$
 $\Longrightarrow \text{ (Stability) } \mathscr{F}^{\varphi}_{\lambda} = \mathscr{F}^{\varphi}_{\lambda'} \text{ if there are no outer } S^{1}\text{-periods } T_{p} \in (\lambda, \lambda'].$

Example 1: $Y = T^*\mathbb{CP}^1$

- $Y = T^* \mathbb{CP}^1 \to X = \mathbb{C}^2/\mathbb{Z}_2 \cong V(XY Z^2) \subset \mathbb{C}^3$ is a blow up.
- $t \cdot (X, Y, Z) = (tX, tY, tZ)$ lifts to $T^*\mathbb{C}P^1$ as fibre-dilation.
- $B_k = \{H = H_p\} \cong S^3 / \pm \mathrm{id} = \mathbb{RP}^3$
- The action is free, so no non-integer period columns

p+q\p	$H^{*}(T^{*}CP^{1})$	H*(B ₁)[2]	H*(B ₂)[4]	H*(B ₃)[6]	
2	•				
1		•			
0	•				
-1					
-2		• ←			
-3				•	
-4			•		
-5					
-6				•	

Example 2: $Y = \mathbb{C}^2/\mathbb{Z}_3$

- Consider $X = \mathbb{C}^2/\mathbb{Z}_3 \cong V(XY Z^3) \subset \mathbb{C}^3$,
- $Y = \mathsf{Blow}\text{-}\mathsf{up}_0 V(XY Z^3)$, exceptional locus $= \mathbb{CP}^1 \vee \mathbb{CP}^1$

Three interesting \mathbb{C}^* -actions:

- (t^3X, t^3Y, t^2Z) , induced by the standard $\mathbb{C}^* \curvearrowright \mathbb{C}^2$.
- \bullet (t^2X, tY, tZ)
- \bullet (tX, t^2Y, tZ)

Fixed locus \mathfrak{F} :

Remark: coloured spheres are minimal $\omega_{\mathbb{C}}$ -Lagrangians from [Ž.'22].

Example 2: $Y = \mathbb{C}^2/\mathbb{Z}_3$

Morse-Bott manifolds of 1-orbits:

$$B_{k/3} \cong (\mathbb{C} \cap \text{slice}) \cong S^1$$

 $B_k = (\mathbb{C}^2/\mathbb{Z}_3) \cap \text{slice} = S^3/\mathbb{Z}_3$

Spectral sequence for First action:

p+q\p	$H^{\scriptscriptstyle{\star}}(X_{_{\mathbb{Z}/3}})$	H*(B _{1/3})[0]	H*(B _{2/3})[2]	H⁺(B ₁)[4]	H*(B _{4/3})[4]
2	•••				
1		•••			
0	•				
-1				•	
-2			•••		
-3					
-4				•	• •

Example 2: $Y = \mathbb{C}^2/\mathbb{Z}_3$

First action:

p+q\p	$H^*(X_{\mathbb{Z}/3})$	H*(B _{1/3})[0]	H*(B _{2/3})[2]	H*(B₁)[4]	H*(B _{4/3})[4]
2	•••				
1					
0	•				
-1				•	
-2			i		
-3					•••
-4				•	

Second and third actions:

			•		
p+q\p	$H^{\star}(X_{\mathbb{Z}/3})$	H*(B _{1/2})[0]	H [*] (B ₁)[2]	H*(B _{3/2})[4]	H*(B ₂)[4]
2	• •				
1		•	•		
0	•	•			
-1				•	•
-2			•	•	
-3					
-4					•

Note how filtration is different on $H^2(Y)$! More precisely, we have $\mathscr{F}_{\mathbb{B},\frac{1}{2}}=$ [the non-minimal sphere]

Comparing to other filtrations

- ullet want to compare ${\mathscr F}$ with other filtrations coming e.g. from algebraic geometry or representation theory.
- Compare degree-wise, on each $H^k(Y)$.
- For any projective equivariant morphism over affine $\Psi: Y \to X$ weight filtration is trivial (Y semiprojective).
- For certain CSRs there are rep. theoretic filtrations [BS'18]. For A_n resolutions $\mathbb{C}^2/(\mathbb{Z}/_{n+1})$, with a particular φ , $\mathscr{F}^{\varphi}(H^2(Y))$ matches with it rankwise.
- For parabolic Higgs bundles $\Psi: \mathcal{M}_{\Gamma} \to \mathbb{C}$ of $\dim_{\mathbb{C}} = 2$, filtration $\mathscr{F}_{\mathbb{B}}(H^2(Y))$ is a refinement of the perverse (P=W) filtration of Ψ .

Compare with multiplicity filtration

• When $\pi: Y \to X \implies \operatorname{Core}(Y) = \pi^{-1}(0) = \cup_i m_i E_i$ (scheme) when $\operatorname{Core}(Y)$ equidimensional \implies filtration

$$M_k := \{E_i \mid m_i \leq k\} \text{ on } H^{top}(Y).$$

- Question: M_k vs $\mathscr{F}_{\mathbb{B},\lambda}$ on $H^{top}(Y)$?
- $\dim_{\mathbb{C}} = 1$: only \mathbb{C} , equal.
- $\dim_{\mathbb{C}} = 2$:
 - Higgs examples (\mathcal{M}_{Γ} and 3 others), **equal.**
 - $\Sigma \times \mathbb{C}$, equal.
 - CSR examples = ADE resolutions, $X_{\Gamma} \to \mathbb{C}^2/\Gamma$, $\Gamma \leq SL(2,\mathbb{C})$, \mathscr{F} is a **refinement** of M_k .
- $\dim_{\mathbb{C}} \geq 3$: Unknown (for now...)

Equivariant comparison: Example of $\dim_{\mathbb{C}} = 4$ CSR

p+q\p	$H^*(S_{32})$	H*(B _{1/5})[-2]	H*(B _{1/3})[0]	H*(B _{2/5})[0]	H*(B _{3/5})[2]	$H^*(B_{2/3})[*]$	$H^*(B_{4/5})[4]$	H*(B ₁)[8]
4								
3			•••					
2		• •	•••					
1			•••••	• •				
0	•		• • • • • •	•••				
-1					•••	••••		•
-2 -3 -4					• •	• • • • • •		
-3						• •		• • • •
-4						• • •		
						1		
p+q\p	H*(<i>S</i> ₃₂)⊗H _{-∗} (©	CP∞) <mark>EH⁺(B_{1/9}</mark>	₅)[-2] EH*(B _{1/3})[0] EH [*] (B _{2/5})	[0] EH*(B _{3/5})[2] EH*(B _{2/3})[*]	EH*(B _{4/5})[4]	EH [*] (B₁)[8]
4		•••						
3								
2								
	• • • •							
1	••••	•••	••••	••••				
1	••••		••••	••••	+			
1 0 -1			••••	•••••	+	•••••		
1 0 -1			••••	•••	•	•••••		•
1				•••••	•	••••	• •	•

The end

Thank you for listening.