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e e B = biomarker
e S1 = SNP 1
S2 = SNP 2
Su, C., Andrew, A., Karagas, M.R. and Borsuk, M.E., 2013. Using Bayesian

Graphical models
C = cancer
E = environment
S3 = SNP 3
° ° Single Nucleotide Polymorphism (SNP)
DAG = Directed ACyCliC Graph networks to discover relations between genes, environment, and disease.
BioData mining, 6(1), pp.1-21.
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Recap of DAG models (Bayesian networks)

G = (Ipl, E) aDAG
(N (Xl, ..., X)) a vector of discrete random variables

R = H[d] n=|%|,|d] = outcome space of X.

F=(foxed, fieRy A =(f D f=1}
XER -
+«— Implicit
M(G):= {f € A;_, : fsatisfies the local Markov property for G }

— Parametric
= {f € A’ _, : fsatisfies the recursive factorization property w.r.t G}



Example

)
Xi31 = (Xi, X5, X3) a vector of binary random variables
R = {000,001,...,111},n=|R| =38

sy = {(Pooos P Y, Py =11,

XER

local Markov property for G : X5 1L X, | X,
M(G) = {p E Ag : PoooP101 — P100Poo1 = Po1oP111 — P11oPo11 = O}

v }

Implicit



Example

)
Xi31 = (Xi, X5, X3) a vector of binary random variables

% = {000,001,...111) . n=|R| =8

AL _1 = 1(Pooos -+-2P111) 2 px =1},

XER
Conditional Independence

local Markov property for G : X5 1L X, | X, Statement
M(G) = 1p € A(7) : PoooP101 — P100Poo1 = Po1oP111 — P11oPo11 = O}

Context-Specific i i
Conditional Independence X3 1L X, ‘Xz =0 X3 1L X, ‘Xz =1

Statement Implicit
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Pooo AM(G) = {(Pooo» --+»P111) € A7 : p satisfies the
recursive factorization property }

fX,p) = Hf(X | Xoa(i)

f(X3)) f(Xl)f(Xz | X)f(X5]|X,) Parametric
Pooo = 3052365 -+ -» P111 = 31555

S()‘I‘Sl — e — SS +Sg — 1 ImpIICIt

M(G) = {p € AY :PoooPl101 — P10oPoo] : 0

Po1oP111 — P11oPo11 = 0}



X[p] = (X, ..., Xp) vector of discrete random variables

|d:] = outcome space of X,

A = outcome space of X

Conditional independence statement: X, 1L X, | X
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f(XA‘XBa XC9 XS) zf(XA‘XCS XS)
for all (X4, Xp, Xq) € Ry X K p X Ky



X, = (X}, ..., X},) vector of discrete random variables

|d:] = outcome space of X,

A = outcome space of X

Conditional independence statement: X, 1l X, | X Cl statement

Let A, B, C, S be disjoint subsets of |p]
A and B are contextually independent given § in the context X = X if

f(XA‘XBa XC9 XS) zf(XA‘XCS XS)
for all (X4, Xp, Xq) € Ry X K p X Ky

X, L Xp| Xq, X = X CSl statement



G = (lpl,E)and A, B, S, C subsets of [p] .
X, is conditionally independent of Xz given X in the context X = X if
f(X4 | Xp, Xq, X)) = f(X4 | Xg, X)), V(Xy,Xp,Xq) €E Ry X B X R

Question: How to encode context-specific conditional independence
statements in DAG models?

Similarity Networks (Heckerman 1990),

Bayesian Multinets (Geiger, Heckerman 1996),

CPTs with regularity structure (Boutelier et. al. 1996),
Staged Trees (Smith, Anderson 2008),

LDAGS (Pensar et. al. 2015)



Axioms for conditional independence

(i) (symmetry) Xall Xp| X = XpllXa| Xc;

(ii) (decomposition) X4l Xpup | X = XAl Xp| Xc;

(iii) (weak union) XalLXpup | Xc = XalXg|Xcup;
)

(contraction) X a1l Xp | Xcoup and X4l Xp | X =
Xall Xpup | Xc.

(iv

F(G) = {all Cl statements implied by the local Markov property }

= {all d-separation statements in G}

Theorem (Verma and Pearl): ¥(G,) = f(G,) if and only if G; and G,
have the same skeleton and v-structures.
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T = mm,---m, an ordering of [p]

I = (V, E) = outcome space of X[p] represented as a sequence of events
A = {leaves of I}
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T = M7, 7, anordering of [p], w.l.o.gz = 12---p

I = (V, E) = outcome space of X[p] represented as a sequence of events
A = {leaves of I}

In a staged tree you color vertices on
the same level to represent conditional
distributions that are equal

X+ X;,_jand y;---y,_q are in the

same stage <

Sl X X-1) = J X Ly Y1)




The staged tree model:
M(T)=1{f€ A _,:[f factor according to T }

w1 * (T )is parametrized by polynomials
o (Y ) is an algebraic variety
e All discrete DAG models are staged
trees

Implicit description of staged
tree mOdeIS Duarte, Gorgen, (2020)
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Pooo AM(G) = {(Pooo» --+»P111) € A7 : p satisfies the
recursive factorization property }

JXip) = Hf (Xi ] Xpaci) Stages
{0}
f(X[3]) f(Xl)f(XZ‘Xl)f(X3‘X2) 1}
Pooo = S05256> -+ -» P111 = S155% ® (00,10}
® (01,11}
@
M(G) = {p € A :pyooPi01 — P1ooPoor = O

®
Po1oP111 — P11oPo11 = 0}



A CStree is a staged tree & such that for every stage S there exists a
context X € £, CC {1,2,....k—1}

s= ) iz

YER 12, k—11\C

The stage S implies the equality

J( Xk [ xcy) = f( X [ xcY)

forally,y' € %1, x—13\¢ Which yields

X b X{1,2,...,k—1}\c|Xc = XC

D, Solus, (2022)



CStree O X;1lX/|X,=0
@ X, 1LX,|X,=0X,=0
e o %0 QO X, 1lLX|X,=0X;,=1
C 1 @ X, U XI|X =1X,=0
= 100
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CStree o X1l X [X,=0
C 0 O X, 1lLX|X,=0,X,=1

©+0 X4 1l Xz ‘X1»X3 =0 Context- DAGS
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(1) symmetry. If (A,B | S, Xc =x¢) € J then (B,A| S, Xc=x¢) € J.

(2) decomposition. If (A, BUD | S, X¢c =x¢) € J then (A,B | S,Xc =x¢) € J.

(3) weak union. If (A, BUD | S, X¢c =x¢) € J then (A,B|SUD,X¢c =x¢) € J.

(4) contraction. If (A,B | SUD,X¢c = x¢) € J and (A,D | §,X¢c = x¢) € J then
(A, BUD | S, Xc =x¢) € J.

(5) intersection. If (A,B | SUD, X¢c = x¢) € J and (A,S | BUD,X¢c = x¢) € J then
(A, BUS | D, Xc =x¢) € J.

(6) specialization. If (A,B | S, Xc=x%x¢)€ J,T C Sand xr € Ry, then (A, B | S\T, X1uc =
XTuc) € J -

(7) absorption. If (A,B | S,X¢c = x¢) € J, T C C for which (A,B | S, Xc\r = xo\7, XT =
x7) € J for all x7 € Rr, then (A,B | SUT,Xc\r =Xc\1) € J.

F(9) = { all CSI statements implied by  }

Absorption = 6 5 = { minimal contexts } = {X. = X}

JT) = Fxex, = S0 Gy 1 Xc=X, € Cy)



CStree
e 010 CStrees
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Theorem (D,Solus 2021): Let &, Y ' be two CStrees. The two
CStrees encode the same CSl statements, Y = 9’ & their
minimal contexts are equal 6 - = 6 5 and for each minimal

context X = X € € 5 the context DAGs Gy _, , Gy _ have

the same skeleton and v-structures.



Question: How to encode context-specific conditional independence
statements in DAG models?

Similarity Networks (Heckerman 1990),

Bayesian Multinets (Geiger, Heckerman 1996),

CPTs with regularity structure (Boutelier et. al. 1996),
Staged Trees (Smith, Anderson 2008),

LDAGS (Pensar et. al. 2015)

e CStrees are a subclass of LDAGs and of Staged Trees

e LDAGs and Staged Trees are too general, determining model
equivalence is difficult.

o (CStrees are the first to model interventions in the context-
specific setting.



Question: How to encode context-specific conditional independence
statements in DAG models?

Similarity Networks (Heckerman 1990),

Bayesian Multinets (Geiger, Heckerman 1996),

CPTs with regularity structure (Boutelier et. al. 1996),
Staged Trees (Smith, Anderson 2008),

LDAGS (Pensar et. al. 2015)

e A similar result extends the results on DAGs with soft
interventions to soft interventions in CStrees

e |earning CStrees https.//cstrees.readthedocs.io/en/latest/
Index.html

e R package for staged trees Varando, Leonelli https://cran.r-
project.org/web/packages/stagedtrees/index.html
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