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Single Nucleotide Polymorphism (SNP)

B = biomarker
C = cancer
E = environment

S1 = SNP 1
S2 = SNP 2
S3 = SNP 3

Su, C., Andrew, A., Karagas, M.R. and Borsuk, M.E., 2013. Using Bayesian 
networks to discover relations between genes, environment, and disease. 
BioData mining, 6(1), pp.1-21.

DAG = Directed Acyclic Graph
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Recap of DAG models (Bayesian networks)
 a DAG


 a vector of discrete random variables


, , outcome space of 


,            ,


G = ([p], E)
X[p] = (X1, …, Xp)

ℛ =
p

∏
i=1

[di] n = |ℛ | [di] = Xi

f = ( fx : x ∈ ℛ) fx ∈ ℝ>0 Δ∘
n−1 = {f : ∑

x∈ℛ

fx = 1}

ℳ(G):= {f ∈ Δ∘
n−1 : f satisfies the local Markov property for G}

:= {f ∈ Δ∘
n−1 : f satisfies the recursive factorization property w.r.t G}

Implicit

Parametric



Example

Implicit

X1 X2 X3

 a vector of binary random variables

, 


,


X[3] = (X1, X2, X3)
ℛ = {000,001,…,111} n = |ℛ | = 8
Δ∘

n−1 = {(p000, …, p111) : ∑
x∈ℛ

px = 1}

 local Markov property for G : X3 ⊥⊥ X1 |X2

ℳ(G) = {p ∈ Δ0
7 : p000p101 − p100p001 = p010p111 − p110p011 = 0}

X3 ⊥⊥ X1 |X2 = 0 X3 ⊥⊥ X1 |X2 = 1
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Context-Specific 
Conditional Independence 

Statement












ℳ(G) := {(p000, …, p111) ∈ Δ∘
7 : p satisfies the

 recursive factorization property}

f(X[p]) =
p

∏
i=1

f(Xi |Xpa(i))

f(X[3]) = f(X1)f(X2 |X1)f(X3 |X2)
p000 = s0s2s6, …, p111 = s1s5s9

s0 + s1 = ⋯ = s8 + s9 = 1

ℳ(G) = {p ∈ Δ0
7 :p000p101 − p100p001 = 0

p010p111 − p110p011 = 0}
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Parametric

X1 X3

Implicit



  vector of discrete random variablesX[p] = (X1, …, Xp)

   outcome space of [di] = Xi

   outcome space of ℛ = X[p]

Conditional independence statement:   XA ⊥⊥ XB |XC
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Let  be disjoint subsets of 

 and  are contextually independent given  in the context  if





for all 


A, B, C, S [p]
A B S XC = xC

f(xA |xB, xC, xS) = f(xA |xC, xS)

(xA, xB, xS) ∈ ℛA × ℛB × ℛS

XA ⊥⊥ XB |XS, XC = xC
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CI statement

CSI statement



 and  subsets of  . 

 is conditionally independent of  given  in the context  if





G = ([p], E) A, B, S, C [p]
XA XB XS XC = xC

f(xA |xB, xS, xC) = f(xA |xS, xC), ∀(xA, xB, xS) ∈ ℛA × ℛB × ℛS
XA ⊥⊥ XB |XS, XC = xC

Question: How to encode context-specific conditional independence 
statements in DAG models?


Similarity Networks (Heckerman 1990), 

Bayesian Multinets (Geiger, Heckerman 1996), 

CPTs with regularity structure (Boutelier et. al. 1996), 

Staged Trees (Smith, Anderson 2008), 

LDAGS (Pensar et. al. 2015)



Axioms for conditional independence




Theorem (Verma and Pearl):  if and only if  and  
have the same skeleton and v-structures.

𝒥(G) = {all CI statements implied by the local Markov property}
= {all d-separation statements in G}

𝒥(G1) = 𝒥(G2) G1 G2
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   an ordering of 

outcome space of  represented as a sequence of events


π = π1π2⋯πp [p]
𝒯 = (V, E) = X[p]
ℛ = {leaves of 𝒯}

Xπ1
Xπ2

Xπk−1
Xπp

Xπk



   an ordering of , w.l.o.g  

outcome space of  represented as a sequence of events


π = π1π2⋯πp [p] π = 12⋯p
𝒯 = (V, E) = X[p]
ℛ = {leaves of 𝒯}

Xπ1
Xπ2

Xπk−1
Xπp

In a staged tree you color vertices on 
the same level to represent conditional 

distributions that are equal

  are in the 
same stage 

x1⋯xk−1 and y1⋯yk−1

⇔

f(Xk |x1⋯xk−1) = f(Xk |y1⋯yk−1)

Xπk



The staged tree model:


ℳ(𝒯) = {f ∈ Δ∘
n−1 : f  factor according to 𝒯}

Xπ1
Xπ2

Xπk−1
Xπp

•   is parametrized by polynomials 

•  is an algebraic variety

• All discrete DAG models are staged 

trees

ℳ(𝒯)
ℳ(𝒯)

Xπk

Duarte, Görgen, (2020)

Implicit description of staged 
tree models
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Stages



A CStree is a staged tree  such that for every stage  there exists a 
context  , 





The stage  implies the equality





for all , which yields 


𝒯 S
xC ∈ ℛC C ⊂ {1,2,…, k − 1}

S = ⋃
y∈ℛ{1,2,…,k−1}∖C

{xCy}

S

f(XK |xCy) = f(Xk |xCy′￼)

y, y′￼ ∈ ℛ{1,2,…,k−1}∖C

Xk ⊥⊥ X{1,2,…,k−1}∖C |XC = xC
D, Solus, (2022)
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𝒥(𝒯) = { all CSI statements implied by 𝒯}
𝒞𝒯 = { minimal contexts } = {Xc = xC}Absorption ⇒

𝒥(𝒯) = ⋃
XC=xC

𝒥XC=xC ⇒ Context 
 DAGS {GXC=xC

: XC = xc ∈ 𝒞𝒯}



CStrees
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⟺
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Theorem (D,Solus 2021):  Let  be two CStrees.  The two 
CStrees encode the same CSI statements, their 
minimal contexts are equal  and for each minimal 
context  the context DAGs  have 
the same skeleton and v-structures.

𝒯, 𝒯′￼

𝒯 = 𝒯′￼ ⇔
𝒞𝒯 = 𝒞𝒯′￼

XC = xC ∈ 𝒞𝒯 GXC=xC
, G′￼XC=xC



• CStrees are a subclass of LDAGs and of Staged Trees

• LDAGs and Staged Trees are too general, determining model 

equivalence is difficult.

• CStrees are the first to model interventions in the context-

specific setting.

Question: How to encode context-specific conditional independence 
statements in DAG models?


Similarity Networks (Heckerman 1990), 

Bayesian Multinets (Geiger, Heckerman 1996), 

CPTs with regularity structure (Boutelier et. al. 1996), 

Staged Trees (Smith, Anderson 2008), 

LDAGS (Pensar et. al. 2015)



• A similar result extends the results on DAGs with soft 
interventions to soft interventions in CStrees


• Learning CStrees https://cstrees.readthedocs.io/en/latest/
index.html


• R package for staged trees Varando, Leonelli https://cran.r-
project.org/web/packages/stagedtrees/index.html
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