Embeddings of Symplectic Balls and configuration spaces

M. Pinsonnault

The University of Western Ontario

IST Geometry Seminar Lisbon, October 2023

Outline

Background

- Symplectic manifolds and symplectic balls
- Symplectic balls and symplectic blow-ups

Symplectic balls in rational 4-manifolds

- Symplectic balls in 4-manifolds
- Symplectic balls in rational 4-manifolds
- Stability of embeddings in rational 4-manifolds
- Stability chambers for n ≤ 8 balls in CP²

Homotopy decompositions of Embedding spaces and of Moduli spaces

- Homotopy decompositions and symplectic stabilizers
- Why this is working for n ≤ 4

Background

Symplectic Manifolds

Definition

A symplectic manifold M^{2m} is a smooth C^{∞} -manifold endowed with a 2-form ω which is closed (i.e $d\omega = 0$) and non-degenerate (i.e $\omega^{\wedge n}$ is a volume form).

The non-degeneracy condition is equivalent to saying that the assignment

 $TM o T^*M$ $X \mapsto \iota_X \omega$

is an isomorphism at every point of M (much like the one defined by a Riemannian metric). The skew-symmetry implies that:

- (M, ω) is of even dimension d = 2m.
- (M, ω) is oriented.
- If (M, ω) is closed then $[\omega]^k \neq 0$ in $H^{2k}(M; \mathbb{R})$, for $1 \leq k \leq m$.

Symplectic flexibility

Proposition (Darboux)

Any point p in a symplectic manifold (X, ω) has a neighborhood symplectomorphic to a standard ball $B^{2m}(\epsilon) \subset \mathbb{R}^{2m}$ of small radius $\epsilon > 0$.

Proposition (Symplectic Neighborhoods)

Let $N_1, N_2 \subset (X, \omega)$ be two symplectic submanifolds. Suppose there exists a symplectomorphism $\phi : N_1 \rightarrow N_2$ which lifts to $\overline{\phi} : T_{N_1}X \rightarrow T_{N_2}X$. Then $\overline{\phi}$ can be extended to a neigborhood of N_1 and N_2 .

Corollary

In dimensions 4, a neighborhood of a proper, embedded, symplectic surface $\Sigma_g \hookrightarrow (M^4, \omega)$ is characterized (symplectically) by $g, [\Sigma_g] \cdot [\Sigma_g]$, and $\omega(S)$.

Symplectomorphisms

Definition

A diffeomorphism $\phi : (M, \omega) \to (M, \omega)$ is a symplectic automorphism, or *symplectomorphism*, if $\phi^* \omega = \omega$. We denote by $\text{Symp}(M, \omega)$ the group of all symplectomorphisms of (M, ω) .

Given any time-dependent function $H: M \times \mathbb{R} \to \mathbb{R}$, the differential dH corresponds to a unique time-dependent vector field X_H via

$$dH(\mathbf{v}) := \omega(\mathbf{X}_{H}, \mathbf{v})$$

Denote by ϕ_t^H the flow of X_H . Then,

$$\mathcal{L}_{X_H}\omega = \iota_{X_H}d\omega + d\iota_{X_H}\omega = 0$$

and it follows that any Hamiltonian flow is symplectic. We denote by $Ham(M, \omega)$ the subgroup of all Hamiltonian flows. We have inclusions

$$\mathsf{Ham} \subset \mathsf{Symp}_0 \subset \mathsf{Symp}_h \subset \mathsf{Symp} \subset \mathsf{Diff}_{\mathsf{vol}}$$

Proposition (Banyaga)

The group $\operatorname{Ham}(M, \omega) \subset \operatorname{Symp}(X, \omega)$ is infinite dimensional and acts *N*-transitively on (M, ω) for all $N \ge 1$. Its isomorphism type completely characterizes (M, ω) . If *M* is compact, Ham is simple.

Given a compact symplectic manifold *S*, let $\text{Emb}_{\omega}(S, M)$ denote the space of all symplectic embeddings $S \hookrightarrow M$. Let $\Im \text{Emb}_{\omega}(S, M)$ be the space of submanifolds that are images of such embeddings. There is a fibration

 $\mathsf{Symp}(\mathcal{S}) o \mathsf{Emb}_\omega(\mathcal{S}, \mathcal{M}) o \Im \mathsf{Emb}_\omega(\mathcal{S}, \mathcal{M})$

Proposition (Banyaga)

If *S* is 1-connected, the group $Ham(M, \omega)$ acts transitively on each path component of $\mathfrak{B}Emb_{\omega}(S, M)$. In other words, each symplectic isotopy $S_t \subset M$ can be realized by an ambient Hamiltonian diffeotopy ϕ_t , i.e., $S_t = \phi_t(S_0)$.

Corollary

For each path component $\operatorname{SEmb}_{\omega}^{C}(S, M)$, there is a fibration

 $\operatorname{Symp}(M, C) \cap \operatorname{Symp}_0(M) \to \operatorname{Symp}_0(M) \to \operatorname{SEmb}^C_\omega(S, M)$

Nonsqueezing

Theorem (Gromov '85)

If there is an embedding of the closed standard ball of radius $r, B^{2m}(r) \subset \mathbb{R}^{2m}$, in a symplectic product $B^2(R) \times \mathbb{R}^{2m-2}$, then r < R.

We define a global symplectic invariant, the Gromov capacity, by setting

 $c_{Gr}(M^{2m},\omega) = \sup\{\pi r^2 \mid B^{2m}(r) \text{ can be symplectically embedded in } M^{2m}\}$

Theorem (Eliashberg, Ekeland-Hofer (1989))

If a diffeomorphism $\phi : (M, \omega) \to (M, \omega)$ preserves the Gromov capacity of all symplectic balls, then $\phi^*(\omega) = \pm \omega$.

Spaces of symplectic balls

Consider the space $\text{Emb}(c_1, \ldots, c_n; M)$ of symplectic embeddings of the disjoint union of *n* standard balls of capacities $c_i = \pi r_i^2$ into (M^{2m}, ω) , endowed with the C^{∞} topology. The space of *unparametrized* embeddings is defined by setting

 $\operatorname{SEmb}(c_1,\ldots,c_n;M) = \operatorname{Emb}(c_1,\ldots,c_n;M) / \operatorname{Symp}(B^{2m}_{c_1}) \times \cdots \times \operatorname{Symp}(B^{2m}_{c_n})$

Note that Darboux's theorem implies that these spaces are nonempty whenever the capacities $\mathbf{c} := \{c_1, \dots, c_n\}$ are small enough.

The problem

Compute the homotopy type of $\text{Emb}(c_1, \ldots, c_n; M)$ or $\Im \text{Emb}(c_1, \ldots, c_n; M)$.

This problem encompasses

- the computation of the the Gromov capacity,
- the computation of the packing numbers,
- the symplectic camel problem.

Preliminary observations

Given $\mathbf{c} = (c_1, \ldots, c_n)$ and $\mathbf{c}' = \{c'_1, \ldots, c'_n\}$, we say $\mathbf{c} \le \mathbf{c}'$ iff $c_i \le c'_i \forall i$. Given $\epsilon = \{\epsilon_1, \ldots, \epsilon_n\}$, $\epsilon_i \ge 0$, we write $\mathbf{c} + \epsilon$ for $\{c_1 + \epsilon_1, \ldots, c_n + \epsilon_n\}$. For each pair $\mathbf{c}, \mathbf{c} + \epsilon$, there is a restriction map

$$i_{\mathbf{c}}^{\mathbf{c}+\epsilon} : \operatorname{Emb}_{n}(\mathbf{c}+\epsilon, M) \to \operatorname{Emb}_{n}(\mathbf{c}, M).$$
 (1)

Let $\operatorname{Sp} \operatorname{Fr}(n, M)$ be the space of symplectic frames at *n* ordered points in *M*. Evaluation of the derivatives at the centers of the *n* balls defines a fibration

$$\operatorname{Emb}_{n}^{\mathsf{f}}(\mathbf{c}, M) \to \operatorname{Emb}_{n}(\mathbf{c}, M) \xrightarrow{l_{\mathbf{c}}} \operatorname{Sp} \operatorname{Fr}(n, M)$$
 (2)

where $\text{Emb}_n^{\mathbf{f}}(\mathbf{c}, M)$ consists of embeddings with a fixed framing \mathbf{f} . Since the evaluation maps commute with restrictions, there is a map

$$\varinjlim \operatorname{Emb}_{n}(\mathbf{c}, M) \xrightarrow{j_{\infty}} \operatorname{Sp} \operatorname{Fr}(n, M)$$
(3)

where the direct limit is taken with respect to reverse inclusions.

M. Pinsonnault (UWO)

Preliminary observations

For (M^{2m}, ω) compact, and for any $n \ge 1$:

- It is enough to consider $0 < c_n \leq \cdots \leq c_1$. In particular, we view the balls as labelled, hence, ordered.
- 2 There exists capacities $\mathbf{c}_0 = (c_1, \ldots, c_n)$ such that the induced map

$$\pi_*(j_{\mathbf{c}}): \pi_*(\operatorname{Emb}_n(\mathbf{c}, M)) \to \pi_*(\operatorname{Sp} \operatorname{Fr}(n, M))$$

is surjective for all $\boldsymbol{c} \leq \boldsymbol{c}_0,$

• The map j_{∞} : $\varinjlim \operatorname{Emb}_n(\mathbf{c}, M) \to \operatorname{Sp} \operatorname{Fr}(n, M)$ is a weak homotopy equivalence.

Remark

In general, it is not known whether there exist capacities $\mathbf{c}_0 = (\mathbf{c}_1, \dots, \mathbf{c}_n)$ such that the map $\text{Emb}_n(\mathbf{c}, M) \to \text{Sp} \operatorname{Fr}(n, M)$ is a weak homotopy equivalence for every $\mathbf{c} \leq \mathbf{c}_0$. We do not even know if $\operatorname{Emb}_n(\mathbf{c}, M)$ is connected for small enough \mathbf{c} . See the discussion of stability below.

Preliminary observations

Corollary (Anjos-Kedra-P.)

Let (M^{2m}, ω) be a compact, simply connected, symplectic manifold. Let n be a positive integer satisfying the following conditions:

- $n \ge 4$ if $M = S^2$,
- $I \ge 3 \text{ if } H(M;\mathbb{Q}) \simeq \mathbb{Q}[x]/x^k,$
- $1 n \geq 2$ in all other cases.

Then there exists capacities $\mathbf{c}_0 = (\mathbf{c}_1, \dots, \mathbf{c}_n)$ such that, for every $\mathbf{c} \leq \mathbf{c}_0$, the embedding space $\operatorname{Emb}_n(\mathbf{c}, M)$ is rationally hyperbolic and the rational cohomology ring $H^*(\operatorname{Fix}(M, \mathcal{B}_{\mathbf{c}}); \mathbb{Q})$ is not finitely generated.

Idea: Under the above conditions on *M* and *n*, the space $Conf_n(M)$ of ordered configurations is rationally hyperbolic, hence Sp Fr(n, M).

Consequence: It is more interesting to understand how the homotopy type of $\text{Emb}_n(\mathbf{c}, M)$ changes as the capacities \mathbf{c} vary.

Symplectic blow-ups

Given a symplectic embedding $B_c^{2m} \hookrightarrow (M^{2m}, \omega)$ of a ball of capacity c, we remove its image and collapse the boundary along the Hopf fibration. The result is a symplectic manifold $(\widetilde{M}_{\iota}, \widetilde{\omega}_{\iota})$ diffeomorphic to $M \# \mathbb{CP}^{m-1}$.

- The symplectic blow-up (*M*_ι, *ω*_ι) depends only on *ω*, the capacity *c*, and on the isotopy class of the embedding *ι*.
- $\Sigma \simeq \mathbb{CP}^{n-1}$ represents a nonzero class $E \in H_{2n-2}(\widetilde{M}_p; \mathbb{Z})$.
- Any projective line \mathbb{CP}^1 in Σ has symplectic area *c*.
- $[\tilde{\omega}_{\iota}] = [\omega] cE$
- $-K_{\widetilde{M}} = -K_M E$
- Any symplectomorphisms acting U(n)-linearly near p or Σ is compatible with the operation.

Symplectic blow-ups in dimension 4

- An almost complex structure J on (M⁴, ω) is compatible with ω if ω(Jx, Jy) = ω(x, y) and ω(x, Jx) > 0 for x ≠ 0. The space J(ω) of all compatible J is always nonempty and contractible.
- A *J*-holomorphic curve is the image of a *J*-holomorphic map $(\Sigma, j) \rightarrow (M, J)$. For compatible *J*, such a curve is always symplectic. In real dimension 4, the blow-up operation produces an embedded symplectic (-1) sphere Σ which can be made almost complex for generic $J \in \mathcal{J}(\widetilde{M})$.
- Conversely, given an embedded symplectic (-1) sphere Σ in (M^4, ω) of area $\omega(\Sigma) = c$, it can be contracted to yield a symplectic manifold *N* with a symplectic ball $B^4(c) \subset N$.

Consequently, *J*-holomorphic curves techniques can be used to probe the embedding spaces Emb and $\Im Emb$.

Symplectic blow-up in dimension 4

In dimension 4, the symplectic blow-up establishes an equivalence between

- Existence of an embedding $B_{c_1} \sqcup \cdots \sqcup B_{c_n} \hookrightarrow (M, \omega)$ (the packing problem) and existence of a symplectic form $\tilde{\omega}$ on \tilde{M} in the cohomology class $[\omega] c_1 E_1 \cdots c_n E_n$.
- Connectedness of SEmb(c₁,..., c_n; M) (the Camel problem) and uniqueness of symplectic blow-ups of M with capacities c₁...c_n.

We are looking for a correspondance of the form

Compact families of n		Compact families of n
disjoint exceptional curves	$ angle \leftrightarrow brace$	disjoint symplectic balls
of areas c_1, \ldots, c_n in \widetilde{M}_n		of capacities c_1, \ldots, c_n in M

Symplectic balls in rational 4-manifolds

Embeddings in 4-manifolds: general setting Lemma (Gromov '85)

The symplectomorphism group of a standard ball $B^4(c) \subset \mathbb{R}^4$ retracts onto U(2).

Lemma (Lalonde-P., 02)

Given $\iota : B^4(c_1) \sqcup \cdots \sqcup B^4(c_n) \hookrightarrow (M^4, \omega)$, there are homotopy equivalences

$$\mathsf{Symp}(\widetilde{M}_{\iota}, \Sigma) \hookrightarrow \mathsf{Symp}^{\mathsf{U}(2)}(\widetilde{M}_{\iota}, \Sigma) \xrightarrow{\mathcal{B}/} \mathsf{Symp}^{\mathsf{U}(2)}(\mathcal{M}, \mathcal{B}) \hookrightarrow \mathsf{Symp}(\mathcal{M}, \mathcal{B})$$

where all maps are inclusions except BI which is induced by the blow-up.

Lemma (Lalonde-P., 02)

Suppose that for some capacities c_1, \ldots, c_n the space of unparametrized embedding is non-empty and connected. There is a homotopy fibration

$$\mathsf{Symp}(\widetilde{M}_{\mathbf{c}}, \Sigma) o \mathsf{Symp}(M) o \Im\mathsf{Emb}(c_1, \ldots, c_n; M)$$

Rational 4-manifolds

Let $\mathcal{C}(M, \omega, N)$ be the set of capacities $\mathbf{c} = (c_1, \dots, c_N)$ for which there exists a symplectic embedding $B^4(c_1) \sqcup \cdots \sqcup B^4(c_n) \hookrightarrow (M, \omega)$.

Theorem

Let M be a symplectic rational 4-manifold.

- (LM96, LL95) Any two cohomologous symplectic forms on M are diffeomorphic.
- ② (LL01) There exists a symplectic embedding $B^4(c_1) \sqcup \cdots \sqcup B^4(c_n) \hookrightarrow (M, \omega)$ if, and only if, the cohomology class

$$[\widetilde{\omega}_{\mathbf{c}}] := [\omega] - c_1(E_1) - \cdots - c_n(E_n) \in H^2(\widetilde{M}_n, \mathbb{R})$$

pairs strictly positively with all exceptional classes in $\mathcal{E}(\widetilde{M}_n)$, and if it satisfies the volume condition $\langle [\widetilde{\omega}_c]^2, [\widetilde{M}_n] \rangle > 0$.

(McD98) If M is a symplectic rational 4-manifold, then for each c ∈ C(M, ω, n), the embedding space Emb_n(c, M) is path-connected. The same holds for M = B⁴(1).

The relative Moser-Kronheimer fibration

- Diff_[c](*M*_c, Σ) diffeomorphisms that preserves the class [ω_c] and that leave Σ invariant.
- Ω_c(Σ) the space of symplectic forms cohomologous to ω_c and for which Σ is symplectic.
- By the relative Moser's lemma, and using Part (1) of the previous Theorem, one can show that there is a evaluation fibration

$$\operatorname{Symp}(\widetilde{M}_{\mathbf{c}}, \Sigma) \to \operatorname{Diff}_{[\mathbf{c}]}(\widetilde{M}, \Sigma) \to \Omega_{\mathbf{c}}(\Sigma).$$
 (4)

The relative McDuff homotopy fibration

Define the space of pairs

 $P_{c}(\Sigma) = \{(\omega', J) \mid \omega' \in \Omega_{c}(\Sigma), J \text{ is compatible with } \omega', \Sigma \text{ is } J\text{-holomorphic}\}$

and the space of compatible almost-complex structures

 $\mathcal{A}_{c}(\Sigma) = \{J \text{ is compatible with some } \omega' \in \Omega_{c}(\Sigma) \text{ and } \Sigma \text{ is } J\text{-holomorphic}\}.$

- The projection maps Ω_c(Σ) ← P_c(Σ) → A_c(Σ) are homotopy equiv.
- The homotopy fiber of the evaluation map Diff_c(*M̃*, Σ) → A_c(Σ) is homotopy equivalent to Symp(*M̃*_c, Σ) and the sequence of maps

$$\operatorname{Symp}(\widetilde{M}_{\mathbf{c}}, \Sigma) \hookrightarrow \operatorname{Diff}_{[\mathbf{c}]}(\widetilde{M}, \Sigma) \to \mathcal{A}_{\mathbf{c}}(\Sigma).$$
 (5)

induces a long exact sequence of homotopy groups.

• Consequently, as the capacities **c** vary, the homotopy types of $Symp(\widetilde{M}_{c}, \Sigma)$ and of $\Im Emb_{n}(\mathbf{c}, M)$ change precisely when the homotopy type of the evaluation map $Diff_{[c]}(\widetilde{M}, \Sigma) \to \mathcal{A}_{c}(\Sigma)$ changes.

Stability of embedding spaces

Definition

Let (M, ω) be a rational 4-manifold and let \mathbf{c}_0 , \mathbf{c}_1 be two sets of capacities in $\mathcal{C}(M, \omega, n)$. We say that \mathbf{c}_0 and \mathbf{c}_1 are in the same stability component if there exists a continuous family of capacities $\mathbf{c}_t \subset \mathcal{C}(M, \omega, n)$ interpolating \mathbf{c}_0 and \mathbf{c}_1 for which the homotopy type of $\text{Emb}_n(\mathbf{c}_t, M)$ is constant.

Corollary

By the McDuff homotopy fibration, the stability components of $C(\mathbf{M}, \omega, n)$ are determined by the homotopy type of the evaluation map $\text{Diff}_{[\mathbf{c}]}(\widetilde{\mathbf{M}}, \Sigma) \to \mathcal{A}_{\mathbf{c}}(\Sigma)$

Here,

 $\text{Diff}_{[c]}(\widetilde{M}_{c}, \Sigma) = \{\text{diffeo. preserving the class } [\widetilde{\omega}_{c}] \text{ and leaving } \Sigma \text{ invariant} \}$

 $\mathcal{A}_{c}(\Sigma) = \{J \text{ is compatible with some } \omega' \in \Omega_{c}(\Sigma) \text{ and } \Sigma \text{ is } J\text{-holomorphic}\}.$

Comparing $\mathcal{A}_{\mathbf{c}}(\Sigma)$ for different capacities

Problem: For two capacities \mathbf{c}, \mathbf{c}' , find $\mathcal{A}_{\mathbf{c}}(\Sigma) \to \mathcal{A}_{\mathbf{c}'}(\Sigma)$ inducing

$$\begin{array}{cccc} \mathsf{Symp}(\widetilde{M}_{\mathbf{c}}, \Sigma) & \longrightarrow & \mathsf{Diff}_{[\mathbf{c}]}(\widetilde{M}, \Sigma) & \longrightarrow & \mathcal{A}_{\mathbf{c}}(\Sigma) \\ & & & \downarrow & & \downarrow \\ & & & \downarrow & & \downarrow \\ \mathsf{Symp}(\widetilde{M}_{\mathbf{c}'}, \Sigma) & \longrightarrow & \mathsf{Diff}_{[\mathbf{c}']}(\widetilde{M}, \Sigma) & \longrightarrow & \mathcal{A}_{\mathbf{c}'}(\Sigma) \end{array}$$

Lemma (Weak $b^+ = 1$ *J*-compatible inflation)

Let *M* be a symplectic 4-manifold with $b^+ = 1$. Given a compatible pair (J, ω) and a *J*-holomorphic embedded curve *Z*, there exists a symplectic form ω' compatible with *J* such that $[\omega'] = [\omega] + tPD(Z)$, $t \in [0, \lambda)$ where $\lambda = \infty$ if $Z \cdot Z \ge 0$ and $\lambda = \frac{\omega(Z)}{(-Z \cdot Z)}$ if $Z \cdot Z < 0$.

It implies that if $[\widetilde{\omega}_{\mathbf{c}'}]$ can be obtained from $[\widetilde{\omega}_{\mathbf{c}}]$ by inflating along a *J*-holomorphic curve *Z* for some $J \in \mathcal{A}_{\mathbf{c}}(\Sigma)$, then $J \in \mathcal{A}_{\mathbf{c}'}(\Sigma)$. In particular, if such a curve *Z* exists for all $J \in \mathcal{A}_{\mathbf{c}}(\Sigma)$, then there is an inclusion $\mathcal{A}_{\mathbf{c}}(\Sigma) \subset \mathcal{A}_{\mathbf{c}'}(\Sigma)$.

Stability chambers for $n \le 8$ balls in **CP**²

Main Fact: On M_n , $n \le 8$, the *J*-compatible inflation is only obstructed by the existence of *J*-holomorphic curves of self-intersection ≤ -1 .

- Given c ∈ C(N), let S_c^{≤-1}(Σ) ⊂ H₂(M_n, ℤ) denote the set of homology classes of embedded ω̃_c-symplectic spheres of self-intersection ≤ −1 that intersect non-negatively with the exceptional classes E₁,..., E_n.
- (ALLP23) For any $1 \le n \le 8$ and any $\mathbf{c} \in \mathcal{C}(n)$ the set $\mathcal{S}_{\mathbf{c}}^{\le -1}(\Sigma)$ is finite.
- Let S^{≤-1}_n(Σ) be the union of the sets S^{≤-1}_c(Σ) over all capacities
 c ∈ C(n).
- To each class A ∈ S_n^{≤-1}(Σ) correspond a linear functional H²(M_n, ℝ) → ℝ and an associated map ℓ_A : C(n) → ℝ defined by setting ℓ_A(c) := ⟨[ω_c], A⟩. The wall corresponding to A ∈ S_n^{≤-1}(Σ) is the set of capacities c ∈ C(n) for which ℓ_A(c) = 0.
- (ALLP23) The set of walls is locally finite, that is, given any c ∈ C(n), 0 ≤ n ≤ 8, there exists an open neighbourhood U ⊂ C(n) that meets at most finitely many walls.

Stability chambers for $n \leq 8$ balls in **CP**²

Theorem

(Stability, (ALLP23) Theorem 1.3) For each integer $1 \le n \le 8$, the set C(n) of admissible capacities admits a partition into convex regions, called stability chambers, such that

- each chamber is a convex polyhedron characterized by the signs of the functionals ℓ_A , $A \in S_n^{\leq -1}(\Sigma)$.
- 2 If two sets of capacities **c** and **c**' belong to the same stability chamber, then we have equality $A_{\mathbf{c}}(\Sigma) = A_{\mathbf{c}'}(\Sigma)$.
- If two sets of capacities c and c' belong to the same stability chamber, then the embedding spaces Emb_n(c, CP²) and Emb_n(c', CP²) are homotopy equivalent.

Stability chambers for $n \leq 8$ balls in **CP**²

It follows that to describe the stability chambers for embeddings of $n \le 8$ balls in **CP**², it suffices to describe the sets $S_n^{\le -1}(\Sigma)$.

Proposition (Zhang 17)

Let J be a tamed almost complex structure on $M_n = M \# n \overline{\mathbf{CP}}^2$ with $n \le 8$, and let $C = aL - \sum r_i E_i$ be an irreducible curve with $C \cdot C \le -1$ and a > 0. Then the homology class [C] is one of the following:

• $L - \sum E_{i_j}$, • $2L - \sum E_{i_j}$, • $3L - 2E_m - \sum_{i_j \neq m} E_{i_j}$, • $4L - 2E_{m_1} - 2E_{m_2} - 2E_{m_3} - \sum_{i_j \neq m_i} E_{i_j}$, • $5L - E_{m_1} - E_{m_2} - \sum_{i_j \neq m_i} 2E_{i_j}$, • $6L - 3E_m - \sum_{i_j \neq m} 2E_{i_j}$.

Stability chambers for $n \le 8$ balls in **CP**² Corollary

Given a tamed almost-complex structure J on the symplectic blow-up of \mathbb{CP}^2 at n disjoint balls of capacities c_1, \ldots, c_n , $0 \le n \le 8$, an embedded J-holomorphic sphere of self-intersection $C \cdot C \le -2$ that intersects each of the exceptional classes E_1, \ldots, E_n non-negatively must represent one of the classes listed in the previous Proposition.

Proof.

Let $[C] = aL - \sum r_i E_i$. Then $0 \le E_i \cdot C = r_i$. Since any *J*-holomorphic representative of [C] must have positive symplectic area, and since $\langle [\widetilde{\omega}_{\mathbf{c}}], [C] \rangle = a - \sum c_i r_i$, the coefficient *a* must be strictly positive.

Theorem (Stability chambers)

For each integer $1 \le n \le 8$, the stability chambers of the set C(n) of admissible capacities are the convex polygonal regions defined by the linear functionals ℓ_A where A is one of the homology classes of self-intersection $A \cdot A \le -2$ listed in the previous Proposition.

Stability chambers for n = 1 or n = 2 balls in **CP**²

- For n = 1, the space of admissible capacities is the interval (0, 1).
- For n = 2, it is the polygon $0 < c_2 \le c_1 < c_1 + c_2 < 1$.
- Since none of the classes in Proposition (Zhang) have self-intersection less than or equal to -2 when $n \le 2$, the entire space of admissible capacities is itself a stability chamber.
- It follows that the homotopy type of embedding spaces is independent of the choice of capacities. Consequently, for n ∈ {1,2}, and for any admissible capacity c, it follows that

$$\operatorname{SEmb}_n(\mathbf{c}, \mathbf{CP}^2) \simeq \varinjlim \operatorname{SEmb}_n(\mathbf{c}, \mathbf{CP}^2) \simeq \operatorname{Conf}_n(\mathbf{CP}^2).$$

This recovers older results (P08i).

• Note that from the complex point of view, for n = 1, 2, every set in $Conf_n(\mathbf{CP}^2)$ is in general position.

Stability chambers for n = 3 balls in **CP**²

- The space of admissible capacities consists of triples $\mathbf{c} = (c_1, c_2, c_3)$ satisfying $0 < c_3 \le c_2 \le c_1 < c_1 + c_2 \le 1$.
- The -2 class $A = L E_1 E_2 E_3$ is the only negative homology class of self-intersection $A \cdot A \leq -2$ contained in the list of Proposition (Zhang). The linear functional ℓ_A separates the space of admissible capacities into two chambers, namely $c_1 + c_2 + c_3 < 1$ and $c_1 + c_2 + c_3 \geq 1$.
- Note that from the complex point of view, for a configuration in Conf₃(CP²), either the 3 points are in general position (belonging to 3 distinct lines) or they are aligned.
- When c₁ + c₂ + c₃ < 1, decreasing the capacities keeps the triple c in the same chamber, so that

$$\Im \mathsf{Emb}_3(\textbf{c},\textbf{CP}^2) \simeq \varinjlim \Im \mathsf{Emb}_3(\textbf{c},\textbf{CP}^2) \simeq \mathsf{Conf}_3(\textbf{CP}^2).$$

Stability chambers for n = 3 balls in **CP**²

- When $c_1 + c_2 + c_3 \ge 1$, the space $\operatorname{SEmb}_3(\mathbf{c}, \mathbf{CP}^2)$ is homotopy equivalent to the space of monotone symplectic embeddings, that is, to $\operatorname{SEmb}_3(\mathbf{c}_m, \mathbf{CP}^2)$ with $\mathbf{c}_m = (1/3, 1/3, 1/3)$.
- For the monotone symplectic blow-up (*M̃*_{c_m}, *ω̃*_{c_m}), each exceptional classes *E* ∈ *E*₃ = {*E*₁, *E*₂, *E*₃, *L* − *E*₁ − *E*₂, *L* − *E*₂ − *E*₃, *L* − *E*₁ − *E*₃} has symplectic area 1/3.
- It follows that *E* is symplectically indecomposable, that is, for every tamed $J \in \mathcal{J}(\widetilde{\omega}_{\mathbf{c}_m})$, *E* has a unique embedded *J*-holomorphic representative. Consequently, the space $\mathcal{J}_{\mathbf{c}_m}(\Sigma)$ is the full space $\mathcal{J}(\widetilde{\omega}_{\mathbf{c}_m})$, which is contractible.
- From the fibration

$$\operatorname{Symp}_{h}(\widetilde{M}_{\mathbf{c}_{m}}, \Sigma) \to \operatorname{Symp}_{h}(\widetilde{M}_{\mathbf{c}_{m}}) \to \mathcal{C}_{\mathbf{c}_{m}}(\Sigma) \simeq \mathcal{J}_{\mathbf{c}_{m}}(\Sigma) \simeq *.$$
(6)

we conclude that the stabilizer $\operatorname{Symp}_h(\widetilde{M}_{\mathbf{c}_m}, \Sigma)$ is homotopy equivalent to the full symplectomorphism group $\operatorname{Symp}_h(\widetilde{M}_{\mathbf{c}_m})$.

By (Evans 13), the latter group is homotopy equivalent to the standard torus T² given by the monotone toric action on M_{c_m}.

Stability chambers for n = 3 balls in **CP**²

 Since this action is the monotone toric blow-up of the standard toric action on CP² that fixes 3 points, we obtain a ladder of homotopy fibrations

$$\begin{array}{cccc} \operatorname{Symp}_{h}(\widetilde{M}_{\mathbf{c}_{m}},\Sigma) & \longrightarrow & \operatorname{Symp}(\mathbf{CP}^{2}) & \longrightarrow & \operatorname{SEmb}_{3}(\mathbf{c}_{m},\mathbf{CP}^{2}) \\ & & \uparrow & & \uparrow & & \uparrow & & (7) \\ & & \mathbf{T}^{2} & \longrightarrow & \operatorname{PU}(3) & \longrightarrow & \operatorname{PU}(3)/\mathbf{T}^{2} \simeq & \operatorname{U}(3)/\mathbf{T}^{3} \end{array}$$

in which the first two vertical arrows are homotopy equivalences.

We conclude that

$$\Im \text{Emb}_3(\textbf{c},\textbf{CP}^2) \simeq \text{PU}(3)/\textbf{T}^2 \simeq \text{U}(3)/\textbf{T}^3$$

for all choices of capacities **c** such that $c_1 + c_2 + c_3 \ge 1$.

Stability chambers for n = 4 balls in **CP**²

- For n = 4, the chambers are defined by the 5 classes L − E_i − E_j − E_k and L − E₁ − E₂ − E₃ − E₄.
- Because of the normalization 0 < c₄ ≤ · · · ≤ c₁ < 1, the symplectic areas of these classes are linearly ordered:

$$\begin{aligned} 1-c_1-c_2-c_3-c_4 < 1-c_1-c_2-c_3 &\leq 1-c_1-c_2-c_4 \\ &\leq 1-c_1-c_3-c_4 \leq 1-c_2-c_3-c_4 \end{aligned}$$

 Consequently, there are exactly 6 stability chambers that we label and order accordingly:

$$C_5 \prec C_4 \prec C_3 \prec C_2 \prec C_1 \prec C_0$$

We will write $\boldsymbol{c}\prec\boldsymbol{c}'$ whenever \boldsymbol{c} belongs to a chamber that preceeds the chamber of $\boldsymbol{c}'.$

 Note that from the complex point of view, the 6 chambers correspond to the relative positions of 4 distinct and ordered points in CP².

Stability chambers for n = 4 balls in **CP**²

We can identify the homotopy type of $\operatorname{SEmb}_4(\mathbf{c}, \mathbf{CP}^2)$ for the two extreme chambers.

 When c ∈ C₅, decreasing the capacities keeps the 4-tuple c in the same chamber, so that

$$\mathfrak{S}\mathsf{Emb}_4(\mathbf{C}, \mathbf{CP}^2) \simeq \varinjlim \mathfrak{S}\mathsf{Emb}_4(\mathbf{C}, \mathbf{CP}^2) \simeq \mathsf{Conf}_4(\mathbf{CP}^2).$$

When c ∈ C₀, then ℑEmb₄(c, CP²) is homotopy equivalent to the space of monotone embeddings c_m = {1/3, 1/3, 1/3, 1/3}. The space of configurations C_{cm}(Σ) is contractible, so that

$$\operatorname{Symp}_h(\widetilde{M}_{\mathbf{c}_m}, \Sigma) \simeq \operatorname{Symp}_h(\widetilde{M}_{\mathbf{c}_m}).$$

- By (Evans 13), $\operatorname{Symp}_{h}(\widetilde{M}_{\mathbf{c}_{m}})$ is contractible.
- We obtain a fibration with contractible fibers

$$* \simeq \operatorname{Symp}_{h}(\widetilde{M}_{c_{m}}, \Sigma) \to \operatorname{PU}(3) \simeq \operatorname{Symp}(\mathbf{CP}^{2}) \to \operatorname{SEmb}_{4}(c_{m}, \mathbf{CP}^{2})$$
 (8)

from which we conclude that

$$\operatorname{SEmb}_4(\mathbf{c}, \mathbf{CP}^2) \simeq \operatorname{PU}(3)$$

for all choices of capacities **c** such that $c_2 + c_3 + c_4 \ge 1$.

Stability chambers for n = 5 balls in **CP**²

- The space of admissible capacities consists of 5-tuples $\mathbf{c} = (c_1, \dots, c_5)$ satisfying $0 < c_5 \leq \dots \leq c_1 < c_1 + c_2 \leq 1$ and $\sum c_i < 2$.
- The chambers are defined by the 16 classes $L E_{i_1} E_{i_2} E_{i_3}$, $L - E_{i_1} - E_{i_2} - E_{i_3} - E_{i_4}$, and $L - E_1 - E_2 - E_3 - E_4 - E_5$.
- This time, the symplectic areas of these classes form a partial order, so that the cell decomposition of the space of admissible capacities is described by a graph with a more complicated structure.

Homotopy decompositions of Embedding spaces and of Moduli Spaces

Two simple observations

• The moduli space of *n* distinct, ordered, points in **CP**² is defined as

$$\mathcal{M}_n(\mathbf{CP}^2) := \operatorname{Conf}_n(\mathbf{CP}^2) / \operatorname{PGL}(3, \mathbb{C})$$

From a homotopy theoretic point of view, it is better to look at the homotopy orbit (i.e. Borel construction)

$$\mathsf{Conf}_n(\mathbf{CP}^2)_{h\,\mathsf{PGL}(3,\mathbb{C})} := \left(E\,\mathsf{PGL}(3,\mathbb{C}) imes \mathsf{Conf}_n(\mathbf{CP}^2) \right) / \,\mathsf{PGL}(3,\mathbb{C})$$

• By (Gromov 85), Symp(${\pmb{CP}}^2)\simeq {\sf PU}(3)\simeq {\sf PGL}(3,\mathbb{C}),$ so that the homotopy fiber of of the evaluation map

$$\mathsf{ev}:\mathsf{PGL}(3,\mathbb{C}) o\mathsf{Conf}_n(\mathbf{CP}^2)$$

is given by

$$\begin{array}{cccc} \mathsf{Symp}(\mathbf{CP}^2,\mathbf{p}) & \longrightarrow & \mathsf{Symp}(\mathbf{CP}(2)) & \longrightarrow & \mathsf{Conf}_n(\mathbf{CP}^2) \\ & & \uparrow & & \uparrow & & \uparrow \\ & & & & & & & \\ F_{\mathsf{ev}} & & \longrightarrow & \mathsf{PGL}(3,\mathbb{C}) & \longrightarrow & \mathsf{Conf}_n(\mathbf{CP}^2) \end{array}$$

Homotopy decompositions and symplectic stabilizers

- The space A_c(Σ) admits a stratification whose strata A_I are characterized by the existence of certain embedded J-holomorphic spheres of negative self-intersection.
- For N = 3, when **c** belongs to the chamber for which $c_1 + c_2 + c_3 \ge 1$, we have $\mathcal{A}_{\mathbf{c}}(\Sigma) = \mathcal{A}_0$, while $\mathcal{A}_{\mathbf{c}}(\Sigma) = \mathcal{A}_0 \sqcup \mathcal{A}_{123}$ when $c_1 + c_2 + c_3 < 1$.
- For n = 4, the space A_c(Σ) admits an analogous stratification whose strata are determined by the chamber C_i to which c belong. More precisely, if c belongs to the chamber C_i, then A_c(Σ) = A_i where

$$\mathcal{A}_0 \subset \mathcal{A}_1 := \mathcal{A}_0 \sqcup \mathcal{A}_{234} \subset \ldots \subset \mathcal{A}_5 := \mathcal{A}_0 \sqcup \mathcal{A}_{234} \sqcup \cdots \sqcup \mathcal{A}_{1234}.$$

Homotopy decompositions and symplectic stabilizers

Proposition

The space $\mathcal{A}(\widetilde{\omega}_{\mathbf{c}}, \Sigma)$ is a submanifold of $\mathcal{A}(\widetilde{\omega}_{\mathbf{c}})$. The stratum $\mathcal{A}_0(\Sigma)$ is open and dense in $\mathcal{A}(\widetilde{\omega}_{\mathbf{c}}, \Sigma)$. If non-empty, the stratum $\mathcal{A}_{ijk}(\Sigma)$ is a codimension 2 submanifold. Moreover, in the case N = 4, the stratum $\mathcal{A}_{1234}(\Sigma)$ is a submanifold of codimension 4.

Proposition

The group $\operatorname{Diff}_h(\widetilde{M}_c, \Sigma)$ acts on $\mathcal{A}(\widetilde{\omega}_c, \Sigma)$ preserving the stratification. The stratum \mathcal{A}_0 is homotopy equivalent to the orbit of an integrable complex structure J_0 . If non-empty, the stratum \mathcal{A}_{ijk} is a codimension 2 submanifold that is homotopy equivalent to the orbit of an integrable complex structure J_{ijk} . The same is true for the stratum \mathcal{A}_{1234} . In all cases, the stabilizer is a group of complex automorphisms whose identity component retracts onto its maximal compact subgroup of Kähler isometries.

Example: Homotopy decompositions for n = 3Taking the homotopy orbits of $\text{Diff}(\widetilde{M}_c, \Sigma)$, the inclusion $\mathcal{A}_0 \subset \mathcal{A}_0 \sqcup \mathcal{A}_{123}$ induces an inclusion

$$\mathsf{BSymp}(\widetilde{\textit{M}}_{\! {\bf c}}, \Sigma) \subset \mathsf{BSymp}(\widetilde{\textit{M}}_{\! {\bf c}'}, \Sigma)$$

whenever $\mathbf{c} \prec \mathbf{c}'$.

Consider the pushout diagram of inclusions

Up to homotopy, Diff(M_c , Σ) acts transitively on the stratum A_0 with stabilizer \mathbf{T}^2 and on the stratum A_{123} with stabilizer \mathbf{S}^1 . Since the stratum A_{123} has codimension 2 in A_0 , the link is a circle C_{123} .

Lemma

The link C_{123} is homotopic to the orbit of an almost complex structure $J_0 \in A_0$ under the action of the stabiliser **S**¹.

M. Pinsonnault (UWO)

Example: Homotopy decompositions for n = 3

Applying the Borel construction with respect to the $\text{Diff}(\tilde{M}_{c}, \Sigma)$ action, this gives

where BStab_0 is the the classifying space of $\mathsf{Symp}(M_{\mathbf{c}}, \Sigma)$ when $c_1 + c_2 + c_3 \leq 1$. Thus the homotopy type of the stabilizer $\mathsf{BSymp}(\widetilde{M}_{\mathbf{c}}, \Sigma)$ when $c_1 + c_2 + c_3 < 1$ is given by $B\mathbf{T}^2 \vee B\mathbf{S}^1$.

Homotopy decompositions of Conf₃(**CP**²)

The configuration space $F = \text{Conf}_3(\mathbf{CP}^2)$ decomposes into two disjoint strata

$$F = F_0 \sqcup F_{123}$$

where

 $F_0 = \{ P \in F \mid \text{points of } P \text{ are in general position} \}$

 $F_{123} = \{ P \in F \mid \text{points of } P \text{ are colinear} \}$

The stratum F_0 is open and dense in F, while F_{123} has codimension 2. The group PGL(3, \mathbb{C}) of holomorphic automorphisms acts transitively on each stratum with stabilisers homotopy equivalent to Kähler actions \mathbf{T}^2 and \mathbf{S}^1 , respectively, so that $F_0 \simeq \text{PGL}(3)/\mathbf{T}^2$ and $F_{123} \simeq \text{PGL}(3)/\mathbf{S}^1_{123}$. We can then apply the Borel construction to F relatively to the PGL(3, \mathbb{C}) action to the following diagram

where \mathcal{N}_{123} is an invariant neighborhood of F_{123} in F.

Homotopy decompositions of Conf₃(**CP**²)

We obtains the following pushout diagram

As this action is homotopy equivalent to the action of $\text{Diff}_{[c]}(M_c, \Sigma)$ on the stratification of $\mathcal{A}_c(\Sigma)$, we recover the homotopy equivalences stated previously. This shows that the configuration space *F* is a finite dimensional model of the embedding space of 3 symplectic balls in **CP**² in which the location of points corresponds to the capacities of the symplectic balls.

The main result

Proposition

For $n \leq 4$, the pushout diagrams coming from the symplectic stratification of $\mathcal{A}_{\mathbf{c}}(\Sigma)$ are homotopy equivalent to the ones coming from the complex stratification of $Conf_n(\mathbf{CP}^2)$.

Claim: This also holds for n = 5.

Naive conjecture: Should hold for $n \le 8$ as well.

The key result for $n \le 4$

The main point is to show:

Proposition

The group $\operatorname{Diff}_h(\widetilde{M}_c, \Sigma)$ acts on $\mathcal{A}(\widetilde{\omega}_c, \Sigma)$ preserving the stratification. The stratum \mathcal{A}_0 is homotopy equivalent to the orbit of an integrable complex structure J_0 . If non-empty, the stratum \mathcal{A}_{ijk} is a codimension 2 submanifold that is homotopy equivalent to the orbit of an integrable complex structure J_{ijk} . The same is true for the stratum \mathcal{A}_{1234} . In all cases, the stabilizer is a group of complex automorphisms whose identity component retracts onto its maximal compact subgroup of Kähler isometries.

To prove this, we have to understand how $\operatorname{Symp}_{h}(\widetilde{M}_{c}, \Sigma)$ acts on spaces of symplectic configurations of embedded spheres that characterize each stratum in $\mathcal{J}_{c}(\Sigma)$ and $\mathcal{A}_{c}(\Sigma)$. The main questions are:

- Show that the action is transitive for each configuration type.
- Ompute the stabilizer for each configuration type.

Configurations of type S_0 for n = 3

Configuration characterizing the stratum $\mathcal{J}_0(\Sigma)$ for n = 3.

Figure: Moment image of the toric configuration S_0 for n = 3.

Its complement is a symplectically star-shaped toric domain.

Configurations of type S_{123} for n = 3

Configuration characterizing the stratum $\mathcal{J}_{123}(\Sigma)$ for n = 3.

Figure: An almost toric construction of the configuration S_{123} for n = 3.

Its complement is a symplectically star-shaped toric domain.

Configurations of type S_0 for n = 4

Configuration characterizing the stratum $\mathcal{J}_0(\Sigma)$ for n = 4.

Figure: Configuration S_0 for n = 4

Its complement is diffeomorphic to the complement of two lines in **CP**².

Configurations of type S_{ijk} for n=4

Figure: Configuration S_{ijk} for n = 4

Its complement is also diffeomorphic to the complement of two lines in **CP**².

Configurations of type S_{ijk} for n = 4

Figure: An almost toric construction of the configuration S_{ijk} for n = 4.

Its complement is a symplectically star-shaped toric domain when $c_j < 1 - c_i - c_\ell$ or $c_j < 1 - c_k - c_\ell$.

Configurations of type S_{1234}

Figure: Configuration S₁₂₃₄

Its complement is diffeomorphic to a ball.

Configurations of type S_{1234}

Figure: An almost toric construction of the configuration S_{1234} .

Its complement is a symplectically star-shaped toric domain.

Our current knowledge

- (Hind-Ivrii, 2010) In S² × S² and CP²#CP², any two homologous, embedded symplectic spheres of negative self-intersection are Hamiltonian isotopic.
- (Borman-Li-Wu, 2014) For n ≥ 3, Symp_h(M_c, ω̃_c) acts transitively on all homologous, symplectic, embedded spheres with -4 ≤ [S] · [S] ≤ -2 as long as [S] is not characteristic (e.g. L E₁ · · · E_n is characteristic).
- (Anjos-Kedra-P, 2023) Same holds for [S] characteristic by a simple modification of the argument.
- (McDuff-Opshtein, 2015) If -4 ≤ [S] · [S] ≤ -2, and if GW([A]) ≠ 0, then the space J([A], S) is connected.
- It follows that if the configurations caracterising the strata of $\mathcal{A}_{\mathbf{c}}(\Sigma)$ only contain a single sphere with $-4 \leq [S] \cdot [S] \leq -2$ and if the other components have $GW([A]) \neq 0$, then $\operatorname{Symp}_{h}(\widetilde{M}_{\mathbf{c}}, \widetilde{\omega}_{\mathbf{c}})$ acts transitively on the orthogonal symplectic configurations.
- If the complement $(\widetilde{M}_{c} \setminus C)$ of a configuration *C* is nice enough, then $\operatorname{Symp}_{\operatorname{comp}}(\widetilde{M}_{c} \setminus C)$ is contractible, and the homotopy type of the symplectic stabiliser of *C* can be computed from local data near *C*. This is the case for all configurations that occur for $n \leq 4$.

The 126 relative positions of 8 points in **CP**²

Rendering by Taylor Brysiewicz