Symplectic embeddings into disk cotangent bundles of spheres

Brayan Ferreira

UFES - Universidade Federal do Espírito Santo

Geometria em Lisboa October 3, 2023

Definition

A sympletic manifold is a pair (M, ω) , where M is a 2n-dimensional manifold and ω is a symplectic form, i.e., ω is a 2-form and satisfies:

Definition

A sympletic manifold is a pair (M, ω) , where M is a 2n-dimensional manifold and ω is a symplectic form, i.e., ω is a 2-form and satisfies:

• (closed) $d\omega = 0$

Definition

A sympletic manifold is a pair (M, ω) , where M is a 2*n*-dimensional manifold and ω is a symplectic form, i.e., ω is a 2-form and satisfies:

- (closed) $d\omega = 0$
- (nondegenerate) $\omega^n = \omega \wedge \ldots \wedge \omega$ is a volume form.

Definition

A sympletic manifold is a pair (M, ω) , where M is a 2*n*-dimensional manifold and ω is a symplectic form, i.e., ω is a 2-form and satisfies:

- (closed) $d\omega = 0$
- (nondegenerate) $\omega^n = \omega \wedge \ldots \wedge \omega$ is a volume form.

•
$$(\mathbb{R}^{2n},\omega_0)$$
, where $\omega_0=\sum_i dx_i\wedge dy_i$

Definition

A sympletic manifold is a pair (M, ω) , where M is a 2*n*-dimensional manifold and ω is a symplectic form, i.e., ω is a 2-form and satisfies:

- (closed) $d\omega = 0$
- (nondegenerate) $\omega^n = \omega \wedge \ldots \wedge \omega$ is a volume form.

•
$$(\mathbb{R}^{2n}, \omega_0)$$
, where $\omega_0 = \sum_i dx_i \wedge dy_i$
• (T^*N, ω_{can}) , where $\omega_{can} = d\lambda_{taut} = \sum_i dp_i \wedge dq_i$

Definition

A sympletic manifold is a pair (M, ω) , where M is a 2*n*-dimensional manifold and ω is a symplectic form, i.e., ω is a 2-form and satisfies:

- (closed) $d\omega = 0$
- (nondegenerate) $\omega^n = \omega \wedge \ldots \wedge \omega$ is a volume form.

- $(\mathbb{R}^{2n}, \omega_0)$, where $\omega_0 = \sum_i dx_i \wedge dy_i$
- (T^*N, ω_{can}) , where $\omega_{can} = d\lambda_{taut} = \sum_{loc.} \sum_i dp_i \wedge dq_i$
- $(\mathbb{C}P^n, \omega_{FS}),$

Definition

A sympletic manifold is a pair (M, ω) , where M is a 2*n*-dimensional manifold and ω is a symplectic form, i.e., ω is a 2-form and satisfies:

- (closed) $d\omega = 0$
- (nondegenerate) $\omega^n = \omega \wedge \ldots \wedge \omega$ is a volume form.

•
$$(\mathbb{R}^{2n},\omega_0)$$
, where $\omega_0=\sum_i dx_i\wedge dy_i$

•
$$(T^*N, \omega_{can})$$
, where $\omega_{can} = d\lambda_{taut} = \sum_{i} dp_i \wedge dq_i$

•
$$(\mathbb{C}P^n, \omega_{FS}), (\Sigma, \omega_{area}), \ldots$$

${\sf Question}\ 1$

When two given symplectic manifolds are symplectomorphic?

Question 1

When two given symplectic manifolds are symplectomorphic?

By Darboux's theorem there are no local invariants, so we must look for global invariants.

Question 1

When two given symplectic manifolds are symplectomorphic?

By Darboux's theorem there are no local invariants, so we must look for global invariants.

Question 2

When a symplectic manifold (M_1, ω_1) symplectically embeds into another (M_2, ω_2) ?

Question 1

When two given symplectic manifolds are symplectomorphic?

By Darboux's theorem there are no local invariants, so we must look for global invariants.

Question 2

When a symplectic manifold (M_1, ω_1) symplectically embeds into another (M_2, ω_2) ?

The first obstruction is the volume: $Vol(M_1) \leq Vol(M_2)$, are there others?

Let

$$B^{2n}(r) = \{(q, p) \in \mathbb{R}^{2n} \mid |q|^2 + |p|^2 < r^2\}$$

Let

$$B^{2n}(r) = \{(q,p) \in \mathbb{R}^{2n} \mid |q|^2 + |p|^2 < r^2\}$$

 $Z^{2n}(r) = \{(q,p) \in \mathbb{R}^{2n} \mid q_1^2 + p_1^2 < r^2\}.$

Let

$$B^{2n}(r) = \{(q,p) \in \mathbb{R}^{2n} \mid |q|^2 + |p|^2 < r^2\}$$

 $Z^{2n}(r) = \{(q,p) \in \mathbb{R}^{2n} \mid q_1^2 + p_1^2 < r^2\}.$

Theorem (Gromov, 1985) $B^{2n}(r) \stackrel{s}{\hookrightarrow} Z^{2n}(R) \iff r \le R.$

Let

$$B^{2n}(r) = \{(q,p) \in \mathbb{R}^{2n} \mid |q|^2 + |p|^2 < r^2\}$$

 $Z^{2n}(r) = \{(q,p) \in \mathbb{R}^{2n} \mid q_1^2 + p_1^2 < r^2\}.$

Let

$$B^{2n}(r) = \{(q,p) \in \mathbb{R}^{2n} \mid |q|^2 + |p|^2 < r^2\}$$

 $Z^{2n}(r) = \{(q,p) \in \mathbb{R}^{2n} \mid q_1^2 + p_1^2 < r^2\}.$

Symplectic embeddings \neq Volume preserving embeddings

Definition

A symplectic capacity is a map $(M, \omega) \mapsto c(M, \omega)$ which associates with every symplectic manifold (possibly with boundary) (M, ω) a nonnegative number or ∞ satisfying:

Definition

A symplectic capacity is a map $(M, \omega) \mapsto c(M, \omega)$ which associates with every symplectic manifold (possibly with boundary) (M, ω) a nonnegative number or ∞ satisfying:

•
$$(M_1, \omega_1) \hookrightarrow (M_2, \omega_2) \Rightarrow c(M_1, \omega_1) \leq c(M_2, \omega_2),$$

Definition

A symplectic capacity is a map $(M, \omega) \mapsto c(M, \omega)$ which associates with every symplectic manifold (possibly with boundary) (M, ω) a nonnegative number or ∞ satisfying:

•
$$(M_1, \omega_1) \hookrightarrow (M_2, \omega_2) \Rightarrow c(M_1, \omega_1) \leq c(M_2, \omega_2),$$

•
$$c(M, \alpha \omega) = |\alpha| c(M, \omega)$$
 for all $\alpha \in \mathbb{R} \setminus \{0\}$,

Definition

A symplectic capacity is a map $(M, \omega) \mapsto c(M, \omega)$ which associates with every symplectic manifold (possibly with boundary) (M, ω) a nonnegative number or ∞ satisfying:

•
$$(M_1, \omega_1) \hookrightarrow (M_2, \omega_2) \Rightarrow c(M_1, \omega_1) \leq c(M_2, \omega_2),$$

•
$$c(M, \alpha \omega) = |\alpha| c(M, \omega)$$
 for all $\alpha \in \mathbb{R} \setminus \{0\}$,

• $c(B^{2n}(r), \omega_0) > 0$ and $c(Z^{2n}(r), \omega_0) < \infty$.

The first example is the Gromov width

The first example is the Gromov width

$$c_{Gr}(X,\omega) = \sup\{\pi r^2 \mid (B^{2n}(r),\omega_0) \stackrel{s}{\hookrightarrow} (X,\omega)\}.$$

The first example is the Gromov width

$$c_{Gr}(X,\omega) = \sup\{\pi r^2 \mid (B^{2n}(r),\omega_0) \stackrel{s}{\hookrightarrow} (X,\omega)\}.$$

The first example is the Gromov width

$$c_{Gr}(X,\omega) = \sup\{\pi r^2 \mid (B^{2n}(r),\omega_0) \stackrel{s}{\hookrightarrow} (X,\omega)\}.$$

Other examples of symplectic capacities:

• Ekeland-Hofer capacities c_k^{EH} ;

The first example is the Gromov width

$$c_{Gr}(X,\omega) = \sup\{\pi r^2 \mid (B^{2n}(r),\omega_0) \stackrel{s}{\hookrightarrow} (X,\omega)\}.$$

- Ekeland-Hofer capacities c_k^{EH} ;
- Hofer-Zehnder capacity *c_{HZ}*;

The first example is the Gromov width

$$c_{Gr}(X,\omega) = \sup\{\pi r^2 \mid (B^{2n}(r),\omega_0) \stackrel{s}{\hookrightarrow} (X,\omega)\}.$$

- Ekeland-Hofer capacities c_k^{EH} ;
- Hofer-Zehnder capacity *c_{HZ}*;
- Viterbo capacity *c_{SH}*;

The first example is the Gromov width

$$c_{Gr}(X,\omega) = \sup\{\pi r^2 \mid (B^{2n}(r),\omega_0) \stackrel{s}{\hookrightarrow} (X,\omega)\}.$$

- Ekeland-Hofer capacities c_k^{EH} ;
- Hofer-Zehnder capacity *c_{HZ}*;
- Viterbo capacity *c_{SH}*;
- S^1 -equivariant symplectic homology capacities c_k^{CH} (Gutt-Hutchings);

The first example is the Gromov width

$$c_{Gr}(X,\omega) = \sup\{\pi r^2 \mid (B^{2n}(r),\omega_0) \stackrel{s}{\hookrightarrow} (X,\omega)\}.$$

- Ekeland-Hofer capacities c_k^{EH} ;
- Hofer-Zehnder capacity *c_{HZ}*;
- Viterbo capacity *c_{SH}*;
- S^1 -equivariant symplectic homology capacities c_k^{CH} (Gutt-Hutchings);
- ECH capacities c_k^{ECH} (Hutchings) only in dimension 4.

• Ellipsoids (Hutchings):

$$E(a,b) = \left\{ (z_1,z_2) \in \mathbb{C}^2 \mid \pi\left(\frac{|z_1|^2}{a} + \frac{|z_2|^2}{b}\right) < 1 \right\}.$$

• Ellipsoids (Hutchings):

$$E(a,b) = \left\{ (z_1, z_2) \in \mathbb{C}^2 \mid \pi\left(\frac{|z_1|^2}{a} + \frac{|z_2|^2}{b}\right) < 1 \right\}.$$

Then $c_k(E(a,b), \omega_0) = (k+1)^{\text{st}}$ element of the set $\{ma + nb \mid m, n \in \mathbb{Z}_{\geq 0}\}.$

• Ellipsoids (Hutchings): $E(a,b) = \left\{ (z_1, z_2) \in \mathbb{C}^2 \mid \pi\left(\frac{|z_1|^2}{a} + \frac{|z_2|^2}{b}\right) < 1 \right\}.$ Then $c_k(E(a,b), \omega_0) = (k+1)^{\text{st}}$ element of the set $\{ma + nb \mid m, n \in \mathbb{Z}_{\geq 0}\}.$ In particular, for the ball B(a) = E(a,a):

$$(c_k(B(a),\omega_0))_k = (0, a^{\times 2}, 2a^{\times 3}, 3a^{\times 4}, 4a^{\times 5}, \dots).$$

- Ellipsoids (Hutchings): $E(a,b) = \left\{ (z_1, z_2) \in \mathbb{C}^2 \mid \pi\left(\frac{|z_1|^2}{a} + \frac{|z_2|^2}{b}\right) < 1 \right\}.$ Then $c_k(E(a,b), \omega_0) = (k+1)^{\text{st}}$ element of the set $\{ma + nb \mid m, n \in \mathbb{Z}_{\geq 0}\}.$ In particular, for the ball B(a) = E(a,a): $(c_k(B(a), \omega_0))_k = (0, a^{\times 2}, 2a^{\times 3}, 3a^{\times 4}, 4a^{\times 5}, \dots).$
- Disk cotangent bundles of Zoll spheres (F., Ramos, Vicente): $D^*S_{Zoll} = \{(q, p) \in T^*S \mid ||p|| < 1\}.$

- Ellipsoids (Hutchings): $E(a,b) = \left\{ (z_1, z_2) \in \mathbb{C}^2 \mid \pi\left(\frac{|z_1|^2}{a} + \frac{|z_2|^2}{b}\right) < 1 \right\}.$ Then $c_k(E(a,b), \omega_0) = (k+1)^{\text{st}}$ element of the set $\{ma + nb \mid m, n \in \mathbb{Z}_{\geq 0}\}.$ In particular, for the ball B(a) = E(a,a): $(c_k(B(a), \omega_0))_k = (0, a^{\times 2}, 2a^{\times 3}, 3a^{\times 4}, 4a^{\times 5}, \dots).$
- Disk cotangent bundles of Zoll spheres (F., Ramos, Vicente): $D^*S_{Zoll} = \{(q, p) \in T^*S \mid ||p|| < 1\}.$ Then

$$(c_k(D^*S_{ZoII},\omega_{can}))_k = (0,2\ell^{\times 3},4\ell^{\times 5},6\ell^{\times 7},8\ell^{\times 9},\ldots),$$

where ℓ is the length of any simple closed geodesic on S_{Zoll} .

- Ellipsoids (Hutchings): $E(a,b) = \left\{ (z_1, z_2) \in \mathbb{C}^2 \mid \pi\left(\frac{|z_1|^2}{a} + \frac{|z_2|^2}{b}\right) < 1 \right\}.$ Then $c_k(E(a,b), \omega_0) = (k+1)^{\text{st}}$ element of the set $\{ma + nb \mid m, n \in \mathbb{Z}_{\geq 0}\}.$ In particular, for the ball B(a) = E(a,a): $(c_k(B(a), \omega_0))_k = (0, a^{\times 2}, 2a^{\times 3}, 3a^{\times 4}, 4a^{\times 5}, \dots).$
- Disk cotangent bundles of Zoll spheres (F., Ramos, Vicente): $D^*S_{Zoll} = \{(q, p) \in T^*S \mid ||p|| < 1\}.$ Then

$$(c_k(D^*S_{Zoll},\omega_{can}))_k = (0,2\ell^{\times 3},4\ell^{\times 5},6\ell^{\times 7},8\ell^{\times 9},\ldots),$$

where ℓ is the length of any simple closed geodesic on S_{Zoll} . It agrees with the "even multiples" that appears in the sequence for the ball $B(\ell)$.

Toric domains

A subset $\Omega \subset (\mathbb{R}_{\geq 0})^2$ gives rise to a domain:

$$\mathbb{X}_{\Omega} = \{(z_1, z_2) \in \mathbb{C}^2 | (\pi |z_1|^2, \pi |z_2|^2) \in \Omega \}.$$
Toric domains

A subset $\Omega \subset (\mathbb{R}_{\geq 0})^2$ gives rise to a domain:

$$\mathbb{X}_{\Omega} = \{(z_1, z_2) \in \mathbb{C}^2 | (\pi |z_1|^2, \pi |z_2|^2) \in \Omega\}.$$

Examples: E(a, b) and P(a, b).

Toric domains

A subset $\Omega \subset (\mathbb{R}_{\geq 0})^2$ gives rise to a domain:

$$\mathbb{X}_{\Omega} = \{(z_1, z_2) \in \mathbb{C}^2 | (\pi |z_1|^2, \pi |z_2|^2) \in \Omega \}.$$

Examples: E(a, b) and P(a, b).

Fix (M^{2n}, ω) and let $F = (H^1, \ldots, H^n) : M \to \mathbb{R}^n$ whose components Poisson commute, i.e., $\{H_i, H_j\} := \omega(X_{H_i}, X_{H_j}) = 0$.

Fix (M^{2n}, ω) and let $F = (H^1, \ldots, H^n) : M \to \mathbb{R}^n$ whose components Poisson commute, i.e., $\{H_i, H_j\} := \omega(X_{H_i}, X_{H_j}) = 0.$

If c ∈ ℝⁿ is a regular value of F and F⁻¹(c) is compact and connected, then F⁻¹(c) ≅ Tⁿ.

Fix (M^{2n}, ω) and let $F = (H^1, \ldots, H^n) : M \to \mathbb{R}^n$ whose components Poisson commute, i.e., $\{H_i, H_j\} := \omega(X_{H_i}, X_{H_j}) = 0.$

- If $c \in \mathbb{R}^n$ is a regular value of F and $F^{-1}(c)$ is compact and connected, then $F^{-1}(c) \cong \mathbb{T}^n$.
- Let U be a simply-connected open set of regular points. For $c \in F(U)$, let $\{\gamma_1^c, \ldots, \gamma_n^c\}$ be simple closed curves generating $H_1(F^{-1}(c); \mathbb{Z})$ and suppose $\omega = d\lambda$ on U. Let

$$\phi(\mathbf{c}) = \left(\int_{\gamma_1^{\mathbf{c}}} \lambda, \ldots, \int_{\gamma_n^{\mathbf{c}}} \lambda\right).$$

Fix (M^{2n}, ω) and let $F = (H^1, \ldots, H^n) : M \to \mathbb{R}^n$ whose components Poisson commute, i.e., $\{H_i, H_j\} := \omega(X_{H_i}, X_{H_j}) = 0.$

- If $c \in \mathbb{R}^n$ is a regular value of F and $F^{-1}(c)$ is compact and connected, then $F^{-1}(c) \cong \mathbb{T}^n$.
- Let U be a simply-connected open set of regular points. For $c \in F(U)$, let $\{\gamma_1^c, \ldots, \gamma_n^c\}$ be simple closed curves generating $H_1(F^{-1}(c); \mathbb{Z})$ and suppose $\omega = d\lambda$ on U. Let

$$\phi(\mathbf{c}) = \left(\int_{\gamma_1^c} \lambda, \ldots, \int_{\gamma_n^c} \lambda\right).$$

Then there exists a symplectomorphism $\Phi : (U, \omega) \to (\phi(U) \times \mathbb{T}^n, \omega_0)$ such that the following diagram commutes.

Some toric domains in disguise

Theorem

• The Lagrangian bidisk $D^2 \times_L D^2 \subset \mathbb{R}^4$ is symplectomorphic to a concave toric domain. (Ramos 2017)

Some toric domains in disguise

Theorem

- The Lagrangian bidisk D² ×_L D² ⊂ ℝ⁴ is symplectomorphic to a concave toric domain. (Ramos 2017)
- The ℓ_p -sum of two disks

$$\mathbb{X}_{p} := \{ (\mathbf{x}, \mathbf{y}) \in \mathbb{R}^{2} imes \mathbb{R}^{2} \mid \|\mathbf{x}\|^{p} + \|\mathbf{y}\|^{p} < 1 \}$$

is symplectomorphic to a toric domain which is convex for $p \in [1, 2]$ and concave for $p \in [2, \infty]$. (Ostrover, Ramos 2020)

Some toric domains in disguise

Theorem

- The Lagrangian bidisk $D^2 \times_L D^2 \subset \mathbb{R}^4$ is symplectomorphic to a concave toric domain. (Ramos 2017)
- The ℓ_p -sum of two disks

$$\mathbb{X}_{p} := \{ (\mathbf{x}, \mathbf{y}) \in \mathbb{R}^{2} imes \mathbb{R}^{2} \mid \|\mathbf{x}\|^{p} + \|\mathbf{y}\|^{p} < 1 \}$$

is symplectomorphic to a toric domain which is convex for $p \in [1, 2]$ and concave for $p \in [2, \infty]$. (Ostrover, Ramos 2020)

• The Lagrangian product of a hypercube and a symmetric region in \mathbb{R}^{2n} is symplectomorphic to a toric domain. (Ramos, Sepe, 2019)

(N,g) Riemannian manifold.

(N,g) Riemannian manifold. $D^*N = \{\nu \mid \nu \in T^*N, \|\nu\| \le 1\}$ is a symplectic manifold with boundary S^*N .

(N,g) Riemannian manifold. $D^*N = \{\nu \mid \nu \in T^*N, \|\nu\| \le 1\}$ is a symplectic manifold with boundary S^*N . Symplectic form: $\omega_{can} = d\lambda$,

(N, g) Riemannian manifold. $D^*N = \{\nu \mid \nu \in T^*N, \|\nu\| \le 1\}$ is a symplectic manifold with boundary S^*N .

Symplectic form: $\omega_{can} = d\lambda$, where $\lambda = pdq$ is the tautological form.

(N,g) Riemannian manifold.

 $D^*N = \{\nu \mid \nu \in T^*N, \|\nu\| \le 1\}$ is a symplectic manifold with boundary S^*N .

Symplectic form: $\omega_{can} = d\lambda$, where $\lambda = pdq$ is the tautological form. It turns out that λ restricts to a contact form on S^*N

(N,g) Riemannian manifold.

 $D^*N = \{\nu \mid \nu \in T^*N, \|\nu\| \le 1\}$ is a symplectic manifold with boundary S^*N .

Symplectic form: $\omega_{can} = d\lambda$, where $\lambda = pdq$ is the tautological form. It turns out that λ restricts to a contact form on S^*N , i.e., $\lambda|_{S^*N} \wedge (d\lambda|_{S^*N})^{n-1} > 0.$

(N,g) Riemannian manifold.

 $D^*N = \{\nu \mid \nu \in T^*N, \|\nu\| \le 1\}$ is a symplectic manifold with boundary S^*N .

Symplectic form: $\omega_{can} = d\lambda$, where $\lambda = pdq$ is the tautological form. It turns out that λ restricts to a contact form on S^*N , i.e., $\lambda|_{S^*N} \wedge (d\lambda|_{S^*N})^{n-1} > 0$.

The Reeb vector field R_{λ} is the unique vector field defined by the equations $i_{R_{\lambda}}d\lambda = 0$ and $\lambda(R_{\lambda}) \equiv 1$.

(N,g) Riemannian manifold.

 $D^*N = \{\nu \mid \nu \in T^*N, \|\nu\| \le 1\}$ is a symplectic manifold with boundary S^*N .

Symplectic form: $\omega_{can} = d\lambda$, where $\lambda = pdq$ is the tautological form. It turns out that λ restricts to a contact form on S^*N , i.e., $\lambda|_{S^*N} \wedge (d\lambda|_{S^*N})^{n-1} > 0$.

The Reeb vector field R_{λ} is the unique vector field defined by the equations $i_{R_{\lambda}}d\lambda = 0$ and $\lambda(R_{\lambda}) \equiv 1$.

Fact - exercise

Reeb vector field R_{λ} on (S^*N, λ) is dual to the geodesic vector field on SN via $g^b: TN \to T^*N$.

(N,g) Riemannian manifold.

 $D^*N = \{\nu \mid \nu \in T^*N, \|\nu\| \le 1\}$ is a symplectic manifold with boundary S^*N .

Symplectic form: $\omega_{can} = d\lambda$, where $\lambda = pdq$ is the tautological form. It turns out that λ restricts to a contact form on S^*N , i.e., $\lambda|_{S^*N} \wedge (d\lambda|_{S^*N})^{n-1} > 0$.

The Reeb vector field R_{λ} is the unique vector field defined by the equations $i_{R_{\lambda}}d\lambda = 0$ and $\lambda(R_{\lambda}) \equiv 1$.

Fact - exercise

Reeb vector field R_{λ} on (S^*N, λ) is dual to the geodesic vector field on SN via $g^b \colon TN \to T^*N$. Moreover, the action $\mathcal{A}(\gamma) = \int_{\gamma} \lambda$ of a Reeb orbit γ on S^*N agrees with the length of the projected geodesic on the base N.

Theorem (F., Ramos)

The following symplectic embeddings exist:

•
$$(B(2\pi), \omega_0) \hookrightarrow (D^*S^2, \omega_{can});$$

Theorem (F., Ramos)

The following symplectic embeddings exist:

•
$$(B(2\pi), \omega_0) \hookrightarrow (D^*S^2, \omega_{can});$$

• $(B(2\pi), \omega_0) \hookrightarrow (D^* \mathbb{R} P^2, \omega_{can});$

Theorem (F., Ramos)

The following symplectic embeddings exist:

•
$$(B(2\pi), \omega_0) \hookrightarrow (D^*S^2, \omega_{can});$$

• $(B(2\pi), \omega_0) \hookrightarrow (D^* \mathbb{R} P^2, \omega_{can});$

•
$$(E(2\pi, 4\pi), \omega_0) \hookrightarrow (D^*S^2, \omega_{can});$$

Theorem (F., Ramos)

The following symplectic embeddings exist:

•
$$(B(2\pi), \omega_0) \hookrightarrow (D^*S^2, \omega_{can});$$

• $(B(2\pi), \omega_0) \hookrightarrow (D^*\mathbb{R}P^2, \omega_{can});$
• $(E(2\pi, 4\pi), \omega_0) \hookrightarrow (D^*S^2, \omega_{can});$

•
$$(P(2\pi, 2\pi), \omega_0) \hookrightarrow (D^*S^2, \omega_{can}).$$

Theorem (F., Ramos)

The following symplectic embeddings exist:

•
$$(B(2\pi), \omega_0) \hookrightarrow (D^*S^2, \omega_{can});$$

• $(B(2\pi), \omega_0) \hookrightarrow (D^*\mathbb{R}P^2, \omega_{can});$
• $(E(2\pi, 4\pi), \omega_0) \hookrightarrow (D^*S^2, \omega_{can});$
• $(P(2\pi, 2\pi), \omega_0) \hookrightarrow (D^*S^2, \omega_{can}).$

Moreover, all of these embeddings are sharp. In particular,

$$c_{Gr}(D^*S^2,\omega_{can})=c_{Gr}(D^*\mathbb{R}P^2,\omega_{can})=2\pi.$$

Theorem (F., Ramos)

The following symplectic embeddings exist:

•
$$(B(2\pi), \omega_0) \hookrightarrow (D^*S^2, \omega_{can});$$

• $(B(2\pi), \omega_0) \hookrightarrow (D^*\mathbb{R}P^2, \omega_{can});$
• $(E(2\pi, 4\pi), \omega_0) \hookrightarrow (D^*S^2, \omega_{can});$
• $(P(2\pi, 2\pi), \omega_0) \hookrightarrow (D^*S^2, \omega_{can}).$

Moreover, all of these embeddings are sharp. In particular,

$$c_{Gr}(D^*S^2, \omega_{can}) = c_{Gr}(D^*\mathbb{R}P^2, \omega_{can}) = 2\pi.$$

Proof Idea: Using action-angle coordinates from Arnold–Liouville Theorem we prove that $D^*\Sigma$ is symplectomorphic to $B(2\pi)$ for any hemisphere $\Sigma \subset S^2$

Theorem (F., Ramos)

The following symplectic embeddings exist:

•
$$(B(2\pi), \omega_0) \hookrightarrow (D^*S^2, \omega_{can});$$

• $(B(2\pi), \omega_0) \hookrightarrow (D^*\mathbb{R}P^2, \omega_{can});$
• $(E(2\pi, 4\pi), \omega_0) \hookrightarrow (D^*S^2, \omega_{can});$
• $(P(2\pi, 2\pi), \omega_0) \hookrightarrow (D^*S^2, \omega_{can}).$

Moreover, all of these embeddings are sharp. In particular,

$$c_{Gr}(D^*S^2,\omega_{can})=c_{Gr}(D^*\mathbb{R}P^2,\omega_{can})=2\pi.$$

Proof Idea: Using action-angle coordinates from Arnold–Liouville Theorem we prove that $D^*\Sigma$ is symplectomorphic to $B(2\pi)$ for any hemisphere $\Sigma \subset S^2$ and $D^*(S^2 \setminus \{q\})$ is symplectomorphic to $P(2\pi, 2\pi)$ for any point $q \in S^2$. \Box

Theorem (F., Ramos, Vicente) Let $S \subset \mathbb{R}^3$ be a sphere of revolution with a unique equator.

Theorem (F., Ramos, Vicente)

Let $S \subset \mathbb{R}^3$ be a sphere of revolution with a unique equator. Then there exists a toric domain \mathbb{X}_{Ω_S} such that $(D^*(S \setminus \{P_N\}), \omega_{can})$ is symplectomorphic to $(int \mathbb{X}_{\Omega_S}, \omega_0)$.

Theorem (F., Ramos, Vicente)

Let $S \subset \mathbb{R}^3$ be a sphere of revolution with a unique equator. Then there exists a toric domain \mathbb{X}_{Ω_S} such that $(D^*(S \setminus \{P_N\}), \omega_{can})$ is symplectomorphic to $(int \mathbb{X}_{\Omega_S}, \omega_0)$.

Proof Idea: Action-angle coordinates from Arnold–Liouville Theorem for the perturbed system:

$$H_{\varepsilon}(q,p) = \|p\|^2 + U_{\varepsilon}(q) \quad J(q,p) = p(\partial_{\theta}),$$

where U_{ε} is a suitable smooth function.

Theorem (F., Ramos, Vicente)

Let $S \subset \mathbb{R}^3$ be a sphere of revolution with a unique equator. Then there exists a toric domain \mathbb{X}_{Ω_S} such that $(D^*(S \setminus \{P_N\}), \omega_{can})$ is symplectomorphic to $(int \mathbb{X}_{\Omega_S}, \omega_0)$.

Proof Idea: Action-angle coordinates from Arnold–Liouville Theorem for the perturbed system:

$$H_{\varepsilon}(q,p) = \|p\|^2 + U_{\varepsilon}(q) \quad J(q,p) = p(\partial_{\theta}),$$

where U_{ε} is a suitable smooth function. Nested domains $H_{\varepsilon}^{-1}([0,1)) \cong X_{\Omega_{\varepsilon}}$ converging to $D^*(S \setminus \{P_N\}) \cong \operatorname{int} X_{\Omega_S}$ when $\varepsilon \to 0$. \Box

Toric image

In fact, if S is obtained revolving the graph of a function u around the z-axis, $\Omega_S \subset \mathbb{R}^2_{\geq 0}$ given in the Theorem is the region bounded by the coordinate axis and the curve parametrized by

$$\begin{cases} (f_{S}(j), f_{S}(j) + j), \text{ if } 0 \leq j \leq 2\pi u(z_{0}), \\ (f_{S}(-j) - j, f_{S}(-j)), \text{ if } -2\pi u(z_{0}) \leq j \leq 0, \end{cases}$$

for the function

$$f_{\mathcal{S}}(j) = 2 \int_{z_{-}(1,j)}^{z_{+}(1,j)} \sqrt{\left(1 - \frac{j^{2}}{4\pi^{2}u(z)^{2}}\right)(u'(z)^{2} + 1)} dz.$$

Toric image

In fact, if S is obtained revolving the graph of a function u around the z-axis, $\Omega_S \subset \mathbb{R}^2_{\geq 0}$ given in the Theorem is the region bounded by the coordinate axis and the curve parametrized by

$$\begin{cases} (f_{S}(j), f_{S}(j) + j), \text{ if } 0 \leq j \leq 2\pi u(z_{0}), \\ (f_{S}(-j) - j, f_{S}(-j)), \text{ if } -2\pi u(z_{0}) \leq j \leq 0, \end{cases}$$

for the function

$$f_{S}(j) = 2 \int_{z_{-}(1,j)}^{z_{+}(1,j)} \sqrt{\left(1 - \frac{j^{2}}{4\pi^{2}u(z)^{2}}\right)(u'(z)^{2} + 1)} dz.$$

Here z_0 is the unique critical point of u and $z_{\pm}(1,j)$ are the solutions of $(2\pi u(z))^2 - j^2 = 0$.

Toric image

In fact, if S is obtained revolving the graph of a function u around the z-axis, $\Omega_S \subset \mathbb{R}^2_{\geq 0}$ given in the Theorem is the region bounded by the coordinate axis and the curve parametrized by

$$\begin{cases} (f_{S}(j), f_{S}(j) + j), \text{ if } 0 \leq j \leq 2\pi u(z_{0}), \\ (f_{S}(-j) - j, f_{S}(-j)), \text{ if } -2\pi u(z_{0}) \leq j \leq 0, \end{cases}$$

for the function

$$f_{S}(j) = 2 \int_{z_{-}(1,j)}^{z_{+}(1,j)} \sqrt{\left(1 - \frac{j^{2}}{4\pi^{2}u(z)^{2}}\right)(u'(z)^{2} + 1)} \, dz.$$

Here z_0 is the unique critical point of u and $z_{\pm}(1,j)$ are the solutions of $(2\pi u(z))^2 - j^2 = 0$. It follows that $f_S(0) = L$ coincides with the length of the meridians and $f_S(2\pi u(z_0)) = 0$.

Theorem (F., Ramos, Vicente)

If $S \subset \mathbb{R}^3$ is a Zoll sphere of revolution, then \mathbb{X}_{Ω_S} is the symplectic bidisk $P(\ell, \ell)$, where ℓ is the length of any simple closed geodesic on S.

Theorem (F., Ramos, Vicente)

If $S \subset \mathbb{R}^3$ is a Zoll sphere of revolution, then \mathbb{X}_{Ω_S} is the symplectic bidisk $P(\ell, \ell)$, where ℓ is the length of any simple closed geodesic on S.

Proof.

In the Zoll case, the function f_S has constant derivative.

Theorem (F., Ramos, Vicente)

If $S \subset \mathbb{R}^3$ is a Zoll sphere of revolution, then \mathbb{X}_{Ω_S} is the symplectic bidisk $P(\ell, \ell)$, where ℓ is the length of any simple closed geodesic on S.

Proof.

In the Zoll case, the function f_S has constant derivative. Moreover, we have $f_S(0) = \ell$ and $f_S(\ell) = 0$, and hence $f_S(j) = \ell - j$.

Theorem (F., Ramos, Vicente)

If $S \subset \mathbb{R}^3$ is a Zoll sphere of revolution, then \mathbb{X}_{Ω_S} is the symplectic bidisk $P(\ell, \ell)$, where ℓ is the length of any simple closed geodesic on S.

Proof.

In the Zoll case, the function f_S has constant derivative. Moreover, we have $f_S(0) = \ell$ and $f_S(\ell) = 0$, and hence $f_S(j) = \ell - j$. Therefore, Ω_S is the region bounded by the coordinate axis and

$$egin{cases} (\ell-j,\ell), \ {
m if} \ 0\leq j\leq \ell, \ (\ell,\ell+j), \ {
m if} \ -\ell\leq j\leq 0, \end{cases}$$
Zoll spheres of revolution

Theorem (F., Ramos, Vicente)

If $S \subset \mathbb{R}^3$ is a Zoll sphere of revolution, then \mathbb{X}_{Ω_S} is the symplectic bidisk $P(\ell, \ell)$, where ℓ is the length of any simple closed geodesic on S.

Proof.

In the Zoll case, the function f_S has constant derivative. Moreover, we have $f_S(0) = \ell$ and $f_S(\ell) = 0$, and hence $f_S(j) = \ell - j$. Therefore, Ω_S is the region bounded by the coordinate axis and

$$egin{cases} (\ell-j,\ell), \ {
m if} \ 0\leq j\leq \ell, \ (\ell,\ell+j), \ {
m if} \ -\ell\leq j\leq 0, \end{cases}$$

i.e., $\Omega_{\boldsymbol{\mathcal{S}}} = [0,\ell] \times [0,\ell].$

Theorem (F., Ramos, Vicente)

Let S be a Zoll sphere of revolution and ℓ be the length of any simple closed geodesic. Then

 $c_{Gr}(D^*S,\omega_{can})=\ell.$

Theorem (F., Ramos, Vicente)

Let S be a Zoll sphere of revolution and ℓ be the length of any simple closed geodesic. Then

 $c_{Gr}(D^*S,\omega_{can})=\ell.$

Proof: $B(\ell) \subset P(\ell, \ell) \cong D^*(S \setminus \{P_N\})$, and hence, $c_{Gr}(D^*S, \omega_{can}) \ge \ell$.

Theorem (F., Ramos, Vicente)

Let S be a Zoll sphere of revolution and ℓ be the length of any simple closed geodesic. Then

$$c_{Gr}(D^*S,\omega_{can})=\ell.$$

Proof: $B(\ell) \subset P(\ell, \ell) \cong D^*(S \setminus \{P_N\})$, and hence, $c_{Gr}(D^*S, \omega_{can}) \ge \ell$. On other hand, if $(B(a), \omega_0) \hookrightarrow (D^*S, \omega_{can})$, we have

$$2a = c_3(B(a), \omega_0) \le c_3(D^*S, \omega_{can}) = 2\ell.$$

Theorem (F., Ramos, Vicente)

Let S be a Zoll sphere of revolution and ℓ be the length of any simple closed geodesic. Then

$$c_{Gr}(D^*S,\omega_{can})=\ell.$$

Proof: $B(\ell) \subset P(\ell, \ell) \cong D^*(S \setminus \{P_N\})$, and hence, $c_{Gr}(D^*S, \omega_{can}) \ge \ell$. On other hand, if $(B(a), \omega_0) \hookrightarrow (D^*S, \omega_{can})$, we have

$$2a = c_3(B(a), \omega_0) \leq c_3(D^*S, \omega_{can}) = 2\ell.$$

It yields $c_{Gr}(D^*S, \omega_{can}) \leq \ell$. \Box

Ellipsoids of revolution

For a, b, c > 0, let $\mathcal{E}(a, b, c) \subset \mathbb{R}^3$ be the ellipsoid defined by the equation:

$$\frac{x^2}{a^2} + \frac{y^2}{b^2} + \frac{z^2}{c^2} = 1.$$

Ellipsoids of revolution

For a, b, c > 0, let $\mathcal{E}(a, b, c) \subset \mathbb{R}^3$ be the ellipsoid defined by the equation:

$$\frac{x^2}{a^2} + \frac{y^2}{b^2} + \frac{z^2}{c^2} = 1.$$

When the two parameters a, b coincide, we get an ellipsoid of revolution. Up to a normalization, we can assume that a = b = 1.

Ellipsoids of revolution

For a, b, c > 0, let $\mathcal{E}(a, b, c) \subset \mathbb{R}^3$ be the ellipsoid defined by the equation:

$$\frac{x^2}{a^2} + \frac{y^2}{b^2} + \frac{z^2}{c^2} = 1.$$

When the two parameters a, b coincide, we get an ellipsoid of revolution. Up to a normalization, we can assume that a = b = 1.

Gromov width of $D^*\mathcal{E}(1, 1, c)$ Theorem (F., Ramos, Vicente) The Gromov width of $D^*\mathcal{E}(1, 1, c)$ is given by

$$c_{Gr}(D^*\mathcal{E}(1,1,c),\omega_{can}) = egin{cases} lpha(c), \ for \ 0 < c < 1/2, \ 2\pi, \ for \ 1/2 \leq c \leq 1, \ eta(c), \ for \ 1 < c < c_0, \ 4\pi, \ for \ c \geq c_0. \end{cases}$$

Gromov width of $D^*\mathcal{E}(1, 1, c)$ Theorem (F., Ramos, Vicente) The Gromov width of $D^*\mathcal{E}(1, 1, c)$ is given by

$$c_{Gr}(D^*\mathcal{E}(1,1,c),\omega_{can}) = egin{cases} lpha(c), \ for \ 0 < c < 1/2,\ 2\pi, \ for \ 1/2 \leq c \leq 1,\ eta(c), \ for \ 1 < c < c_0,\ 4\pi, \ for \ c \geq c_0. \end{cases}$$

Figure: Graph of function $c \mapsto c_{Gr}(D^*\mathcal{E}(1,1,c),\omega_{can})$.

A different embedding problem - comparing metrics on S^2

Let g_0 be the round metric on $S^2 \subset \mathbb{R}^3$.

A different embedding problem - comparing metrics on S^2

Let g_0 be the round metric on $S^2 \subset \mathbb{R}^3$.

Problem

Given a metric g on S^2 , compute the number

$$\inf\{r \mid (D_g^*S^2, \omega_{can}) \hookrightarrow (D_{g_0}^*S^2(r), \omega_{can})\}.$$

A different embedding problem - comparing metrics on S^2

Let g_0 be the round metric on $S^2 \subset \mathbb{R}^3$.

Problem

Given a metric g on S^2 , compute the number

$$\inf\{r \mid (D_g^*S^2, \omega_{can}) \hookrightarrow (D_{g_0}^*S^2(r), \omega_{can})\}.$$

Note that we have the upper bound

$$R_0 = \max_{
u \in D_g^* S^2} \sqrt{g_0(
u,
u)} = \max_{\|
u\|_g = 1} \sqrt{g_0(
u,
u)}$$

obtained by the inclusion.

A computation and immediate consequence

Theorem (F.)

Let (S^2, g) be a Riemannian sphere such that $1/4 < K \le 1$, where K is the sectional curvature. Hence

$$c_1(D_g^*S^2,\omega_{can})=2L,$$
(1)

where L is the length of a shortest closed geodesic for g. Moreover, it is well known that $L \in [2\pi, 4\pi)$ in this case.

A computation and immediate consequence

Theorem (F.)

Let (S^2, g) be a Riemannian sphere such that $1/4 < K \le 1$, where K is the sectional curvature. Hence

$$c_1(D_g^*S^2,\omega_{can})=2L,$$
(1)

where L is the length of a shortest closed geodesic for g. Moreover, it is well known that $L \in [2\pi, 4\pi)$ in this case.

Corollary

Let (S^2, g) be a Riemannian sphere such that $1/4 < K \leq 1$. The existence of a symplectic embedding

$$(D_g^*S^2, \omega_{can}) \hookrightarrow (D_{g_0}^*S^2(r), \omega_{can}),$$

forces the inequality $L \leq 2\pi r$. In particular, $L \leq 2\pi R_0$.

Some related results:

• Croke, Rotman, Sabourau results. (Rotman 2006): $L \le 4\sqrt{2Area(S^2, g)}$, for any Riemannian metric g on S^2 ;

Some related results:

- Croke, Rotman, Sabourau results. (Rotman 2006): $L \le 4\sqrt{2Area(S^2, g)}$, for any Riemannian metric g on S^2 ;
- (ABHS 2014, 2018): $L \leq \sqrt{\pi Area(S^2, g)}$ for $0.83 \approx \delta$ -pinched Riemannian metrics and spheres of revolution (equality holding iff g is Zoll);

Some related results:

- Croke, Rotman, Sabourau results. (Rotman 2006): $L \le 4\sqrt{2Area(S^2, g)}$, for any Riemannian metric g on S^2 ;
- (ABHS 2014, 2018): $L \leq \sqrt{\pi Area(S^2, g)}$ for $0.83 \approx \delta$ -pinched Riemannian metrics and spheres of revolution (equality holding iff g is Zoll);

Conjecture

 $L \leq \sqrt{\pi Area(S^2, g)}$ for 1/4-pinched Riemannian metrics.

Some related results:

- Croke, Rotman, Sabourau results. (Rotman 2006): $L \le 4\sqrt{2Area(S^2, g)}$, for any Riemannian metric g on S^2 ;
- (ABHS 2014, 2018): $L \leq \sqrt{\pi Area(S^2, g)}$ for $0.83 \approx \delta$ -pinched Riemannian metrics and spheres of revolution (equality holding iff g is Zoll);

Conjecture

 $L \leq \sqrt{\pi Area(S^2, g)}$ for 1/4-pinched Riemannian metrics.

- (Rotman 2005): $L \le 4$ diam for any Riemmanian metric;
- (Adelstein, Pallete 2020): $L \leq 3 diam$ for Riemannian metrics with $K \geq 0$.

Thank you!