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Symplectic manifolds

Definition

A sympletic manifold is a pair (M,w), where M is a 2n-dimensional
manifold and w is a symplectic form, i.e., w is a 2-form and satisfies:

o (closed) dw =0

@ (nondegenerate) w” = w A ... Aw is a volume form.

Examples
o (R wp), where wo = Y, dx; A dy;
© (TN, wean), where wean = dAtaut - > dpi A dq;
o (CP",wrs), (X, warea); - - -
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Good (but hard) questions

Question 1 J

When two given symplectic manifolds are symplectomorphic?
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Good (but hard) questions

Question 1
When two given symplectic manifolds are symplectomorphic? }

By Darboux’s theorem there are no local invariants, so we must look for
global invariants.
Question 2

When a symplectic manifold (My, w;) symplectically embeds into another
(Mo, w2)?

The first obstruction is the volume: Vol(M;) < Vol(M,), are there others?
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Let
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Gromov's Nonsqueezing

Let
B>"(r) = {(q.p) € R*" | |q]* + |p|* < r*}

Z2"(r) = {(q.p) € R*" | % + pi < r*}.

Theorem (Gromov, 1985)

BZn(r) <i> Z2”(R) — r<R. % N I

Symplectic embeddings # Volume preserving embeddings
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Symplectic capacities - Definition
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Definition
A symplectic capacity is a map (M, w) — ¢(M,w) which associates with
every symplectic manifold (possibly with boundary) (M, w) a nonnegative
number or oo satisfying:

o (Mi,w1) = (Ma,w2) = c(My,w1) < c(Ma,wn),

e ¢(M,aw) = |ajc(M,w) for all « € R\ {0},

e ¢(B?"(r),wo) > 0 and c(Z2"(r),wp) < 0. )
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Symplectic capacities - Examples

The first example is the Gromov width
cer(X,w) = sup{mr? | (B?"(r),wo) <> (X,w)}.

Other examples of symplectic capacities:

Ekeland-Hofer capacities CEH;

Hofer-Zehnder capacity cyz;
Viterbo capacity csy;
Sl-equivariant symplectic homology capacities ¢S (Gutt-Hutchings);

ECH capacities ckECH (Hutchings) - only in dimension 4.
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Examples of ECH capacities

e Ellipsoids (Hutchings):
21> | |2
E(a,b): (Z]_,Z2)€C2 s T—i—T <15.
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Examples of ECH capacities

e Ellipsoids (Hutchings):
2 2
w<’zl’ n ’2’> < 1}.
a b

Then ck(E(a, b),wo) = (k + 1)t element of the set
{ma+ nb| m,n € Z>o}.
In particular, for the ball B(a) = E(a, a):

(ck(B(a),wo))k = (0,a%2,2a%3 32%4 42°° . ..).

E(a, b) = {(21,22) S C?

e Disk cotangent bundles of Zoll spheres (F., Ramos, Vicente):

D*Szon = {(q,p) € T*S | ||p|| < 1}.
Then

(Ck(D*SZoII,Wcan))k = (07 2€X37 4€X57 6€X77 8€X97 . ')7

where £ is the length of any simple closed geodesic on Sz,.
It agrees with the “even multiples” that appears in the sequence for
the ball B(¢).
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Toric domains

A subset Q C (R>0)? gives rise to a domain:

Xq = {(21,22) S (32‘(7T|21|2,7T‘22’2) € Q}
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Toric domains

A subset Q C (R>0)? gives rise to a domain:

Examples: E(a, b) and P(a, b).

b

A

Xq ={(z1,2) € (CZ|(7r|21|2,7r|22|2) € Q}.
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The Arnold-Liouville theorem
Fix (M?",w) and let F = (H,...,H") : M — R" whose components
Poisson commute, i.e., {H;, H;} := w(Xy,, Xn;) = 0.
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The Arnold-Liouville theorem
Fix (M?",w) and let F = (H,...,H") : M — R" whose components
Poisson commute, i.e., {H;, H;} := w(Xy,, Xn;) = 0.
o If c € R" is a regular value of F and F~(c) is compact and
connected, then F~1(c) = T".
@ Let U be a simply-connected open set of regular points. For
ce F(U), let {75,...,75} be simple closed curves generating
Hi(F~(c); Z) and suppose w = d\ on U. Let

50— (/ /)

Then there exists a symplectomorphism @ : (U, w) — (¢(U) x T",wp)
such that the following diagram commutes.

U — P(U) x T" = Xy
LT
F(U) — o(U)
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Some toric domains in disguise

Theorem

e The Lagrangian bidisk D? x; D?> C R* is symplectomorphic to a
concave toric domain. (Ramos 2017)
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and concave for p € [2,00]. (Ostrover, Ramos 2020)

10/22



Some toric domains in disguise

Theorem
e The Lagrangian bidisk D? x; D?> C R* is symplectomorphic to a
concave toric domain. (Ramos 2017)

@ The {p-sum of two disks
Xp = {(x,y) € R? x R? [ [[x||” + [ly[|” < 1}

is symplectomorphic to a toric domain which is convex for p € [1,2]
and concave for p € [2,00]. (Ostrover, Ramos 2020)

@ The Lagrangian product of a hypercube and a symmetric region in
R?" s symplectomorphic to a toric domain. (Ramos, Sepe, 2019)
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Disk cotangent bundle

(N, g) Riemannian manifold.

D*N ={v|ve T*N, |v| <1} is a symplectic manifold with boundary
S*N

Symplectic form: wean = dA, where A = pdq is the tautological form. It
turns out that A restricts to a contact form on S*N | i.e.,

As«n A (d)\’S*N)nfl > 0.

The Reeb vector field Ry is the unique vector field defined by the
equations 1z, dA = 0 and A(R)) = 1.

Fact - exercise

Reeb vector field Ry on (S*N, A) is dual to the geodesic vector field on SN
via gP: TN — T*N. Moreover, the action A(y = [, A of a Reeb orbit
on S*N agrees with the length of the prOJected geode5|c on the base N.

11/22



Embeddings into D*S?

Theorem (F., Ramos)
The following symplectic embeddings exist:
o (B(2m),wp) — (D*S2,wcan);

12/22



Embeddings into D*S?

Theorem (F., Ramos)

The following symplectic embeddings exist:

o (B(2m),wp) — (D*S2,wcan);
o (B(2n),wo) = (D*RP? wean);

12/22



Embeddings into D*S?

Theorem (F., Ramos)

The following symplectic embeddings exist:

o (B(2m),wp) — (D*S2,wca,,);
o (B(27),wp) = (D*RP? wean);
o (E(2m,47),wo) < (D*S?,wean);

12/22



Embeddings into D*S?

Theorem (F., Ramos)
The following symplectic embeddings exist:
o (B(27),wp) — (D*S?,wean);
o (B(27),wo) = (D*RP? wean),
o (E(2m,47),wo) < (D*S?,wean);
o (P(2r,27),wo) < (D*S?,wean)-

12/22



Embeddings into D*S?

Theorem (F., Ramos)
The following symplectic embeddings exist:
o (B(2m),wo) = (D*S?, wean);
o (B(2m),wo) = (D*RP?, wean);
o (E(2m,47),wo) = (D*S?, wean),
o (P(2r,27),wo) < (D*S?,wean)-

Moreover, all of these embeddings are sharp. In particular,

CGI’(D*S2a Wcan) = CG,(D*sz, wcan) = 2.

12/22




Embeddings into D*S?

Theorem (F., Ramos)
The following symplectic embeddings exist:
o (B(2m),wo) = (D*S?, wean);
o (B(2m),wo) = (D*RP?, wean);
o (E(2m,47),wo) = (D*S?, wean),
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CGI’(D*S2a Wcan) = CG,(D*sz, wcan) = 2.
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Proof Idea: Using action-angle coordinates from Arnold—Liouville Theorem
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Embeddings into D*S?

Theorem (F., Ramos)
The following symplectic embeddings exist:
o (B(2m),wo) = (D*S?, wean);
o (B(2m),wo) = (D*RP?, wean);
o (E(2m,47),wo) = (D*S?, wean),
o (P(2r,27),wo) < (D*S?,wean)-

Moreover, all of these embeddings are sharp. In particular,

CGI’(D*S2a Wcan) = CG,(D*sz, wcan) = 2.

4

Proof Idea: Using action-angle coordinates from Arnold—Liouville Theorem
we prove that D*Y is symplectomorphic to B(27) for any hemisphere

Y C S? and D*(S?\ {q}) is symplectomorphic to P(2m,27) for any point
ge S [0

12/22



Integrable systems in spheres of revolution

Theorem (F., Ramos, Vicente)

Let S C R3 be a sphere of revolution with a unique equator.
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Let S C R3 be a sphere of revolution with a unique equator. Then there
exists a toric domain Xq. such that (D*(S\ {Pn}),wean) is
symplectomorphic to (int Xq.,wo).

Proof Idea: Action-angle coordinates from Arnold-Liouville Theorem for
the perturbed system:

H-(q.p) = llp|*+ U:(q) J(q,p) = p(s),

where U. is a suitable smooth function.
Nested domains H-1([0,1)) & Xq. converging to D*(S \ {Pn}) = int Xq
when ¢ — 0. [
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Toric image

In fact, if S is obtained revolving the graph of a function u around the
z-axis, Qs C Rzzo given in the Theorem is the region bounded by the

coordinate axis and the curve parametrized by

(fs(j), fs(j) +Jj), if 0 < j < 2mu(z),
(fs(—)) —J, fs(—=))), if —2mu(z) <;j <0,

for the function

2 (1) i
fs(j) = 2 / (U’; \/ <1 - 47T21u2(z)2> (1'(2)2 + 1) dz.
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In fact, if S is obtained revolving the graph of a function u around the
z-axis, Qs C Rzzo given in the Theorem is the region bounded by the
coordinate axis and the curve parametrized by

(fs(j), fs(j) +Jj), if 0 < j < 2mu(z),
(fs(—)) —J, fs(—=))), if —2mu(z) <;j <0,

for the function

2 (1) i
fs(j) = 2 / (U’; \/ <1 - 47T21u2(z)2> (1'(2)2 + 1) dz.

Here zj is the unique critical point of u and z4(1,/) are the solutions of
(27u(z))? — j%2 = 0. It follows that fs(0) = L coincides with the length of
the meridians and fs(27u(z)) = 0.
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Zoll spheres of revolution

Theorem (F., Ramos, Vicente)

If S C R3 is a Zoll sphere of revolution, then Xq, is the symplectic bidisk
P(¢,¢), where ( is the length of any simple closed geodesic on S.
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Zoll spheres of revolution

Theorem (F., Ramos, Vicente)

If S C R3 is a Zoll sphere of revolution, then Xq, is the symplectic bidisk
P(¢,¢), where ( is the length of any simple closed geodesic on S.

Proof.

In the Zoll case, the function fs has constant derivative. Moreover, we
have f5(0) = ¢ and fs(¢) = 0, and hence fs(j) = ¢ — j. Therefore, Qs is
the region bounded by the coordinate axis and

(6, 0+j), if —£<j<0,

ie., Qs =0, x [0,4]. O
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Gromov width of D*Sz,

Theorem (F., Ramos, Vicente)

Let S be a Zoll sphere of revolution and ¢ be the length of any simple
closed geodesic. Then

CGr(D*57wcan) =/
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Gromov width of D*Sz,

Theorem (F., Ramos, Vicente)

Let S be a Zoll sphere of revolution and £ be the length of any simple
closed geodesic. Then

CGr(D*Sywcan) =/

Proof: B(¢) C P(¢,¢) = D*(S\ {Pn}) , and hence, cG,(D*S,wecan) > ¢.
On other hand, if (B(a),wo) — (D*S,wcan), we have

2a= C3(B(a)7w0) < C3(D*Sawcan) =20

It yields cg,(D*S,wean) < L. [
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Ellipsoids of revolution

For a, b,c > 0, let £(a, b, c) C R3 be the ellipsoid defined by the equation:
X2 2 2
a2 b
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Ellipsoids of revolution

For a, b,c > 0, let £(a, b, c) C R3 be the ellipsoid defined by the equation:

X2 y2 22

When the two parameters a, b coincide, we get an ellipsoid of revolution.
Up to a normalization, we can assume that a = b = 1.

Figure: The region Q¢(1,1.¢) for c =0,5;c = 1;c = 1,5, respectively.
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Gromov width of D*£(1,1, ¢)

Theorem (F., Ramos, Vicente)
The Gromov width of D*£(1,1, ¢) is given by

a(c), for0 < c < 1/2,
2w, for1/2 < ¢ <1,

B(c), for 1 < ¢ < ¢,
47, for c > o.

CGF(D*g(lv 17 C)awcan) -
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Gromov width of D*£(1,1, ¢)

Theorem (F., Ramos, Vicente)
The Gromov width of D*£(1,1, ¢) is given by

a(c), for0 < c < 1/2,
2w, for1/2 < ¢ <1,

B(c), for 1 < ¢ < ¢,
47, for c > o.

CGF(D*g(lv 17 C)awcan) -

1 2 3 4

Figure: Graph of function ¢ — cg (D*E(1,1, ¢),wean)-
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A different embedding problem - comparing metrics on S2

Let go be the round metric on S? C R3.
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A different embedding problem - comparing metrics on S2

Let go be the round metric on S? C R3.

Problem

Given a metric g on S2, compute the number

inf{r | (D;S27Wcan) — (D;)Sz(r)awcan)}‘

Note that we have the upper bound

Ro= max /go(v,v) = max \/go(v.v)

veD; S Il g=1

obtained by the inclusion.
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A computation and immediate consequence

Theorem (F.)

Let (S2,g) be a Riemannian sphere such that 1/4 < K <1, where K is
the sectional curvature. Hence

Cl(D;527wcan) =2L, (1)

where L is the length of a shortest closed geodesic for g. Moreover, it is
well known that L € [2m,4m) in this case.
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A computation and immediate consequence

Theorem (F.)

Let (S2,g) be a Riemannian sphere such that 1/4 < K <1, where K is
the sectional curvature. Hence

Cl(D;527wcan) =2L, (1)

where L is the length of a shortest closed geodesic for g. Moreover, it is
well known that L € [2m,4m) in this case.

Corollary

Let (52, g) be a Riemannian sphere such that 1/4 < K < 1. The existence
of a symplectic embedding

(D%S?, wean) = (D} S?(r), wean),

forces the inequality L < 27r. In particular, L < 27 Rp.
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Systolic inequalities

Some related results:

o Croke, Rotman, Sabourau results. (Rotman 2006):
L < 4./2Area(S2, g), for any Riemannian metric g on S?;
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Systolic inequalities

Some related results:

o Croke, Rotman, Sabourau results. (Rotman 2006):
L < 4./2Area(S2, g), for any Riemannian metric g on S?;

o (ABHS 2014, 2018): L < \/7Area(5?,g) for 0.83 ~ d-pinched

Riemannian metrics and spheres of revolution (equality holding iff g is
Zoll);

Conjecture

L < y/mArea(5?,g) for 1/4-pinched Riemannian metrics.

e (Rotman 2005): L < 4diam for any Riemmanian metric;

o (Adelstein, Pallete 2020): L < 3diam for Riemannian metrics with
K > 0.
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Thank you!
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