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Introduction

One interesting thing about supersymmetric field theories is the
presence of protected subsectors which are sensitive to
topological and holomorphic structures on spacetime.

These subsectors are extracted by twisting: Let Q ∈ godd with
[Q,Q] = 0 and take invariants with respect to the odd abelian
algebra spanned by Q.

The twisted theories have many desirable properties:
— They are topological-holomorphic field theories (and thus

much simpler than the full theory).
— They can typically be formulated in terms of geometric

moduli problems on spacetime.
— Good behavior under quantization, nice results on

symmetry enhancements...



Two natural questions arise:
1. How can we compute twists efficiently?
2. What can we learn from the twists about the full theory?

I will make the case that the two problems should be addressed
simultaneously.

Calculating twists is really hard. Why?

The supersymmetry transformations act in a complicated way
on the fields. In particular the action is often only on-shell
(there is only an L∞ module structure).

In superspace, the supersymmetries act geometric.
Twisting just means taking invariants with respect to

some odd vector field.



Plan

I. How to produce universal superspace descriptions which
are compatible with twisting?

−→ Pure spinor superfields

II. What can we learn about the full theory from its twists?

−→ Today: Eleven-dimensional supergravity



I. Pure spinor superfields and twisting



The pure spinor superfield formalism provides universal
superfield descriptions of multiplets.

Let p be a super Lie algebra equipped with a Z-grading

p = p0 ⊕ t1[−1]⊕ t2[−2] .

Super Poincaré algebras: p0 = so(d)× r, t1 = S ⊗ U and t2 = V .

We call t = p>0 the supertranslation algebra and denote the
associated super Lie group by T . (T ∼ superspace)

There are two actions on the free superfield C∞(T ):

L,R : p −→ Vect(T )

Think of the superspace T as a supermanifold equipped with a
distribution.



The nilpotence variety

Y = {Q ∈ t1|[Q,Q] = 0}

is the moduli space of twists for theories with p-symmetry.

Choose a basis Qα of t1 and eµ of t2 such that

[Qα, Qβ] = fµαβeµ .

Let R = Sym•(t∨1 ) = C[λα]. The equation [Q,Q] = 0 defines an
ideal I = (λαfµαβλβ) inside R.

The pure spinor superfield formalism is a functor

A•R/I : Modp0
R/I −→ Multp (E,D, ρ)

field content
differential

module structure



A•R/I(Γ) = (C∞(T )⊗ Γ , D = λαR(Qα) , L)

where the differential is induced from the right action and the
p-module structure by the left action.

In coordinates

D = λα
(
∂

∂θα
− fµαβθ

β ∂

∂xµ

)
.

For each super Lie algebra p, there is a multiplet A•(OY ) associated
to the ring of functions on Y : the canonical multiplet.

4d N = 1 : vector (BRST) 6d (2, 0) : tensor (BV)

10d N = 1 : SYM (BV) 11d N = 1 : SUGRA (BV)



There is a derived generalization of the formalism
making it an equivalence of categories.

Note that H0(t) = R/I −→ Replace R/I with C•(t).

The derived generalization fits into the diagram.

Modp0
R/I Multp

Modp0
C•(t)

A•
R/I

C•

A•

Here, the inverse functor is taking derived t-invariants:
C• = C•(t,−).



The pure spinor construction is compatible with
twisting.

Choose Q ∈ Y . We can twist the canonical multiplet

A•(OY )Q = (C∞(T )⊗ Γ,D +Q)

On the other hand, we can twist the input data for the
formalism.

p −→ pQ = H•(p, [Q,−])

pQ is the residual symmetry algebra and has a new nilpotence
variety YQ controlling further twists.

Both procedures are compatible [Saberi–Williams]:

A•(OY )Q ∼= A•(OYQ)



II. (Un)twisting eleven-dimensional
supergravity



Eleven-dimensional supergravity has two distinct twists.

Full (untwisted) theory

Minimal twist
U(5) y C5 × R

Maximal twist
G2 × SU(2) y R7 × C2

The maximal twist is Poisson–Chern–Simons theory.(
Ω0,•(C2)⊗ Ω•(R7) , ∂̄C2 + dR7 , {−,−}PB

)



Poisson–Chern–Simons theory

Let X be a complex manifold. We can think of the complex
structure as an involutive distribution

T (0,1)X ⊂ TCX.

This filtration defines a weight grading on the differential forms:(
Ω•(X) , ddR = d0 + d−1 = ∂̄ + ∂

)
.

Let X be now a Calabi–Yau 2-fold with holomorphic volume
form Ω. Let π = Ω−1 be the corresponding Poisson bivector.

π :
(
Ω2,•(X), ∂̄

)
−→

(
Ω0,•(X), ∂̄

)
, α 7→ π ∨ α



In this situation, we can construct the Poisson bracket in the
following way:
1. Turn Ω•(X) into a BV algebra.

∆ = [π, ∂] and {α, β} = (−1)|α|(∆(αβ)−∆(α)β)− α∆(β)

2. Define the Poisson bracket on Ω0,•(X) as a derived bracket.
Set [−,−]∂ = {∂(−),−} and restrict to Ω0,•. One finds [α, β]∂ = π(∂α∧∂β).

We obtain a dg Lie algebra

(Ω0,•(X) , ∂̄ , [−,−]∂).

After tensoring with the de Rham complex on an odd
dimensional real manifold this gives a Z2-graded BV theory.

We can think about Poisson–Chern–Simons theory as
based on an involutive distribution.



Almost complex structures

What if the subbundle T (0,1)X ⊂ TCX is not involutive?

We still get a weight grading on differential forms, but more
terms appear for the differential.

(Ω•(X) , ddR = d1 + d0 + d−1 + d−2)

where
d1 = µ̄, d0 = ∂̄, d−1 = ∂, d−2 = µ

and µ, µ̄ are coming from the Nijenhuis tensor.

We can’t apply the above construction directly! Define

W • = H•(Ω•(X),d1).

This is the appropriate generalization of the Dolbeault complex
[Cirici-Wilson].



Back to superspace
In eleven dimensions, we have three different superspaces:

p T, pQmin  TQmin , pQmax  TQmax

All three are equipped with distributions spanned by odd left
invariant vector fields. Except for the maximal twist, these are

non-involutive.

Consider differential forms

(Ω•(T ) , ddR) ∼ C[x, θ, dθ,dx]

In a left-invariant basis λ = dθ and v = dx+ λθ:

ddR = λ2 ∂

∂v︸ ︷︷ ︸
d1=dCE

+λ

(
∂

∂θ
− θ ∂

∂x

)
︸ ︷︷ ︸

d0=D

+ v
∂

∂x︸ ︷︷ ︸
d−1



Let’s link this to pure spinor superfields. We have

Ω•(T ) ∼= A•(C•(t)).

Take cohomology with respect to d1 and perform homotopy
transfer

(Ω• , d1) (W •, 0)h
p

i

and obtain
W • = (A•(H•(t)), d′)

Note that
W 0,• = A•(H0(t)) = A•(OY )

is the canonical multiplet associated to t.



By computing Lie algebra cohomologies one finds that in all
three cases W k,• is concentrated in degrees 0, 1, 2 and that there
is a pairing

π : W 2,• −→W 0,•.

(W •,d′, ·, π) has a structure similar to Dolbeault forms on
an almost complex 2-fold with the multiplet A•(OY ) = W 0,•

plays the role of the structure sheaf.

−→ Generalize the construction of Poisson–Chern–Simons
theory to this setting.



Homotopy Poisson–Chern–Simons theory

There are appropriate generalizations of the construction of the
Poisson bracket:

1. Turn W • into a BV∞ algebra.
2. Define derived brackets on W 0,•.

Result: we obtain an L∞ structure (W 0,•, µ1, µ2, µ3) with

µ1 = d′0
µ2(α, β) = π(d′−1α · d′−1β)

µ3(α, β, γ) = π(d′−2α · π(d′−1β · d′−1γ)).

We can think of homotopy Poisson–Chern–Simons theory
as based on a not necessarily involutive distribution.



Applying this procedure to our three superspaces in eleven
dimensions constructs:

— Poisson–Chern–Simons theory on R7 × C2 from TQmax .

— A quartic action functional for the minimal twist on C5×R
from TQmin .

— Cederwall’s quartic action of eleven-dimensional
supergravity in the pure spinor formalism from T .

The full theory and their twists have the same structure.
We can think of eleven-dimensional supergravity as a
geometric theory describing deformations of superspace

equipped with a distribution.



Thank you!


