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PERTURBATIVE CLASSICAL FIELD THEORY

Work in the Batalin-Vilkovisky formalism

Definition
A perturbative classical field theory on M is

a graded vector bundle E ! M with sheaf of sections E
a collection of polydifferential operators {`n : E⌦n ! E [2 � n]}
equipping E with the structure of an L1-algebra
a nondegenerate invariant pairing h�,�i : E⌦2 ! DensM of
degree �3.

Example
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TWISTED SUGRA

In SUGRA, supersymmetry is gauged. The BV complex includes:

⌦
0
(M; ad(FM)) ⌦

1
(M; ad(FM))!

⌦
0
(M;TM)V ⌦

1
(M;TM)e

⌦
0
(M;⇧S)q ⌦

1
(M;⇧S) 

+ antifields ...

Definition (Costello-Li [CL16])
A twisted SUGRA background is SUGRA in perturbation theory
around a point where the bosonic ghost q takes a nonzero value Q.

Properties:
twists of supergravity theories govern deformations of a THF
twisting a nongravitational
SUSY field theory

()
coupling to a
twisted SUGRA background
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THE MINIMAL TWIST

Conjecture (R.-Saberi-Williams [RSW21])

The minimal twist of 11d SUGRA on R⇥ C5 is given by the following
Z/2-graded BV theory

The fields and linearized BRST differentials are:

E11d = ⌦
•
(R)⌦

0

BB@
PV1,•

(C5
)µ PV0,•

(C5
)⌫

⌦
0,•

(C5
)� ⌦

1,•
(C5

)�

@⌦

@

1

CCA

The BV pairing ! : E ⌦ E ! C is given by
R
(� _ µ+ �⌫) ^ ⌦.

The interaction is:

I(µ, ⌫,�, �) =
Z

⌦

1 � ⌫
µ2 _ @� +

Z
�@�@�.

Modular interpretation is nebulous, but lots of evidence for this
conjecture!



Twisted SUGRA Flat space Twisted AdS geometries AdS geometries The 6dN = (2, 0) SCFT of type AN�1

EVIDENCE

The character of local operators recovers the graviton
contribution to the M-theory index computed by [Nek09]
The free limit matches with the minimal twist of the 11d SUGRA
multiplet computed by [SW21].
The theory admits a deformation to the nonminimal twist of 11d
SUGRA studied by [Cos16], [EH21].
Dimensional reductions recover known descriptions of twists of
type IIA and type I SUGRA in 10d [CL16]
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INFINITE DIMENSIONAL SYMMETRIES

The minimal twist is intimately related to a series of infinite
dimensional exceptional simple super Lie algebras.

Theorem (R.-Saberi-Williams [RSW21])
There is an L1 equivalence

H• �
⇧E11d(R⇥ C5

); d + @̄ + @ + @⌦
� ⇠= \E(5|10)

where \E(5|10) denotes a Lie-2 extension of E(5|10)

Definition

E(5|10) is the super-Lie algebra Vect0(C5
)µ n⇧⌦

2
cl(C5

)↵ with odd
bracket given by

[↵,↵0
] = (↵ ^ ↵0

) _ ⌦
�1.

The extension is determined by a cocycle given by

(µ, µ0,↵) 7! hµ ^ µ0,↵i|z=0.
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INFINITE DIMENSIONAL SYMMETRIES

Local operators are given by the Lie algebra cochains C•
⇣

\E(5|10)
⌘

Proposition (R.-Saberi-Williams [RSW21])

�SU(5)

⇣
C•
⇣

\E(5|10)
⌘⌘

=

5Y

i=1

Y

(mi)2Z5
�0

1 � qm1+1
1 · · · qmi

i · · · qm5+1
5

1 � qm1
1 · · · qmi+1

i · · · qm5
5

where qi are such that
Q5

i=1 qi = 1.

This agrees with the graviton contribution to the M-theory index and
specializes to the DT series of C3 [Nek09], [NO14].
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TWISTED BACKREACTIONS

In the physical theory, the AdS backgrounds arise from backreacting
M2 and M5 branes on flat space respectively. We can mimic this at the
twisted level.

Branes determine certain curved deformation of the L1-algebra
underlying the theory:

IM2 =

Z

R⇥C
�, IM5 =

Z

C3
@�1µ _ ⌦

Backreaction amounts to deforming the theory on the
complement of the brane by a solution to the resulting curved
Maurer-Cartan equation

@̄µ+
1
2
[µ, µ] + @�@� = ⌦

�1�R⇥C @̄@� + @⌦

✓
µ

1 � ⌫

◆
^ @� = �C3

@⌦µ = 0 (@̄ + d)µ+ @�@� = 0



Twisted SUGRA Flat space Twisted AdS geometries AdS geometries The 6dN = (2, 0) SCFT of type AN�1

Solutions are described by variants of the Bochner-Martinelli kernel:

µ = FM2 =
6

(2⇡i)4

P4
a=1 w̄adw̄1 · · ·ddw̄a · · ·dw̄4

kwk8 @z,

@� = FM5 =
1

(2⇡i)3
w̄1dw̄2 ^ dt � w̄2dw̄1 ^ dt + tdw̄1 ^ dw̄2

(kwk2 + t2)5/2 ^ dw1 ^ dw2

Conjecture (R.-Saberi-Williams [RSW21])

The minimal twist of 11d SUGRA on AdS4 ⇥ S7 is the classical BV
theory on Tot(K1/4

C ⌦ C4 ! R⇥ C) \ 0(R⇥ C) given by

EAdS4⇥S7 =
�
E11d|(R⇥C)⇥(C4\0), S(µ+ NFM2, ⌫,�, �)

�

The minimal twist of 11d SUGRA on AdS7 ⇥ S4 is the classical BV
theory on Tot(R� K1/2

C3 ⌦ C2 ! C3
) \ 0(C3

) given by

EAdS7⇥S4 =
�
E11d|C3⇥(R⇥C2)\0, S(µ, ⌫,�, � + N@�1FM5)

�
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COUNTING GRAVITONS

We can numerically test this conjecture by counting supergravity states
- field configurations localized at the origin in the boundary of AdS:

Write the complement of the brane as a sphere bundle:
S7

Tot(K1/4
C ⌦ C4 ! R⇥ C) \ 0(R⇥ C) S4

Tot(R� K1/2 ⌦ C2 ! C3
) \ 0(C3

)

R>0 ⇥ R⇥ C R>0 ⇥ C3

p p

Compute the pushforward and consider certain natural
boundary conditions at 1 2 R>0:

LN
R⇥C ! (p⇤EAdS4⇥S7)|1⇥R⇥C, LN

C3 ! (p⇤EAdS7⇥S4)|1⇥C3

Supergravity states are the costalk at 0 of compactly supported
sections:

HAdS4⇥S7 = LN
R⇥C,c(0), HAdS7⇥S4 = LN

C3,c(0)
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COUNTING GRAVITONS

Theorem (R.-Williams)
�sl(4)�sl(2)(HAdS4⇥S7) =

q

 
q1/4

(t1 + t2 + t3 + t�1
1 t�1

2 t�1
3 ) + q�1

�q�1/4
(t�1

1 + t�1
2 + t�1

3 + t1t2t3)� q

!

(1 � q)(1 � q1/4t1)(1 � q1/4t2)(1 � q1/4t3)(1 � q1/4t�1
1 t�1

2 t�1
3 )

�sl(3)�sl(2)�gl(1)(HAdS7⇥S4) =

q4
(t�1

1 + t1t�1
2 + t2)� q2

(t1 + t�1
1 t2 + t�1

2 ) + (q3/2 � q9/2
)(r + r�1

)

(1 � t�1
1 q)(1 � t2q)(1 � t1t�1

2 q)(1 � rq3/2)(1 � r�1q3/2)

These characters agree with single particle indices enumerating
gravitons on AdS4 ⇥ S7 and AdS7 ⇥ S4.
�sl(3)�sl(2)�gl(1)(HAdS7⇥S4)(q, t1, t2 = 1, r = q1/2

) =
q

(1�q)2 - the
plethystic exponential of this is the MacMahon function.
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GLOBAL SYMMETRIES OF TWISTED AdS

The
3d N = 8
6d N = (2, 0)

superconformal algebras act on
AdS4 ⇥ S7

AdS7 ⇥ S4 .

Their complexifications are both osp(8|4).

Proposition (Saberi-Williams [SW21])

The minimal twists of osp(8|4) are both isomorphic to osp(6|2).

Proposition (R.-Saberi-Williams [RSW21])

There are Lie maps

osp(6|2) ! H• �
⇧EAdS4⇥S7

�
R⇥ C⇥ (C4 \ 0)

��
,

osp(6|2) ! H• �
⇧EAdS7⇥S4

�
C3 ⇥ (R⇥ C2

) \ 0
��

The specialization in the previous slide is induced by deforming by a
nilpotent superconformal element S 2 osp(6|2)
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TWISTED KALUZA-KLEIN SPECTROMETRY

Theorem (R.-Williams [RW22])

There are C⇥ actions on LN
R⇥C and LN

C3 compatible with the L1
structures. The induced decompositions

LN
R⇥C =

Y

j��2

F (j)
R⇥C, LN

C3 =

Y

j��1

G(j)
C3

are such that there are L1-equivalences

J10 F (0)
R⇥C

⇠= E(1|6), J10 G(0)
C3

⇠= E(3|6).

Moreover, E(1|6) and E(3|6) contain copies of osp(6|2).

The above implies that the costalks at the origin of the cosheaves

F (j)
R⇥C,c(0), G(j)

C3,c(0)

are E(1|6) and E(3|6)-modules respectively. The spectra of gravitons
on twisted AdS geometries carry actions of infinite dimensional
exceptional simple super-Lie algebras!
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ABELIAN SUPERCONFORMAL FIELD THEORIES

The lowest pieces of this decomposition are related to minimal twists
of free SCFTs in dimensions 3 and 6.

Proposition (R.-Williams)

There are equivalences of abelian local L1-algebras

F (�1)
R⇥C

⇠= ⌦
•
R ⌦ ⌦

0,•
C

⇣
K1/4 ⌦ (C4

)
⇤ �⇧K3/4 ⌦ C4

⌘

G(�1)
C3

⇠=
C2 ⌦ ⌦

0,•
C3 (K1/2

)

⌦
0,•
C3 ⌦

1,•
C3

@

F (�1)
R⇥C,c(0) and G(�1)

C3,c (0) recover spaces of linear local operators for
minimal twists of the theories on a single M2 and M5 brane probing
flat space
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CHARACTERS

We can compute the characters of the modules F (j)
R⇥C,c(0) and G(j)

C3,c(0).

Proposition (R.-Williams [RW22])

�sl(4)�sl(2)(F
(j)
R⇥C,c(0)) is given by

q
(1 � q)

⇣
q1/2�sl(4)

[0,1,0](yi) + q�1/2�sl(4)
[2,0,0](yi)� q � �sl(4)

[1,0,1](yi)
⌘

�sl(3)�sl(2)�gl(1)(G
(j)
C3,c(0)) is given by

q3

0

@
q1+3j/2�sl(2)

j (q�1/2y)�sl(3)
[1,0] (yi) + q3j/2�sl(2)

j+2 (q�1/2y)

�q3(j+1)/2�sl(2)
j�1 (q�1/2y)� q�1+3(j+1)/2�sl(2)

j+1 (q�1/2y)�sl(3)
[0,1] (yi)

1

A

(1 � y1q)(1 � y2q)(1 � y3q)

Under the specialization y = y3 = 1,
PN

j=0 �sl(3)�sl(2)�gl(1)(G
(j)
C3,c(0))

recovers the vacuum character of the WN+2-algebra
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TWISTED ADS/CFT

M-theory on
AdS7 ⇥ S4

6d N = (2, 0)
SCFT of type AN�1

5d N = 2 SU(N)

SYM

Obsgrav ObsN
brane BPS invariants

twist twist

dim red

twist

Conjecture (Costello-Li [CP21], [CG21a],[Cos16],[Cos17])

There is a system of compatible maps (Obsgrav|@(AdS7))
! ! ObsN

brane
that become an isomorphism in the N ! 1 limit.

Goal:
Use the above map to define ObsN

brane.
Check definition by trying to recover BPS invariants of 5d N = 2
theories.
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DISTINGUISHED SUBALGEBRAS OF THE TREE-LEVEL LARGE N ALGEBRA

Proposition

At tree-level (Obsgrav|@(AdS7))
!
= U!(LN=0

C3 )

The cocycle ! can be computed in terms of Witten diagrams
involving the flux NFM5 but they quickly grow unwieldy.

The restrictions to the lowest pieces G(�1)
C3 and G(0)

C3 are more
manageable.

Conjecture (R.-Saberi-Williams)

After deforming by S 2 osp(6|2) the factorization algebras U!(G(�1)
C3 )

and U!(G(0)
C3 ) have no sections away from a copy of C ⇢ C3.

Moreover:
U!(G(�1)

C3 ) deforms to the Heisenberg vertex algebra.

U!(G(0)
C3 ) deforms to the Virasoro vertex algebra.

It remains to compute the relevant Witten diagrams.



Twisted SUGRA Flat space Twisted AdS geometries AdS geometries The 6dN = (2, 0) SCFT of type AN�1

DOLBEAULT-AGT

Can place LN
C3 on any complex 3-fold Z with

L1, L2 ! Z
det(L1 � L2) = KZ

.

Suppose Z = Tot(L0 ! S). Build an associative algebra and a
module.

Algebra: choose a fiberwise hermitian metric on L0

Z \ 0(S) R>0
⇡  ⇡⇤U!(G(�1)

Z )

Module: Hilbert space of minimally twisted 5d N = 2 on S in the
presence of a background RR 1-form.

Conjecture (R-Williams)

There is an action of ⇡⇤U!(G(�1)
Z ) on H•

(Higgs1(S, L2),⇥) where ⇥ is a
particular line bundle on Higgs1(S, L2)

For S = CP2, L0 = O(�1), L1 = O, L2 = KS, this admits a deformation
to the action studied by Grojnowski-Nakajima.
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Thanks!





TOWARDS A MODULAR DESCRIPTION

Let us impose the divergence-free and co-closed constraints on µ, �.
The equations defining the phase space include:

0 = @̄µ1,1
+

1
2
{µ1,1, µ1,1}+ c(@�1,0@�1,2

) _ ⌦ (1)

0 = @̄�1,0
+ @�0,1

+ Lµ1,1�1,0
+ Lµ1,0�0,1 (2)

Fix � = @�1,0 and consider

F = Im(^2,0T⇤1,0
(Z) ! ^4T⇤1,0

(Z) ! T1,0
(Z)) ⇢ T1,0

(Z).

This is a holomorphic distribution; integrability follows from @� = 0.



TOWARDS A MODULAR DESCRIPTION

Splitting T1,0
(Z) = F � Q

=) T1,0
(Z)⌦ T⇤0,1

(Z) = (F ⌦ F̄⇤
)� (F ⌦ Q̄⇤

)� (Q ⌦ F̄⇤
)� (Q ⌦ Q̄⇤

)

Expanding

0 = @̄µ1,1
+

1
2
{µ1,1, µ1,1}+ c(@�1,0@�1,2

) _ ⌦

into components:

µ1,1
QQ̄ defines a deformation of complex structure along the leaf

space of F.

µ1,1
FF̄ defines a deformation of complex structure along the leaves

of F.
Hints of a description in terms of a variant of exceptional generalized
geometry

Back



PERTURBATIVE QUANTIZATION

One loop quantizations of holomorphic-topological field theories can
be constructed by general results.

Such theories are UV finite at 1-loop [Wil20]
Weights attached to wheel diagrams that can contribute to the
1-loop anomaly will vanish for analytic reasons. The key step is a
convenient choice of gauge afforded by holomorphicity [GRW21]

 We can prove the existence of a 1-loop quantization of the 11d
theory on R⇥ C5.



THE SU(4)-TWIST OF TYPE IIA

Conjecture (Costello-Li [CL16])

Let Y be a CY4. The SU(4)-invariant twist of type IIA supergravity
R2 ⇥ Y is given by the following Z/2-graded BV theory:

The fields and linearized BRST differentials are given by

EIIA = ⌦
•
(R2

)⌦

0

BBBBBBBBBB@

PV0,•
(Y)⌘

PV1,•
(Y)µ PV0,•

(Y)⌫

PV4,•
(Y)� PV3,•

(Y)�

PV4,•
(Y)✓

@⌦

@⌦

1

CCCCCCCCCCA

the BV pairing is given by
R
(µ� + ⌘✓ + ⌫�) _ ⌦ ^ ⌦

the interaction is given by
Z

1
1 � ⌫

(µµ@⌦� + ⌘µ@⌦✓ + ⌘@⌦�@⌦�) _ ⌦ ^ ⌦.



MINIMALLY TWISTED TYPE I

Conjecture (Costello-Li [CL16])

Let X be a CY5. The minimal twist of type I SUGRA on X is given by
the following Z/2-graded BV theory:

The fields and linearized BRST differentials are given by

PV1,•
(X)µ PV0,•

(X)⌫

⌦
0,•

(X)�̃ ⌦
1,•

(X)�̃

@⌦

@

the BV pairing is given by
R
(µ� + ⌘✓ + ⌫�) _ ⌦ ^ ⌦

the interaction is given by
Z

⌦

1 � ⌫

�
µ2@�̃

�
.



REDUCTION TO 10D

Usual relationships between 11d SUGRA and 10d SUGRAs hold at
the level of twists:

Proposition (R.-Saberi-Williams [RSW21])

Consider E11d on R⇥ C⇥ ⇥ C4. The dimensional reduction of E11d
along S1 ⇢ C⇥ is EIIA on R2 ⇥ C4.
Consider E11d on [0, 1]⇥ C5. The dimensional reduction of E11d
along [0, 1], with boundary conditions where � = 0 at {0, 1}⇥C5,
is EI on C5.

We are also able to propose a conjectural description of the minimal
twist of type IIA - this twist is unique because it does not seem to
describe the closed string field theory of a topological string!

Back



THE G2 ⇥ SU(2)-INVARIANT TWIST

Let X be a G2 manifold and N a holomorphic symplectic surface

Conjecture (Costello [Cos16])

The nonminimal twist of 11d SUGRA on X ⇥ N is given by the
following Z/2-graded BV theory

The fields and linearized BRST differential are
Enonmin = ⌦

•
(X)⌦ ⌦

0,•
(N).

The BV pairing is given by
R
⌦N(↵ ^ �).

The interaction is:

I(↵) =
Z

⌦N

✓
↵(d + @̄)↵+

1
2
↵{↵,↵}

◆

Theorem (R.-Saberi-Williams [RSW21])

Let �̃ 2 ⌦
1,0
(Z) be such that @�̃ = ⌦N and (d + @̄)�̃ = 0. The

specialization of ⇧E at � = �̃ is Enonmin.

Back



E(1|6)

Definition
E(1|6) is the super-Lie algebra with

E(1|6)0 = �(bD,T)n
⇣
�(bD,O)⌦ sl(4)

⌘

E(1|6)1 is the (unique) nontrivial extension of E(1|6)0-modules

0 Sym2
(C4

)⌦ �

⇣
bD,K1/2

C

⌘
E(1|6)1 ^2

(C4
)⌦ �

⇣
bD,K�1/2

C

⌘
0

The odd bracket is given by

[A ⌦ f dz1/2,B ⌦ gdz�1/2
] = (A ⇤ B)⌦ fg

[A ⌦ f dz�1/2,B ⌦ gdz�1/2
] = Tr(A ⇤ B)⌦ fg@z

+
1
2
(A ⇤ B)0 ⌦

⇣
@(f dz�1/2

)gdz�1/2
+ f dz�1/2@(gdz�1/2

)

⌘

Back



E(3|6)

Definition
E(3|6) is the super-Lie algebra with

E(3|6)0 = �(bD3,T)n
⇣
�(bD3,O)⌦ sl(2)

⌘

E(3|6)1 = C2 ⌦ �

⇣
bD3,⌦1

(K�1/2
)

⌘
carries the obvious

E(3|6)0-module structure.
The odd bracket is given by

[v1 ⌦ fidzi ⌦ (@z1@z2@z3)
1/2, v2 ⌦ gjdzj ⌦ (@z1@z2@z3)

1/2
]

= !(v1, v2)"
ijkfigj@zk

+ (v1 � v2)
�
@(fidzi)gjdzj � fidzi@(gjdzj)

�
_ (@z1@z2@z3)

Back
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