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Nothing exists of which it cannot be asked what is the

cause (or reason) why It exists.
Gottfried Wilhelm Leibniz, 1720




* Causality is a deep, controversial topic

All philosophers, of every school, imagine that causation is one of the fundament-

al axioms or postulates of science, yet, oddly enough, in advanced sciences such as
gravitational astronomy, the word ‘cause’ never appears. Dr James Ward ... makes

this a ground of complaint against physics... To me, it seems that... the reason

why physics has ceased to look for causes is that, in fact, there are no such things.
The law of causality, I believe, like much that passes muster among philosophers, 1s
a relic of a bygone age, surviving, like the monarchy, only because it is erroneously

supposed to do no harm. (Russell 1913, p. 1).?

Back to Reichenbach (2@2 2)

Carlo Rovelli
Arz-Marseille University, Université de Toulon, CPT-CNRS, Marseille, France,
Department of Philosophy and the Rotman Institute of Philosophy, Western University, London ON, Canada,

and Perimeter Institute, 31 Caroline Street N, Waterloo ON, Canada

In his 1956 book ‘The direction of Time’, Hans Reichenbach offered a comprensive analysis of the
physical ground of the direction of time, the notion of physical cause, and the relation between the
two. I review its conclusions and argue that at the light of recent advances Reichenbach analysis
provides the best account of the physical underpinning of these notions. I integrate recent results
in cosmology, and relative to the physical underpinning of records and agency into Reichenbach'’s
account, and discuss which questions it leaves open.




* Correlation vs causation
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Why scatter plots suggest causality, and what we can do about it.

Carl T. Bergstrom, Jevin D. West (2 01 8)

Abstract—Scatter plots carry an implicit if subtle message about causality.
This is a problem for the public understanding of scientific results and perhaps also for professional scientists
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SOUNDS LIKE THE
CLASS HELPED.

xkcd.com



* Causal Discovery

o SUPPOSe we have statistical evidence: people who wake up
with thelr shoes on are more likely to have a headache.

o Does sleeping with the shoes on cause headache”

o Orvice-versa”

W

SN

p— —— I'g'l

Picture credits: “Introduction to Causal Inference" (Brady Neal, 2022)

o Orisitjust a coincidence’?



* Reichenbach’s Common Cause Principle
(1956)

o [f two events A and B are dependent, then

A causes B, or

S causes A, or

C causes both A and B (common cause)

=8 = B




* Conditional Independence

N o
o SUppPose we find that ﬁ iIndependent from I'%‘I , given ﬁ

- P(shoes, headache

(conditional |

drunk) =~

ndependence)

P (shoes | drunk)

- Compatible with 3 causal mechanisms:

P(headache | drunk)

(Markov equivalence class)
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How to find the true one”?
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* Causal Discovery from Observations

W

NN

ﬁ ﬁ I'g'l

dataset of observations
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* Causal Discovery from Observations

W

NN

§ =5 &

dataset of observations
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* Interventions

o Sclence: hypotheses == experiments (Interventions)

o Causal discovery with intervention data

o Often iImpossible, impractical, unethical, ...

™
AN
ﬂ l'%'l
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* Formalizing interventions:
Pearl’s “"do-calculus™

o Key Insight: olbservation = intervention

o |INtervention, do(x), cut the input arrows: set the value.

o 0
04% O ro-vx-n)—rr=ysrr=yx =2

14

= y|ldo(X = z)) =P(Y = y|X = x)




* Gene Knockout

s & £
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activity of gene A
delete gene A (force to 0); predict the phenotype.
s £
O
gene A ———> phenotype

0 2 4 6 8
activity of gene A
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activity of gene B

delete gene B (force to 0); predict the phenotype.

0 _
o
O confounder
L() —]
gene B phenotype

o —

I I I [ I

0 2 4 6 8

activity of gene B

Example by Jonas Peters
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* Structural Causal Model (SCM)

o Directed acyclic graph (DAG): G = (V, &), V= (X1,....X,,)

non-descendk

parents (causes) of XJ.

X fi (Xpa,» Uj)

Uf,; are mutually independent

\ /\:O descendants

O exogenous/unexplained
variaples; noise

o CVery f; IS a causal mechanism

17



* Structural Causal Model (SCM)

o Each mechanism entails a local conditional P(X ;| Xpq, )

non-descendh

parents (causes) of XJ.

X fi (Xpa,» Uj)

\ Q Uz are mutually indendent
D descendants

exogenous/unexplained
variaples; noise

o Jointdistrbution: P(X1,..., X,) = | [ P(X;]Xpa;)

)=1 18



Jonas Peters, Dominik Janzing, and Bermhard Scholkopt

Principle 2.1 (Independent Mechanisms) The causal generative process of
a system’s variables is composed of autonomous modules that do not inform

or influence each other. Elements of

In the probabilistic case, this means that the conditional distribution of each Causal Infe rence
variable given its causes (i.e., its mechanism) does not inform or influence
the other conditional distributions. In case we have only two variables, this
reduces to an independence between the cause distribution and the mechanism
producing the effect distribution.

Principle 2.1

[(physical) independence of mechanisms]

(s ) Y /e N\
intervenability e N independence
independence :

autonomy : i of noises,

. of information -
modularity : conditional
. : contained :
invariance S — independence
 transfer J = o structures

MPML 2023, IST, Lisboa 19



o 1he

(the cause) and the viewing angle (the observation mechanism) are inc

Seuchet chair illusions (and others): the brain assumes the viewec

MPML 2023, IST, Lisboa
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ependent.
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* Graphical Causal Discovery
o Canwerecover @G, fi,..., fn, P(U1), ..., P(U,)

from P(Xq,..., X,) or from samples/data”

o IN general, only up to the Markov equivalence class

Markov Equivalence Class

RN 2N
ﬂ I'g'l ﬁ l@l
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* Interventions in SCMs

o Mard INnterventions: dO(X i = :Ej)

.e. replace X ;< f, (Xpaj7 Uj) with X ; <= ;

o OOft INnterventions: many other possibilities, e.g.

replace Xj%fj (Xpaj, Uj) WiIth Xj — ﬁj

22



Most important case: confounder correction

«

p(yldo(x)) = plylx,z)p(z) # > plylx,z)p(z|x) = p(y|x)

Adapted from Janzing and Weichald, 2019.

o (ore idea behind randomized trials (medicine, economics, A/
o Key aspect: assignment of X is independent of Z. Possibility:

S testing, ...
random

23



* Why are RTs needed? Simpson’s “paradox”

o WO treatments for kidney stones: A and B
o WO types of stones: small and large
o OUCCESS rates:

Treatment
Stove Size

Swall

A [
3132
Lary 510
Ownll |35 83% §:§-?8%

Picture from robertheaton.com
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* Simpson’s “paradox” with hidden confounder

Picture from robertheaton.com

25



* Marginalizing vs adjusting/controlling

]P(Xg = r3| X1 = :1:1) —

ZP(X;», = x3| X1 =21, Xo = 29) P(X9 = 22| X1 = 21)

T2

2

L2

D(Xg — Zl?g‘dO(Xl = 331)) —

’( X3 = 23| X1 = 21, X2 = 22)
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Revisiting Simpson’s “Paradox”

o Variables: T € {A, B}, S = {s,l}, result R € {1,0}.

@ Adjustment formulas:

P(R = 1|do(T = A))
— P(R=1|T=A,S=s)P(S=s)+P(R=1|T=A,5 =) P(S =)

_ 357 | 343
— 0.87 x 257 1 (.69 x 243 ~ (.782

P(R = 1|do(T = B))
= P(R=1|T=B,S=s)P(S=3s)+P(R=1|T=B,S=1)P(S =)

_ 357 343
= (0.93 x =50 0.73 X =30 = 0.832

@ Controlling/adjusting for size: treatment B is better than A.

27



WVEVE. DESIGNED A DOUBLE-BLIND
TRIALTO TEST THE EFFECT OF SEXUAL
ACTNITY ON CARDIOVASCULAR  HEALTH.

BOTH GROUPS WILL 7HIMK THEY'RE
HAVING (0TS OF SEX, BUT ONE GRDOUP
WILL ACTUALLY BE GETIING SUGAR PILLS.

THE LIMITATIONS OF BLIND TRIALS

xkcd.com
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THE SVERIGES RIKSBANK PRIZE
IN ECONOMIC SCIENCES IN MEMORY
OF ALFRED NOBEL 2021

DEVile Joshua Guido
Carg D. Angrist  W. Imbens

‘for his empincal 1Or Their meinge :']-I.'?.;)(’;lf.)f
contnbutions 10 lALOU! contributions 10 the analysis

econNnoOmics Of Causal relahwonships
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* The “Simplest” Problem: Cause-Effect

0 O

o How to distinguish between

© 0

only from observations'’?

o Usual assumptions: No hidden confounders,
.6, ohe of the two hypotheses is "true’




* The Cause-Effect Problem

o VVithout Interventions, we need model assumptions

o A foundational principle

(mentioned above);

iNndependence of cause and mechanism (ICM)

o What is meant by independence” not statistical, but functional:

P(cause) and P(effect | cause) ignore each other!

o oeveral instantiations: information geometry, algorithm

(Kolmogorov) complexi

MPML 2023, IST, Lisboa

v, stochastic complexi

v (M

D)
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* Additive Noise Models

o INstantiation of the ICM: additive noise model (ANM)

o Very simple SCM (real variables):

Y« f(X)+ Ny with Ny II X

o |dentifiability: if there is ANM from X to Y,

N general, there is no ANM from Y to X

Peters et al: Causal Discovery with Continuous Additive Noise Models, JMLR 2014

32



Jonas Peters, Dominik Janzing, and Bernhard Scholkopt

* Additive Noise Models: lllustration -

Causal Inference
Foundations and Learning Algorithms

0.4

Residuals of regr. ¥ on X

X Residuals of regr. X on Y

MPML 2023, IST, Lisboa 33



* Additive Noise Models: lllustration

=== the same two-unit-length bandwidth

= different-length bandwidth

MPML 2023, IST, Lisboa
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* Additive Noise Models: Identifiabllity

Theorem 1 (Identifiability of ANMSs) For the purpose of this theorem, let
us call the ANM smooth if Ny and X have strictly positive densities pn, and
px and fy,pn,, and px are three times differentiable.

Assume that Py x admits a smooth ANM from X to Y, and there exists ay € R

such that
(log pny )" (y — fy (x)) fy (z) # O

for all but countably many values x. Then, the set of log densities logpx for

which the obtained joint distribution Px y admits a smooth ANM from Y to X

s contained 1n a 3-dimensional affine space.

(Hover, Janzing, Mooij, Peters, Scholkopf, 2008)

MPML 2023, IST, Lisboa
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Jonas Peters, Dominik Janzing, and Bernhard Scholkopl

* Additive Noise Models: Identifiability
» For linear non-Gaussian ANM (LINGAM) it is simpler.

Theorem 4.2 (Identifiability of linear non-Gaussian models) Assume that Py y
admits the linear model

Y =X +Ny, Ny ILX, (4.1)

with continuous random variables X, Ny, and Y. Then there exist p € R and a
random variable Ny such that

X =BY+Ny, NylY, 4.2)

if and only if Ny and X are Gaussian.

o Proof hinges on a classical results for Gaussians:
[Kac-Bernstein (1939) and Darmois-Skitovic theorems (1953, 1954)

o (Closely related to independent component analysis (ICA)

(Shimizu et al, 20006)
MPML 2023, IST, Lisboa 36



* Additive Noise Models: How to Apply

ST

» Compute resulting residual/noise: Ny =Y — f (X))

o Perform regression of XonY: estimate g(y) = E[X|Y = v

. Compute resulting residual/noise: Nx = X — §(Y)

» Perform regression of Yon X : estimate f () >EY|X =x

o Select X — Y if Ny is more independent of X, than Nx is of Y

e.d., using mutual information: ’
I(Ny;X) S I(Nx;Y)

37



SEr

U *¢ *rl.‘c. =

< =5 «:— & webdav.tuebingen.mpg.de/cause-effect/

ic library... ~ Colibri V3 - Video...

e

B k™ ~

Database with cause-effect pairs

This is a growing database with different data for testing causal detection algorithms. The goal here is to distinguish between cause and effect. We searched for data sets
with known ground truth. However, we do not guarantee that all provided ground truths are correct. The datafiles are .txt-files and contain two variables, one is the cause
and the other the effect. For every example there exists a description file where you can find the ground truth and how the data was derived.

Note that not always the first column is the cause and the second the effect. This is indicated in a meta-data file. Please look at README for further explanations. We also
suggest a weighting factor for some pairs which are very similar if you want to calculate the overall performance.

To get all data files at once download all data as a zip file.

When you use this data set in a publication, please cite the following paper (which also contains much more detailed information regarding this data set in the supplement):

J. M. Mooij, J. Peters, D. Janzing, J. Zscheischler, B. Schoelkopf:
"Distinguishing cause from effect using observational data: methods and benchmarks",
Journal of Machine [earning Research 17(32):1-102,2016

MPML 2023, IST, Lisboa
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* Additive Noise Models: How to Apply

o Practical aspects: how to do the regressions”

o How to measure independence”?
Peters, Mooij, Janzing, Scholkopf: Causal Discovery with Continuous Additive Noise Models, JMLR 20014

1 1 1 1 1 1 1 1 1 ]
10 20 30 40 50 60 70 a0 920 100
Decision rate (%)

o Extended to discrete data (in Z,) by Peters, Janzing, Scholkopt (2011) -



* Extending to Categorical Variables

o [FOr categorical variaples, no addition is defined; no ANM

o ANM for continuous variables satisty:

Proposition 4 [f real-valued variables X and Y admit an ANM from X to Y, then the conditional
differential entropy h(Y | X)) = h(Ny), independently of the distribution of X.

o Agrees with independence of cause and mechanism.

o (an we do the same for categorical variables”

Proceedings of Machine Learning Research vol TBD:1-20, 2023 2nd Conference on Causal Learning and Reasoning

Distinguishing Cause from Effect on Categorical Data:
The Uniform Channel Model

Mario A. T. Figueiredo, MARIO.FIGUEIREDO @ TECNICO.ULISBOA.PT
Catarina Oliveira CATARINA.A.OLIVEIRA @ TECNICO.ULISBOA.PT
Instituto de Telecomunicacoes and LUMLIS (Lisbon ELLIS Unit),

Instituto Superior Técnico, Universidade de Lisboa, Portugal




* Uniform Channel Model (UCM)

o Based on the analogy with a communication channe

Memoryless

X— —Y

channel

» Channel (stochastic ) matrix Qﬁyfy = P(Y = y|X = x)

» UCM: rows of §%X—Y are permutations of each other

o Agreement with [CM:

Proposition 5 If 8~ corresponds to a UC (each row of 6* Y is a permutation of a vector
Y € Ay|—1), then the conditional entropy H(Y |X') = H(7y), independently of px .

MPML 2023, IST, Lisboa
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* UCM as a Structural Causal Model

o Arbitrary marginal P(X = z)

o UCM conditional: 7% =P(Y = y|X = z)

z,Y
o The corresponding joint P(X = x,Y = y) is entailed by SCM
Y%f(X,Uy) Uy 1l X

with Uy taking values in the same setas Y

o [f the conditional is not a UCM, such an SCM Is not possible.

42



* UCM: Identifiability (Binary Case)

o Binary UCM (binary symmetric channel) XY — [1 @ . “ J .
X — (X
o Marginal: P(X =1) =7
o Reverse channel (from Bayes law):
(1—a)pB a(l —p)
y»x _ |[(1—a)B+a(l—8) (1—a)8+a(l—_)
o= o (1-a)(1-5)

af+(1—a)(l-5) af+(1—a)(l-75)
» Conditions for @* 2% being UCM have zero measure:
{(a,3) €[0,1]?: a=0Va=1/2Va=1V =0V E=1/2V =1}

MPML 2023, IST, Lisboa 43



* UCM: Identifiability (General Case)

Theorem9 Let X € X and Y € Y be two categorical random variables with a joint pmf such

that the conditional Y corresponds to a UC. Assume also that the marginals have full support’:

py(y) # 0, for any y € Y, and px(x) # 0, for any x € X. Further assume that the rows of the
channel matrix 0~ 7Y are not all equal to each other (i.e., X and Y are not in.de,z)enden.t6 ). Then, the
set of parameters such that the reverse channel 0Y 7 is also a UCM has zero Lebesgue measure.

UCM causal inference principle for categorical variables: given two categorical vari-
ables X and Y, if the conditional pmf 8* ¥ corresponds to a UCM, but the conditional
pmf ¥ 7% does not, then we infer the causal direction tobe X — Y.

L4



* Applying UCM to Data: Channel Estimates

» Independent samples; (*1,%1),---, (TN, YN)

o Count matrix: N, = number of samples s.t. Ty =T NY; = Y
_ Ny _ Na y
X,y Naz Zy Na:,y

o Matrix estimate, without constraint: 9

o Matrix estimate, with UCM constraint:

Sort each row of Nx,y Tz issuchthat Ng; 1y 2 -+ 2 Ngz (1y))

1
1 AA/ : — A AX%Y — A/A
Compute: Yy N Eex: Ny g (y) and HI,y — Yo (y)
I
a-a;‘ — 7/;3:—1
45
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* Applying UCM to Data: Criterion

o otatistical tests: likelihood ratio tests (LR

XY
o Let P ~

and PY_>

X

e p-values for

) for UCM vs non-UCM

SLT 1IN both directions.

o Choose some significance threshold ¢ (e.g., 0.05)

e If pX7Y > aand p¥ 7 < o, declare X — Y.

e Ifp* 7Y < aandp’ ?* > o, declare Y — X.

e Ifp*7Y < aand p¥ 7 < a, declare "undecided: wrong model".

e If p* 7Y > aand p¥ 7* > a, declare "undecided: both directions possible".

MPML 2023, IST, Lisboa
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* UCM: Synthetic Experiments

o Random unitorm 10 ]
channels X — Y s |
> 0.8
o 100 datasets for g ¥ =3, 1] =2
. . O -~ |X]=2,])]=3
each configuration 19 B ol
of cardinalities i | —— | =2,])| =4
-0~ |V =5, =2
05 = Ki=2p1=>
(3 5(;0 lOtOO 15:)0 20'00 25b0 30100

N

MPML 2023, IST, Lisboa
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* UCM on Benchmark Data

o 112 cause-effect pairs with categorical variables

o Gomparison with:

-G

DC (distance correlation) by Liu and Chan, 2016.

= (hidden compact representation) by Cal et al. 2018.

o Average accuracy (notice that random choice yields 1/3 accuracy)

UCM

DC

HCR

0.61

0.41

0. 47

MPML 2023, IST, Lisboa
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* UCM on Real Data

Table 2: Results on real data. Wrong decisions are shown 1n red; UWM stands for "undecided:
wrong model”. Month 1s a cyclic variable, thus a CUC was used in the ¥ — X direction.

Dataset X Y UCM DC HCR
Adult Occupation Income UWM X =Y X =Y
Adult Work Class Income UWM X =Y X =Y
Acute Inflammation | Inflam. of urinary bladder = Lumbarpain Y — X Inconcl. Inconcl.
Acute Inflammation | Inflam. of urinary bladder Nausea Y — X Inconcl. Inconcl.
Acute Inflammation | Inflam. of urinary bladder Burning urethra Y — X Inconcl. Inconcl.
Pittsburgh Bridges Material Lanes X—=Y Y—=-X X-—=>Y
Pittsburgh Bridges Purpose Type UWM Y - X X =Y
Temperature Month Temperature X —Y X —=>Y VY — X
Horse Colic Abdomen Status Surgical Lesion UWM X —-Y X —>Y

50



Proceedings of Machine Learmning Research vol 140:1-22, 2022 1st Conference on Causal Learning and Reasoning

Differentiable Causal Discovery Under Latent Interventions

Goncalo R. A. Faria*7 GONCALORAFARIA @TECNICO.ULISBOA.PT
André F. T. Martins *'* ANDRE.T.MARTINS @ TECNICO.ULISBOA.PT
Mario A. T. Figueiredo *' MARIO.FIGUEIREDO @ TECNICO.ULISBOA.PT

* Instituto Superior Técnico & LUMLIS (Lisbon ELLIS Unit), Universidade de Lisboa, Portugal.

I Instituto de Telecomunicacées, Lisboa, Portugal.
Y Unbabel, Lisboa, Portugal.

Editors: Bernhard Scholkopf, Caroline Uhler and Kun Zhang

MPML 2023, IST, Lisboa
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* Score-based methods

:=NN(G1171, G1272, G1373, €1; 01)
=\ (9215131, 9225627 g23333, €2, 02)

=N (931:131, G32%2,U33T3, €3; 93)

Train the NNs and estimate §, ; such that graph is DAG

Similar to LASSO (sparsity) for all of the variables at once w/ acyclicity constraints.

Ke et, al. 2020

52



* Score-Based Methods with Deep Learning

S(A) = max

( most of the time)

approximated w/ fully

factorized Bernoulli

A* = argmax S(A)

A

LG~DAG(G;A)

1og p(D|G, 0) +log p(G)

l

\ Penalize dense

0 0.088 0.0901

o(v) = 0894 0  0.045
0.973 0.116 0

Ber

1-hot sample A = 0,1
1-hot sample B = 1,0 j"/

1-hot sample C = 0,1

0001

e i \%/____/
—~—
Masking input values with edge presence configuration MLPs

graphs/enforce
acyclicity

Ke et, al. 2020
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* Causal Discovery with Interventional Data

A*, M* = argmax S(A, M)

A, M

26 DAG(G:A) | Ekmp(ry [log p(DF|G, 0%, MF)) 4 Tog p(G)]

/ Intervention

Intervention  variables
specific
parameters

Brouillard et. al. 2020

54



* | atent interventions

For each sample:

o 0o not know correspondence to intervention regime;

For each intervention:

o o not know experimental conditions

Vixture of experimental regimes.

55



* Intervention Recovery

o Glven the causal graph, ...
o recover interventions and correspondences,

o [Propose joint distribution.

Prior distribution for the
Interventions
( Dirichlet process)

Infinite mixture of

intervention SCMs

56



* Approximate Posterior Inference

(2, M|D,G;0) = p(zV|M, 2V, G;0)p(M|D, G; 6)

Latent interventions

57



* Approximate Posterior Inference

o Variational inference

qu(z(i)‘/\’;l, x(i))

p(zY M,z G;6)

58



* Approximate posterior inference e
ource SCM

./
Intervention SCM !

highly overlapping clusters

o Variational inference

Similar to a
clustering problem

( each cluster has few degrees of freedom )

» Evidence lower bound (ELBO):

N
XS ELBO, .o, x1;9) (=1, G:9) -
P i=1
59



* Score-Based Method

A* = argmax S(A)

4:"QN]:)AG(Q;A)

A

-~ N _
I Z ELBOq(z(i),M;(b) (Qj(z), Q, 0) + lng(g)_
1=1

60



* Model Variants

o “latent” (new)

For each sample:

o O Not know correspondence 1o
intervention regime;

For each intervention:

o o not know experimental conditions

61
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* Model variants

“latent”  (new)
“unknown”

For each sample:

o

donet Know correspondence to
intervention regime;

For each intervention:

O

do not know experimental conditions

62
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* Model variants

“latent”  (new)
‘unknown’
“known”

For each sample:

—6ae-het KNow correspondence 1o
intervention regime;

For each intervention:

—6ae-het Know experimental conditions

63



* Model variants

latent”  (new)
“unknown”
<NOWN’
“observational”

(f

assume there is no intervention data.

64



* Model variants

latent”  (new)

“unknown”

<NOWN’

‘observational’
“semi-supervised” (new)

(f
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* Model variants

‘latent”

(f

(f

<NOWN’

(new)

UNnknown”

‘opbservational’
“semi-supervised’_(new)

‘latent”

0

For each sample:

(fraction) know correspondence to
intervention regime;

For each intervention:

o o not know experimental conditions

(@)

‘—i—’ “unknown’
y 100%

O Qo

Fraction of samples with correspondences.

66



Counts

60

50

40

30

20

10

* Experiments: Cause-Effect Pairs

Cause-Effect Pairs

Hamming dist.l00l01002
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* Experiments on synthetic data

Model Type

latent

unknown

known

observational

Stochastic Interventions:

Linear Gaussian 5.9+6.2 3.4+ 3.2 0.5+1.3 10.3 £ 7.8
Non-Linear Gaussian 12.2+ 3.9 10.3 +=2.5 7.0+ 3.6 13.7 + 3.8
Non-Linear Non-Gaussian 8.7+ 6.6 8.0+ 2.7 6.6 + 2.2 11.3 £ 5.0
Linear Gaussian 27.2 1+ 6.2 24.1 £5.8 15.6 £6.0 39.6 £ 5.0
Non-Linear Gaussian 35.84+3.8 30.34+5.3 27.7+4.3 37.5+5.2
Non-Linear Non-Gaussian 36.1 +4.4 35.0+81 31.5+5.6 40.2 + 6.9
Imperfect Interventions:
Linear Gaussian 5.8 +4.2 6.24+3.06 4.7+3.6 10.44+2.9
Non-Linear Gaussian 93+24 8.9+25 7.8+ 3.9 10.5+2.8
Non-Linear Non-Gaussian 8.8+ 3.0 9.1+ 3.5 79+14 11.54+5.4
Linear Gaussian 35.9 £+ 8.3 2.7+ 5.6 17.7x+7.9 39.1 £9.1
Non-Linear Gaussian 32.1+6.0 326+58 328454 39.84+9.3
Non-Linear Non-Gaussian 304 +12.2 30.2+11.2 25.8+3.9 30.7 £ 9.8

Table 4.1: Hamming distances on synthetic 10 variable SCMs.
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* Experiments on synthetic data

Model Type e latent unknown known observational

Stochastic Interventions:

Linear Gaussian 5.9+ 6.2 3.4+3.2 0.5+1.3 10.3 £ 7.8
Non-Linear Gaussian 1 12.2+3.9 10325 7.0L£3.6 13.7 = 3.8
Non-Linear Non-Gaussian 8.7+6.6 8.0+ 2.7 6.6 + 2.2 11.3£5.0
Linear Gaussian 27.2 +£6.2 24.1+5.8 15.6 6.0 39.6 £ 5.0
Non-Linear Gaussian 4 358+38 303+53 27.7+4.3 37.5+5.2
Non-Linear Non-Gaussian 36.1+44 355+£81 31.5+5.6 40.2 + 6.9

Imperfect Interventions:

Linear Gaussian 58+4.2 6.2+3.06 4.7+3.6 10.4 £ 2.9 :

Non-Linear Gaussian 1 93+24 8.9+25 7.8+ 3.9 10.5+2.8
Non-Linear Non-Gaussian 8.8+ 3.0 9.1+ 3.5 79+14 11.54+5.4
Linear Gaussian 35.9 + 8.3 2.7+ 5.6 17.7x+7.9 39.1 = 9.1
Non-Linear Gaussian 4 321+60 326+5.8 328+54 39.84+9.3
Non-Linear Non-Gaussian 304 +12.2 30.2+11.2 25.8+3.9 30.7 £ 9.8

Table 4.1: Hamming distances on synthetic 10 variable SCMs.



* Experiments on synthetic data

Model Type

e latent unknown known

observational

Linear Gaussian
Non-Linear Gaussian

Non-Linear Non-Gaussian

Stochastic Interventions:
5.9 1£6.2 3.4+3.2 0.5xt1.3
1 | 12.2+3.9 10325 | 7.0L£3.6
8.7 6.6 8.0 2.7 6.6 £ 2.2

10.3 = 7.8
13.7 1+ 3.8
11.3 +=95.0

Linear Gaussian
Non-Linear Gaussian

Non-Linear Non-Gaussian

27.2+6.2 241458 | 156=+6.0

4 | 35.8+£3.8 303+£5.3 | 27.7+4.3

36.1 44 35581 | 31.5+95.6

39.6 £ 5.0
37.5 £ 5.2
40.2 £ 6.9

Linear Gaussian
Non-Linear Gaussian

Non-Linear Non-Gaussian

Imperfect Interventjons:
5.8 4.2 6.21+3.06 | 4.7+ 3.6
1 93x+24 8.9+25 7.81+3.9
8.8 3.0 9.1£3.5 7.9x+14

104+ 2.9
10.56 = 2.8
11.5+5.4

Linear Gaussian
Non-Linear Gaussian

Non-Linear Non-Gaussian

30,983 29.7x5.6 | 17.7x7.9

4 1 32.1+£6.0 326+£58 | 32.8+54

30.4+12.2 30.2x=11.2 | 25.8+3.9

39.1 £9.1
39.8 £9.3
36.7 £ 9.8

Table 4.1: Hamming distances on synthetic 10 variable SCMs.
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* Experiments on Real Data

HD tp fin fp rev Fj score

‘? GIES (Hauser and Biihlmann, 2012) 38 10 0O 41 7 0.33
O — G CAM (Biihlmann et al., 2014) 35 12 1 30 4 0.51
)/‘] IGSP (Wang et al., 2017) 18 4 6 5 7 0.42

DCDI-G (Brouillard et al., 2020) 36 6 2 25 9 0.31

DCDI-DSF (Brouillard et al., 2020) 33 6 2 22 9 0.33

FCI (Spirtes et al., 1993) 35 4 12 21 5 0.22

Lrun Imperfect Linear Gaussian (ours) 33 7 11 22 3 0.30
Inhibitors & Imperfect Non-Linear Gaussian (ours) 19 7 11 8 0 0.42
7. AkTinh Imperfect Normalizing Flow (ours) 30 9 9 21 1 0.38
10. LY204002 > Perfect Linear Gaussian (ours) 23 8 10 13 3 0.41
Perfect Non-Linear Gaussian (ours) 24 11 7 17 1 0.48

Perfect Normalizing Flow (ours) 23 7 11 12 2 0.38

ground truth causal model.




* EXperiments on real data

fAcﬁvam \

1. oCD3
2. CD28
3. ICAM-2
4. PMA

5. p2cAMP

Inhibitors
6. G06976
7. AKT inh
8. Psitect
9. V0126

10. LY294002

O~

Mmm DI2230P22 0B IISIIIINIIDIIIIIIIIINNIISII 322
QIS DRI IIIIIIIIIIIPSIIY 2003

" RAS —CYohesingNyas-1

ground truth causal model.

HD tp fin fp rev Fj score
GIES (Hauser and Biihlmann, 2012) 38 10 0O 41 7 0.33
CAM (Biihlmann et al., 2014) 35 12 1 30 4 0.51
IGSP (Wang et al., 2017) 4 6 5 7 0.42
DCDI-G (Brouillard et al., 2020) 366 6 2 25 9 0.31
DCDI-DSF (Brouillard et al., 2020) 33, 6 2 22 9 0.33
FCI (Spirtes et al., 1993) 35 4 12 21 5 0.22
Imperfect Linear Gaussian (ours) 33 7 11 22 3 0.30
Imperfect Non-Linear Gaussian (ours) 7 11 8 O 0.42
Imperfect Normalizing Flow (ours) 30 9 9 21 1 0.38
Perfect Linear Gaussian (ours) 23 8 10 13 3 0.41
Perfect Non-Linear Gaussian (ours) 24 11 7 17 1 0.48
Perfect Normalizing Flow (ours) 23 7 11 12 2 0.38

/2



* EXperiments on real data

HD tp fin fp rev Fj score

GIES (Hauser and Biihlmann, 2012) 38 10 0O 41 7 0.33
e CAM (Biihlmann et al., 2014) 35 12 1 30 4
)/ IGSP (Wang et al., 2017) 18 4 6 5 7
) DCDI-G (Brouillard et al., 2020) 36 6 2 25 9 0.31
DCDI-DSF (Brouillard et al., 2020) 33 6 2 22 9 0.33
2. 28 > FCI (Spirtes et al., 1993) 35 4 12 21 5 0.22
E fﬁ;": L Imperfect Linear Gaussian (ours) 33 7 11 22 3 0.30
nhitors WFK ~NE Imperfect Non-Linear Gaussian (ours) 19 7 11 8 0
7. AKT oh "‘I‘” Imperfect Normalizing Flow (ours) 30 9 9 21 1 0.38
10, LY204002 : oK) Perfect Linear Gaussian (ours) 23 8 10 13 3 0.41
Perfect Non-Linear Gaussian (ours) 24 11 7 17 1
Perfect Normalizing Flow (ours) 23 7 11 12 2 0.38

ground truth causal model.



* EXperiments on real data

Edges in the wrong

direction
0 O~ HD tp fn {p
‘2’ 29000 ﬁl:’:m Ay 4 GIES (Hauser and Biihlmann, 2012) 38 10 0 41
¥ RAS —Cytohesin®Nap.; CAM (Biihlmann et al., 2014) 35 12 1 30
=8 - /,su» 8 & / IGSP (Wang et al., 2017) 18 4 6 5
\ ! 7 DCDI-G (Brouillard et al., 2020) 36 6 2 25
Ve DCDI-DSF (Brouillard et al., 2020) 33 6 2 22
 nctivors FCI (Spirtes et al., 1993) 35 4 12 21
E :rff; L Imperfect Linear Gaussian (ours) 33 7 11 22
iohibitrs e | Imperfect Non-Linear Gaussian (ours) 19 7 11 8
7. AkTinh Imperfect Normalizing Flow (ours) 30 9 9 21
10. Ly2040e2 Perfect Linear Gaussian (ours) 23 8 10 13
Perfect Non-Linear Gaussian (ours) 24 11 7 17
Perfect Normalizing Flow (ours) 23 7 11 12

ground truth causal model.



Can Large Language Models Infer
Causation from Correlation?
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Abstract

Causal inference is one of the hallmarks of human intelligence. While the field
of CausalNLP has attracted much interest in the recent years, existing causal

inference datasets in NLP primarily rely on discovering causality from empirical
knowledge (e.g. commonsense knowledge). In this work, we propose the first
benchmark dataset to test the pure causal inference skills of large language models
(LLMs). Specifically, we formulate a novel task CORR2CAUSE, which takes a
(set of) correlational statements and determines the causal relationship between
the variables. We curate a large-scale dataset of more than 400K samples, on
which we evaluate seventeen existing LLMs. Through our experiments, we identify
a key shortcoming of LLMs in terms of their causal inference skills, and show
that these models achieve almost close to random performance on the task. This
shortcoming is somewhat mitigated when we try to re-purpose LLMs for this skill
via finetuning, but we find that these models still fail to generalize — they can only
perform causal inference in in-distribution settings when variable names and textual
expressions used in the queries are similar to those in the training set, but fail in
out-of-distribution settings generated by perturbing these queries. CORR2CAUSE
is a challenging task for LLLMs, and would be helpful in guiding future research on
improving LLMs’ pure reasoning skills and generalizability.'
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