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Causal questions are ubiquitous: healthcare

https://www.nature.com/articles/s41577-021-00592-1
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Causal questions are ubiquitous: climate change
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Causal questions are ubiquitous: biology
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A working definition of causality in machine learning
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Informal definition: A variable X causes another variable Y, if changing (the 
distribution of) X, e.g. by fixing its value, changes (the distribution of) Y
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[Messerli, 2012] https://www.nejm.org/doi/full/10.1056/NEJMon1211064
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[Messerli, 2012] https://www.nejm.org/doi/full/10.1056/NEJMon1211064

NL eats more chocolate => nothing changes

Informal definition: A variable X causes another variable Y, if changing (the 
distribution of) X, e.g. by fixing its value, changes (the distribution of) Y
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[Messerli, 2012] https://www.nejm.org/doi/full/10.1056/NEJMon1211064

NL eats more chocolate => nothing changes

Chocolate does not cause Nobel prizes

… and similarly for other countries (and other values)

Informal definition: A variable X causes another variable Y, if changing (the 
distribution of) X, e.g. by fixing its value, changes (the distribution of) Y
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In a hypothetical universe:

NL eats more chocolate => more Nobel prizes
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[Messerli, 2012] https://www.nejm.org/doi/full/10.1056/NEJMon1211064

A working definition of causality in machine learning

NL eats more chocolate => more Nobel prizes
CH eats more chocolate => more Nobel prizes

In a hypothetical universe:

Informal definition: A variable X causes another variable Y, if changing (the 
distribution of) X, e.g. by fixing its value, changes (the distribution of) Y

Chocolate causes Nobel prizes
Based on experimental data

… and similarly for (some) other countries
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Gold standard of experiments: Randomized Controlled Trials (RCTs)
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A working definition of causality in machine learning

Intervention

Informal definition: A variable X causes another variable Y, if changing (the 
distribution of) X, e.g. by fixing its value, changes (the distribution of) Y
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A working definition of causality in machine learning

Intervention

Challenge: estimate the causal effect of an intervention, when we do not 
have (all possible) interventional data (e.g. observational data)

Informal definition: A variable X causes another variable Y, if changing (the 
distribution of) X, e.g. by fixing its value, changes (the distribution of) Y
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A working definition of causality in machine learning

Representation: We can represent causal relations in causal graphs: nodes 
are random variables, edges causal relations

Chocolate Nobel 
prizes

Intervention

Challenge: estimate the causal effect of an intervention, when we do not 
have (all possible) interventional data (e.g. observational data)

Informal definition: A variable X causes another variable Y, if changing (the 
distribution of) X, e.g. by fixing its value, changes (the distribution of) Y
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Observational data: when we do not have RCTs
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From the Book of Why [Pearl 2018]

Let’s assume we have observational data (e.g. data collected by hospitals)

We don’t know if there is a policy 
(and in case, which one) of how 
people decide to exercise.

We know they were not randomly 
split in two similar groups and 
randomly assigned exercise.

Causal Data Science - Introduction UvA - Spring 2023 - Period 4DL2 Causality: Introduction UvA Deep Learning 2 (https://uvadl2c.github.io)Causal vs Causality-inspired Representation Learning Sara Magliacane (UvA, MIT-IBM Watson AI)

https://uvadl2c.github.io/


Observational data: when we do not have RCTs

16
From the Book of Why [Pearl 2018]

Let’s assume we have observational data (e.g. data collected by hospitals)

We don’t know if there is a policy 
(and in case, which one) of how 
people decide to exercise.

We know they were not randomly 
split in two similar groups and 
randomly assigned exercise.

Causal Data Science - Introduction UvA - Spring 2023 - Period 4DL2 Causality: Introduction UvA Deep Learning 2 (https://uvadl2c.github.io)Causal vs Causality-inspired Representation Learning Sara Magliacane (UvA, MIT-IBM Watson AI)

Exercise increases cholesterol??

https://uvadl2c.github.io/


What if we don’t have an RCT? Opposite conclusion
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Let’s assume we have observational data (e.g. data collected by hospitals)

E C
-

From the Book of Why [Pearl 2018]

A
++

Exercise decreases cholesterol!
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The effect we estimate from data depends 
on the causal graph

Exercise increases cholesterol??
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Causal Hierarchy [Pearl 2009, 2018] 

Most ML

Causality

Causality-inspired ML - Sara Magliacane (UvA) KNAW and VVL causality webinar

Model-based
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Can we learn causal variables from high-dimensional data?
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Note: wishful 
thinking at this 
point of time…
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Unknown causal 
graph over unknown 
causal variables

Z1, …, Zd
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Adapted from [Schölkopf et al 2021]
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Unknown causal 
graph over unknown 
causal variables

Z1, …, Zd
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Adapted from [Schölkopf et al 2021]
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Unknown causal 
graph over unknown 
causal variables
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robot_finger_1.pos robot_finger_2.pos robot_finger_3.pos

box_1.pos box_2.pos box_3.pos

Now we have only an entangled 
measurement of the causal variables 

(e.g. image)
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Adapted from [Schölkopf et al 2021]
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The causal representation learning problem (simplified)
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Unknown causal 
graph over unknown 
causal variables

Sensor measurements 
as an entangled view

Z1, …, Zd X1, …, Xp

p ≫ d
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Issue: in general the 
latent space of a 
VAE does not 
disentangle the 
causal factors!

Adapted from [Schölkopf et al 2021]
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Issue: in general the 
latent space of a 
VAE does not 
disentangle the 
causal factors!

We need extra 
assumptions to prove 
identifiability (and 
usually only up to some 
equivalence class)

Adapted from [Schölkopf et al 2021]
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CITRIS: Causal Identifiability from TempoRal Intervened Sequences
ICML 2022
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• We want to learn the underlying causal 
process from temporal sequences of high-
dimensional data , e.g. images 

• We assume that the latent causal process is 
a Dynamic Bayesian network with K causal 
variables  

• We assume that (soft) interventions can 
happen on the underlying system and we 
observe the targets 

{Xt}T
t=1

C1, …, CK

It
i

CITRIS: Causal Identifiability from TempoRal Intervened Sequences

Causality + Causality inspired ML ideas UvA-Janssen meeting February 2023

ICML 2022
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• We want to learn the underlying causal 
process from temporal sequences of high-
dimensional data , e.g. images 

• We assume that the latent causal process is 
a Dynamic Bayesian network with K 
multidimensional causal variables 

• We assume that (soft or perfect) 
interventions can happen on the underlying 
system and we observe the targets 
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Causality + Causality inspired ML ideas UvA-Janssen meeting February 2023

ICML 2022

Causality & DL - Introduction UvA Deep Learning 2 (https://uvadl2c.github.io)Causality-inspired ML - Sara Magliacane (IvI) AI and Culture - Seminar 2 Prediction and CausalityDL2 Causality: CITRIS UvA Deep Learning 2 (https://uvadl2c.github.io)

•   Ii → Ci

Causal vs Causality-inspired Representation Learning Sara Magliacane (UvA, MIT-IBM Watson AI)

https://uvadl2c.github.io/
https://uvadl2c.github.io/


Minimal causal variables - theory
DL2 Causality: CITRIS UvA Deep Learning 2 (https://uvadl2c.github.io)Causal vs Causality-inspired Representation Learning Sara Magliacane (UvA, MIT-IBM Watson AI)

https://uvadl2c.github.io/


Minimal causal variables - theory

Minimal causal variable

• We can define a split of a causal variable Ct
i

DL2 Causality: CITRIS UvA Deep Learning 2 (https://uvadl2c.github.io)Causal vs Causality-inspired Representation Learning Sara Magliacane (UvA, MIT-IBM Watson AI)

https://uvadl2c.github.io/


• We choose  that contains only the information that depends on 


• We can identify minimal causal variables up to invertible component-wise 
transformations, if  is not a deterministic function of 

svar*
i It+1

i

It
i It

j

Minimal causal variables - theory

Minimal causal variable

• We can define a split of a causal variable Ct
i

DL2 Causality: CITRIS UvA Deep Learning 2 (https://uvadl2c.github.io)Causal vs Causality-inspired Representation Learning Sara Magliacane (UvA, MIT-IBM Watson AI)

https://uvadl2c.github.io/


The intervention only has an 
effect on a part of the variable 

(e.g.only on ball_x)

It
ball = 1

ballt−1

ballt

pleft_yt−1

pleft_yt

pright_yt−1

pright_yt

scoret−1

scoret

It
4 = 0 It

5 = 0 It
6 = 0

Minimal causal variables - example
DL2 Causality: CITRIS UvA Deep Learning 2 (https://uvadl2c.github.io)Causal vs Causality-inspired Representation Learning Sara Magliacane (UvA, MIT-IBM Watson AI)

https://uvadl2c.github.io/


The intervention only has an 
effect on a part of the variable 

(e.g.only on ball_x)

It
ball = 1

ballt−1

ballt

pleft_yt−1

pleft_yt

pright_yt−1

pright_yt

scoret−1

scoret

It
4 = 0 It

5 = 0 It
6 = 0

t-1 t-1 t-1 t-1 t-1 t-1

t t t t t t

It
4 = 0 It

5 = 0 It
6 = 0It

ball = 1

DL2 Causality: CITRIS UvA Deep Learning 2 (https://uvadl2c.github.io)

Minimal causal variables - example
Causal vs Causality-inspired Representation Learning Sara Magliacane (UvA, MIT-IBM Watson AI)

https://uvadl2c.github.io/


The intervention only has an 
effect on a part of the variable 

(e.g.only on ball_x)

It
ball = 1

ballt−1

ballt

pleft_yt−1

pleft_yt

pright_yt−1

pright_yt

scoret−1

scoret

It
4 = 0 It

5 = 0 It
6 = 0

t-1 t-1 t-1 t-1 t-1 t-1

t t t t t t

It
4 = 0 It

5 = 0 It
6 = 0It

ball = 1

DL2 Causality: CITRIS UvA Deep Learning 2 (https://uvadl2c.github.io)

Minimal causal variables - example

We can distinguish only x of the ball  
(y and vel_dir are never intervened upon)

Causal vs Causality-inspired Representation Learning Sara Magliacane (UvA, MIT-IBM Watson AI)

https://uvadl2c.github.io/


• We choose  that contains only the information that depends on 


• We can identify minimal causal variables up to invertible component-wise 
transformations, if  is not a deterministic function of 

svar*
i It+1

i

It
i It

j

Minimal causal variables - theory

Minimal causal variable

• We can define a split of a causal variable Ct
i

DL2 Causality: CITRIS UvA Deep Learning 2 (https://uvadl2c.github.io)Causal vs Causality-inspired Representation Learning Sara Magliacane (UvA, MIT-IBM Watson AI)

https://uvadl2c.github.io/


It
1 = 1

t-1 t-1 t-1 t-1 t-1 t-1

t t t t t t

It
2 = 1 It

3 = 1 It
4 = 0 It

5 = 0 It
6 = 0

These are always intervened together 
(or they are a deterministic function of 

each other)

Deterministic relations between Ii

DL2 Causality: CITRIS UvA Deep Learning 2 (https://uvadl2c.github.io)Causal vs Causality-inspired Representation Learning Sara Magliacane (UvA, MIT-IBM Watson AI)

https://uvadl2c.github.io/


It
1 = 1

t-1 t-1 t-1 t-1 t-1 t-1

t t t t t t

It
2 = 1 It

3 = 1 It
4 = 0 It

5 = 0 It
6 = 0

These are always intervened together 
(or they are a deterministic function of 

each other)

It
ball = 1

ballt−1

ballt

pleft_yt−1

pleft_yt

pright_yt−1

pright_yt

scoret−1

scoret

It
4 = 0 It

5 = 0 It
6 = 0

We cannot distinguish x, y and velocity 
direction of the ball

Deterministic relations between Ii

DL2 Causality: CITRIS UvA Deep Learning 2 (https://uvadl2c.github.io)Causal vs Causality-inspired Representation Learning Sara Magliacane (UvA, MIT-IBM Watson AI)

https://uvadl2c.github.io/
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Causality + Causality inspired ML ideas UvA-Janssen meeting February 2023

CITRIS: Causal Identifiability from TempoRal Intervened Sequences
ICML 2022

https://arxiv.org/abs/2202.03169

CITRIS-VAE

Causality & DL - Introduction UvA Deep Learning 2 (https://uvadl2c.github.io)Causality-inspired ML - Sara Magliacane (IvI) AI and Culture - Seminar 2 Prediction and CausalityDL2 Causality: CITRIS UvA Deep Learning 2 (https://uvadl2c.github.io)Causal vs Causality-inspired Representation Learning Sara Magliacane (UvA, MIT-IBM Watson AI)

https://arxiv.org/abs/2202.03169
https://uvadl2c.github.io/
https://uvadl2c.github.io/


50

Causality + Causality inspired ML ideas UvA-Janssen meeting February 2023

CITRIS: Causal Identifiability from TempoRal Intervened Sequences
ICML 2022

Causality & DL - Introduction UvA Deep Learning 2 (https://uvadl2c.github.io)Causality-inspired ML - Sara Magliacane (IvI) AI and Culture - Seminar 2 Prediction and CausalityDL2 Causality: CITRIS UvA Deep Learning 2 (https://uvadl2c.github.io)

• We have multidimensional causal factors, so we need to learn an 
assignment function  that matches each  with the assigned latentsψ Ci

zΨiCi

zΨ0
“junk” variables

Causal vs Causality-inspired Representation Learning Sara Magliacane (UvA, MIT-IBM Watson AI)Causal vs Causality-inspired Representation Learning Sara Magliacane (UvA, MIT-IBM Watson AI)

https://uvadl2c.github.io/
https://uvadl2c.github.io/


t

t t

Causality & DL - Causality + DL ? UvA Deep Learning 2 (https://uvadl2c.github.io)DL2 Causality: CITRIS UvA Deep Learning 2 (https://uvadl2c.github.io)

Experiments: Interventional Pong

Causal vs Causality-inspired Representation Learning Sara Magliacane (UvA, MIT-IBM Watson AI)

https://uvadl2c.github.io/
https://uvadl2c.github.io/


Temporal Causal3D Ident

Causal graph learnt with CITRIS-NF

Experiments: Temporal Causal3DIdent

Causality & DL - Causality + DL ? UvA Deep Learning 2 (https://uvadl2c.github.io)DL2 Causality: CITRIS UvA Deep Learning 2 (https://uvadl2c.github.io)Causal vs Causality-inspired Representation Learning Sara Magliacane (UvA, MIT-IBM Watson AI)

https://uvadl2c.github.io/
https://uvadl2c.github.io/
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iCITRIS: Causal Representation Learning for Instantaneous Temporal Effects
ICLR 2023

https://arxiv.org/abs/2206.06169

t-1

t

Causal vs Causality-inspired Representation Learning Sara Magliacane (UvA, MIT-IBM Watson AI)

https://arxiv.org/abs/2206.06169
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Causality + Causality inspired ML ideas UvA-Janssen meeting February 2023

UAI 2023

BISCUIT: Causal Representation Learning from Binary Interactions

Causal vs Causality-inspired Representation Learning Sara Magliacane (UvA, MIT-IBM Watson AI)

COMING SOON
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Causal Hierarchy [Pearl 2009, 2018] 

Most ML

Causality

UvA - Spring 2023 - Period 4Causal Data Science - Causality-inspired MLDL2 Causality: Causality-inspired ML UvA Deep Learning 2 (https://uvadl2c.github.io)Causal vs Causality-inspired Representation Learning Sara Magliacane (UvA, MIT-IBM Watson AI)

https://uvadl2c.github.io/
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Causal Hierarchy [Pearl 2009, 2018] 

Most ML

Causality

Causality-inspired ML - Sara Magliacane (UvA, MIT-IBM) YES Causal Inference 2023

“Full” causality can be not necessary or too expensive ->

E.g. need many 
experiments or strong assumptions to 
identify the causal graph or the causal 

variables

UvA - Spring 2023 - Period 4Causal Data Science - Causality-inspired MLDL2 Causality: Causality-inspired ML UvA Deep Learning 2 (https://uvadl2c.github.io)Causal vs Causality-inspired Representation Learning Sara Magliacane (UvA, MIT-IBM Watson AI)

https://uvadl2c.github.io/
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Causal Hierarchy [Pearl 2009, 2018] 

Most ML

Causality

Causality-inspired ML - Sara Magliacane (UvA) KNAW and VVL causality webinar

“Full” causality can be not necessary or too expensive ->

Causality-inspired ML - Sara Magliacane (UvA, MIT-IBM) YES Causal Inference 2023UvA - Spring 2023 - Period 4Causal Data Science - Causality-inspired MLDL2 Causality: Causality-inspired ML UvA Deep Learning 2 (https://uvadl2c.github.io)Causal vs Causality-inspired Representation Learning Sara Magliacane (UvA, MIT-IBM Watson AI)

https://uvadl2c.github.io/


Causality vs Transfer learning

58

• Transfer learning: 


• How can I predict what happens 
when the distribution changes?

Causality-inspired ML - Sara Magliacane (UvA) KNAW and VVL causality webinarCausal vs Causality-inspired Representation Learning Sara Magliacane (UvA, MIT-IBM Watson AI)



Causality vs Transfer learning

59

• Transfer learning: 


• How can I predict what happens 
when the distribution changes?

• Causal inference:


• How can I predict what happens when 
the distribution changes after an 
intervention?


• Perfect intervention do(X): 


• do-calculus [Pearl, 2009]


•  Soft intervention on X  change 
of distribution of P(X| parents)


≈

Causality-inspired ML - Sara Magliacane (UvA) KNAW and VVL causality webinarCausal vs Causality-inspired Representation Learning Sara Magliacane (UvA, MIT-IBM Watson AI)



Causality vs Transfer learning

60

• Transfer learning: 


• How can I predict what happens 
when the distribution changes?

• Causal inference:


• How can I predict what happens when 
the distribution changes after an 
intervention?


• Perfect intervention do(X): 


• do-calculus [Pearl, 2009]


•  Soft intervention on X  change 
of distribution of P(X| parents)


≈

Causality-inspired ML - Sara Magliacane (UvA) KNAW and VVL causality webinar

Very general - can model also 
changes in distribution that are not 

from “real” interventions

Causal vs Causality-inspired Representation Learning Sara Magliacane (UvA, MIT-IBM Watson AI)



61and many many more....

Causality-inspired ML - Sara Magliacane (UvA) KNAW and VVL causality webinar

Causality allows us to reason systematically about distribution 
shifts, e.g. through graphs

Causal vs Causality-inspired Representation Learning Sara Magliacane (UvA, MIT-IBM Watson AI)
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{Source domain

Target domain

Causality-inspired ML - Sara Magliacane (UvA) KNAW and VVL causality webinar

No labels in target

X1 X2 Y
Wildtype 0,1 2 0
Wildtype 0,2 3 0
Wildtype 1,1 2 1
Wildtype 0,1 3 0

X1 X2 Y
Gene A 3,1 2 ?
Gene A 3,2 3 ?
Gene A 4 2 ?
Gene A 3,2 3 ?

{

X1 X2 Y
Wildtype 0,1 2 0
Wildtype 0,2 3 0
Wildtype 1,1 2 1
Wildtype 0,1 3 0

Causality-inspired ML - Sara Magliacane (UvA, MIT-IBM) YES Causal Inference 2023UvA - Spring 2023 - Period 4Causal Data Science - Causality-inspired MLDL2 Causality: Causality-inspired ML UvA Deep Learning 2 (https://uvadl2c.github.io)

Domain adaptation from the graphical perspective

Causal vs Causality-inspired Representation Learning Sara Magliacane (UvA, MIT-IBM Watson AI)

https://uvadl2c.github.io/
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1. We add a domain variable D to distinguish the domains

{Source domain

Target domain

Causality-inspired ML - Sara Magliacane (UvA) KNAW and VVL causality webinar

D X1 X2 Y
1 3,1 2 ?
1 3,2 3 ?
1 4 2 ?
1 3,2 3 ?

{

D X1 X2 Y
0 0,1 2 0
0 0,2 3 0
0 1,1 2 1
0 0,1 3 0

Domain adaptation from the graphical perspective

Causality-inspired ML - Sara Magliacane (UvA, MIT-IBM) YES Causal Inference 2023UvA - Spring 2023 - Period 4Causal Data Science - Causality-inspired MLDL2 Causality: Causality-inspired ML UvA Deep Learning 2 (https://uvadl2c.github.io)Causal vs Causality-inspired Representation Learning Sara Magliacane (UvA, MIT-IBM Watson AI)

https://uvadl2c.github.io/


C X1 X2 Y
1 3,1 2 ?
1 3,2 3 ?
1 4 2 ?
1 3,2 3 ?

64

1. We add a domain variable D to distinguish the domains 


2. We consider the data as coming from a single distribution P(X1, X2,Y, D)

{Source domain

Target domain

D X1 X2 Y
0 0,1 2 0
0 0,2 3 0
0 1,1 2 1
0 0,1 3 0

{

Domain adaptation from the graphical perspective

Causality-inspired ML - Sara Magliacane (UvA, MIT-IBM) YES Causal Inference 2023UvA - Spring 2023 - Period 4Causal Data Science - Causality-inspired MLDL2 Causality: Causality-inspired ML UvA Deep Learning 2 (https://uvadl2c.github.io)Causal vs Causality-inspired Representation Learning Sara Magliacane (UvA, MIT-IBM Watson AI)

https://uvadl2c.github.io/


1. We add a domain variable D to distinguish the domains 


2. We consider the data as coming from a single distribution P(X1, X2,Y, D)

C X1 X2 Y
1 3,1 2 ?
1 3,2 3 ?
1 4 2 ?
1 3,2 3 ?

65

Domain adaptation from the graphical perspective

Causality-inspired ML - Sara Magliacane (UvA) KNAW and VVL causality webinar

D X1 X2 Y
0 0,1 2 0
0 0,2 3 0
0 1,1 2 1
0 0,1 3 0

X1 Y X2

D

We can represent P(X1, X2,Y, D) 
with an (unknown) causal graph

Causality-inspired ML - Sara Magliacane (UvA, MIT-IBM) YES Causal Inference 2023UvA - Spring 2023 - Period 4Causal Data Science - Causality-inspired MLDL2 Causality: Causality-inspired ML UvA Deep Learning 2 (https://uvadl2c.github.io)Causal vs Causality-inspired Representation Learning Sara Magliacane (UvA, MIT-IBM Watson AI)

https://uvadl2c.github.io/


C X1 X2 Y
1 3,1 2 ?
1 3,2 3 ?
1 4 2 ?
1 3,2 3 ?
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Domain adaptation from the graphical perspective

Causality-inspired ML - Sara Magliacane (UvA) KNAW and VVL causality webinar

D X1 X2 Y
0 0,1 2 0
0 0,2 3 0
0 1,1 2 1
0 0,1 3 0

X1 Y X2

D

We can represent P(X1, X2,Y, D) 
with an (unknown) causal graph

Causality-inspired ML - Sara Magliacane (UvA, MIT-IBM) YES Causal Inference 2023UvA - Spring 2023 - Period 4Causal Data Science - Causality-inspired MLDL2 Causality: Causality-inspired ML UvA Deep Learning 2 (https://uvadl2c.github.io)

• Task: find a subset of features X that predict Y robustly in the target domain


• Separating features  … d-separation [Pearl 2009]S ⊆ X : Y ⊥d D |S

Causal vs Causality-inspired Representation Learning Sara Magliacane (UvA, MIT-IBM Watson AI)

https://uvadl2c.github.io/
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Separating features = safe for (adversarial) domain adaptation

X1 Y X2

C

Causality-inspired ML - Sara Magliacane (UvA) KNAW and VVL causality webinar

• Separating features: sets of features that d-separate Y from the context

Step 1: Known causal graph

Causal vs Causality-inspired Representation Learning Sara Magliacane (UvA, MIT-IBM Watson AI)
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Separating features = safe for (adversarial) domain adaptation

X1 Y X2

C

Causality-inspired ML - Sara Magliacane (UvA) KNAW and VVL causality webinar

• Separating features: sets of features that d-separate Y from the context

Causal vs Causality-inspired Representation Learning Sara Magliacane (UvA, MIT-IBM Watson AI)
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Separating features = safe for (adversarial) domain adaptation

X1 Y X2

C

Y ⊥⊥d C |X1 ⟺ Y ⊥⊥ C |X1

• Separating features: sets of features that d-separate Y from the context

Causality-inspired ML - Sara Magliacane (UvA) KNAW and VVL causality webinar

(under Markov and faithfulness assumptions)

Causal vs Causality-inspired Representation Learning Sara Magliacane (UvA, MIT-IBM Watson AI)
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Separating features = safe for (adversarial) domain adaptation

X1 Y X2

C Source

Target

X1

Y

Y ⊥⊥ C |X1 ≡
P(Y |X1, C = 0) = P(Y |X1, C = 1)

Y ⊥⊥d C |X1 ⟺ Y ⊥⊥ C |X1

• Separating features: sets of features that d-separate Y from the context

Causality-inspired ML - Sara Magliacane (UvA) KNAW and VVL causality webinar

(under Markov and faithfulness assumptions)

Causal vs Causality-inspired Representation Learning Sara Magliacane (UvA, MIT-IBM Watson AI)
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Separating features = safe for (adversarial) domain adaptation

Source

Target

X1

Y

Y ⊥⊥ C |X1 ≡
P(Y |X1, C = 0) = P(Y |X1, C = 1)

Y /⊥⊥ C |X2 ≡
P(Y |X2, C = 0) ≠ P(Y |X2, C = 1)

X2

Y
Source

Target

X1 Y X2

C

• Separating features: sets of features that d-separate Y from the context

Causality-inspired ML - Sara Magliacane (UvA) KNAW and VVL causality webinar

Y /⊥⊥d C |X2 ⟺ Y /⊥⊥ C |X2
(under Markov and faithfulness assumptions)

Causal vs Causality-inspired Representation Learning Sara Magliacane (UvA, MIT-IBM Watson AI)
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Separating features = safe for (adversarial) domain adaptation

Source

Target

X1

Y

Y ⊥⊥ C |X1 ≡
P(Y |X1, C = 0) = P(Y |X1, C = 1)

Y /⊥⊥ C |X2 ≡
P(Y |X2, C = 0) ≠ P(Y |X2, C = 1)

X2

Y
Source

Target

X1 Y X2

C

• Separating features: sets of features that d-separate Y from the context

{X1} is a separating feature, {X2} and {X1, X2} are not -> arbitrarily large error

Causality-inspired ML - Sara Magliacane (UvA) KNAW and VVL causality webinarCausal vs Causality-inspired Representation Learning Sara Magliacane (UvA, MIT-IBM Watson AI)
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Separating features = safe for (adversarial) domain adaptation

Source

Target

X1

Y

Y ⊥⊥ C |X1 ≡
P(Y |X1, C = 0) = P(Y |X1, C = 1)

Y /⊥⊥ C |X2 ≡
P(Y |X2, C = 0) ≠ P(Y |X2, C = 1)

X2

Y
Source

Target

X1 Y X2

C

Y /⊥⊥d C |X2

• Separating features: sets of features that d-separate Y from the context

{X1} is a separating feature, {X2} and {X1, X2} are not -> arbitrarily large error

Step 2: Unknown graph and no 
labels in target!

Causality-inspired ML - Sara Magliacane (UvA) KNAW and VVL causality webinarCausal vs Causality-inspired Representation Learning Sara Magliacane (UvA, MIT-IBM Watson AI)
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Inferring separating sets of features 

Logic encoding of d-separation 
[Hyttinen et al. 2014]

     Query Y ⊥⊥ C1 |X1?

All testable conditional 
independences from data

Y ⊥⊥ C2 |X1, C1 = 0
X1 ⊥⊥ X3 |X4

X2 ⊥⊥ C2 |Y, C1 = 0
…

Assumptions

?

Y ⊥⊥ C1 |X1

Y /⊥⊥ C1 |X1
Theorem prover

Not identifiable

Provably separating

Provably not separating

https://arxiv.org/abs/1707.06422

Causality-inspired ML - Sara Magliacane (UvA) KNAW and VVL causality webinar

We can test incrementally each set of 
features selected by standard feature 

selection (e.g. random forests)

Causal vs Causality-inspired Representation Learning Sara Magliacane (UvA, MIT-IBM Watson AI)

https://arxiv.org/abs/1707.06422
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Inferring separating sets of features 

Logic encoding of d-separation 
[Hyttinen et al. 2014]

     Query Y ⊥⊥ C1 |X1?

All testable conditional 
independences from data

Y ⊥⊥ C2 |X1, C1 = 0
X1 ⊥⊥ X3 |X4

X2 ⊥⊥ C2 |Y, C1 = 0
…

Assumptions

?

Y ⊥⊥ C1 |X1

Y /⊥⊥ C1 |X1
Theorem prover

Not identifiable

Provably separating

Provably not separating

https://arxiv.org/abs/1707.06422

Causality-inspired ML - Sara Magliacane (UvA) KNAW and VVL causality webinar

We can test incrementally each set of 
features selected by standard feature 

selection (e.g. random forests)

A big (current) limitation: 
Scalability 

Causal vs Causality-inspired Representation Learning Sara Magliacane (UvA, MIT-IBM Watson AI)

https://arxiv.org/abs/1707.06422


76

Causality-inspired ML - Sara Magliacane (UvA) KNAW and VVL causality webinar

ICLR 2022

Domain 1

Domain 2

… 

Source domains

…
Domain n

ballt,
{playert,

advst,
at, rt}t=0,…,T

ballt,
{playert,

advst,
at, rt}t=0,…,T

ballt,
{playert,

advst,
at, rt}t=0,…,T

https://arxiv.org/abs/2107.02729

AdaRL: What, Where, and How to Adapt in Transfer RL

Causality-inspired ML - Sara Magliacane (UvA, MIT-IBM) YES Causal Inference 2023UvA - Spring 2023 - Period 4Causal Data Science - Causality-inspired ML

Target domain

{ot, at, rt}t=0,…,T

DL2 Causality: Causality-inspired RL UvA Deep Learning 2 (https://uvadl2c.github.io)Causal vs Causality-inspired Representation Learning Sara Magliacane (UvA, MIT-IBM Watson AI)

https://arxiv.org/abs/2107.02729
https://uvadl2c.github.io/
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Causality-inspired ML - Sara Magliacane (UvA) KNAW and VVL causality webinar

ICLR 2022

ballt

playert−1

advst−1

at−1 rt

timeslice t-1 timeslice t

Domain-shared representation

Domain 1

Domain 2

… 

Source domains

…
Domain n

playert

ballt−1

advst

ballt,
{playert,

advst,
at, rt}t=0,…,T

ballt,
{playert,

advst,
at, rt}t=0,…,T

ballt,
{playert,

advst,
at, rt}t=0,…,T

https://arxiv.org/abs/2107.02729

AdaRL: What, Where, and How to Adapt in Transfer RL

Causality-inspired ML - Sara Magliacane (UvA, MIT-IBM) YES Causal Inference 2023UvA - Spring 2023 - Period 4Causal Data Science - Causality-inspired ML

• Learn a factored MDP 
(symbolic inputs)

Causality-inspired ML - Sara Magliacane (UvA) KNAW and VVL causality webinarCausality-inspired ML - Sara Magliacane (UvA, MIT-IBM) YES Causal Inference 2023UvA - Spring 2023 - Period 4Causal Data Science - Causality-inspired MLDL2 Causality: Causality-inspired RL UvA Deep Learning 2 (https://uvadl2c.github.io)Causal vs Causality-inspired Representation Learning Sara Magliacane (UvA, MIT-IBM Watson AI)

https://arxiv.org/abs/2107.02729
https://uvadl2c.github.io/
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• Learn a factored MDP 
(symbolic inputs) with latent 
change factors that are 
constant in each domain, but 
vary across domains
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When we learn from symbolic inputs, 
the causal graph can be identified, but 
we don’t have guarantees on what the 

latent change factors are
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When we learn from images, we 
cannot identify the causal variables, 
so what we learn is not necessarily 

causal… but it is still useful
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Average final scores on Cartpole (MDP) with N_target=50 Average final scores on Pong (POMDP) with N_target=50

• Results: we consistently outperform the state-of-the-art thanks to the graph
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FansRL: Factored Adaptation for Non-Stationary Reinforcement Learning

https://arxiv.org/abs/2203.16582
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• Task: RL agent has to learn a policy that is robust to different types of non-
stationarity, including multiple simultaneous changes of different types
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Factored Non-Stationary MDP

• The latent change factors are not constant anymore and they model non-stationarity
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• The latent change factors are not constant anymore and they model non-stationarity

Factored Non-Stationary Variational AutoencoderFactored Non-Stationary MDP
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The biggest difference in performance is 
switching off learning the graph

• Policy learning: estimate latent change factors, learn policy as if they were observed


• Results: we consistently outperform the state-of-the-art thanks to the graph
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• Causal representation learning (learn causal variables from images)


• Requires a lot of interventional data or strong assumptions, not ready yet for RL


• Provides theoretical guarantees, could allow for better generalization


• Causality-inspired representation learning (learn graphs from images) 

• No requirements on interventional data, but no identifiability guarantees 

• Still empirically useful in RL
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https://xkcd.com/2620/
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