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Setup

Mn, compact oriented manifold

G , compact Lie group

P → M, principal G -bundle (vector bundle)

A, connection on P

FA
loc
= dA + A ∧ A, curvature.
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Yang-Mills connections

A = AP , space of all connections on P, affine space modeled on Ω1(gP)

G = GP = Γ (P ×Ad G), group of gauge transformations (global automorphisms) of P

B = A /G , Banach manifold away from fixed points (reducible connections).

Fix a metric g and define the Yang-Mills functional

YM(A) =
1

2

∫
|FA|2g dVg : B → R≥0.

Definition

A is a Yang-Mills connection if

D∗AFA = 0.

2nd-order PDE in A, elliptic modulo gauge.
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Instantons (n = 4)

Suppose M = M4.

∗ : Λ2
±
±1→ Λ2

±

Λ2
M := Λ2

+ ⊕ Λ2
−.

Definition (n = 4)

A is an instanton if F+
A = 0 (or F−A = 0).

1st-order PDE in A, elliptic modulo gauge.
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Instantons are minimizers

Write ‖ · ‖ = ‖ · ‖L2(M). We have

2YM(A) = ‖FA‖2 = ‖F+
A ‖

2 + ‖F−A ‖
2.

Also, by Chern-Weil, we have

8π2κ(P) =

∫
Tr FA ∧ FA = −

∫
〈FA, ∗FA〉 dV = ‖F−A ‖

2 − ‖F+
A ‖

2.

Subtracting, we obtain

YM(A) = 4π2κ(P) + ‖F+
A ‖

2

⇒ instantons minimize YM, in particular are Yang-Mills.

Remarks.

M = {[A] ∈ B | F+
A = 0} is typically noncompact

Can have M = ∅ !
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Instantons (n ≥ 4)

Suppose that (M, g) carries an (n − 4)-calibration Φ (Harvey-Lawson ’82).

Definition (Corrigan, Devchand, Fairlie, and Nuyts ’83, Tian ’02)

A is a (λ-)instanton if

FA + λ ∗ (Φ ∧ FA) = 0

for λ ∈ R.

In special-holonomy cases, instantons with λ = 1 minimize YM.

Reyes-Carrión ’98:

Λ2 =

“Compatible”︷ ︸︸ ︷
LieHol︸ ︷︷ ︸
Instanton

(g)⊕ · · ·⊕ · · · .
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Instantons (n ≥ 4), cont.

Example 1 (4-manifolds)

Λ2R4 ∼= so(4) ∼= su(2)⊕ su(2)

M = M4, Hol(g) ⊂ SO(4), Φ = 1

Λ2
M = Λ2

−︸︷︷︸
ASD inst.

⊕Λ2
+.

Example 2 (G2-manifolds)

Λ2R7 ∼= so(7) ∼= g2 ⊕ R7

M = M7, Hol(g) ⊂ G2, Φ = φ, defining 3-form.

Λ2
M = Λ2

14︸︷︷︸
G2-inst.

⊕Λ2
7.
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Instantons (n ≥ 4), cont.

Example 3 (Kähler manifolds)

so(2n) ∼=

u(n)︷ ︸︸ ︷
su(n)⊕ u(1)⊕ · · ·

M = M2n, Hol(g) ⊂ U(n), Φ =
ωn−2

(n − 2)!

Λ2
M =

Compat. w. ∂̄A︷ ︸︸ ︷
Λ1,1

0︸︷︷︸
HYM

⊕〈ω〉 ⊕
(

Λ2,0 ⊕ Λ0,2
)
R
.

Example 4 (Quaternion-Kähler manifolds)

so(4n) ∼=

Lie(Sp(n)Sp(1))︷ ︸︸ ︷
sp(n)⊕ sp(1)⊕ · · ·

M = M4n, Hol(g) ⊂ Sp(n)Sp(1), Φ
loc
= ∗

3∑
i=1

ωi ∧ ωi

Λ2
M =

Pseudohol.︷ ︸︸ ︷
Λ2
−︸︷︷︸

QK inst.

⊕Λ2
+⊕Λ2

⊥.
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so(2n) ∼=

u(n)︷ ︸︸ ︷
su(n)⊕ u(1)⊕ · · ·

M = M2n, Hol(g) ⊂ U(n), Φ =
ωn−2

(n − 2)!

Λ2
M =

Compat. w. ∂̄A︷ ︸︸ ︷
Λ1,1

0︸︷︷︸
HYM

⊕〈ω〉 ⊕
(

Λ2,0 ⊕ Λ0,2
)
R
.

Example 4 (Quaternion-Kähler manifolds)

so(4n) ∼=

Lie(Sp(n)Sp(1))︷ ︸︸ ︷
sp(n)⊕ sp(1)⊕ · · ·

M = M4n, Hol(g) ⊂ Sp(n)Sp(1), Φ
loc
= ∗

3∑
i=1

ωi ∧ ωi

Λ2
M =

Pseudohol.︷ ︸︸ ︷
Λ2
−︸︷︷︸

QK inst.

⊕Λ2
+⊕Λ2

⊥.
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Instantons v. Yang-Mills connections

Instanton⇒ Yang-Mills

?⇐

False in general...

Sibner, Sibner, and Uhlenbeck (1989) constructed Yang-Mills connections on the trivial

SU(2)-bundle on S4 (R4) with arbitrarily large energy.
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Gap theorems

Bourguignon, Lawson, and Simons (’79) proved two types of converse results:

Stability theorems: YM connection with nonnegative second variation must be an

instanton.

E.g. M = Sn, G = SU(2) or SU(3).

Gap theorems: (compatible) YM connection with appropriately small F+ must be an

instanton.

Energy gap: YM connection with small ‖F+‖L2 (i.e. close to minimum energy) must be

an instanton.

Disclaimer. No (known) relation to millenum prize problem.
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Energy gap on S4

Theorem (Bourguignon-Lawson-Simons ’79)

Suppose that A is Yang-Mills on P → S4 and ‖F+
A ‖L∞ <

√
3; then F+

A ≡ 0.

Theorem (Min-Oo ’82)

Suppose that A is Yang-Mills on P → S4 and ‖F+
A ‖

2
L2 < δ0, a positive universal constant;

then F+
A = 0.

Theorem (Gursky-Kelleher-Streets ’17)

For structure group G = SU(2), we can take δ0 = 8π2.

Note: 4π2(κ+ 2) = lowest energy at which a self-dual instanton could bubble off.

Question. What is the optimal gap value on (the trivial bundle on) S4? I.e., what is the

lowest nonzero energy of a Yang-Mills connection?
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Energy gap on general compact 4-manifolds?

Parker ’82, Gerhard ’10 generalized to 4-manifolds with appropriate positivity condition.

T. Huang ’17, Kähler surfaces with positive scalar curvature (no compatibility condition).

Questions.

Does every P → (M4, g) have an energy gap?

More generally: is the set of critical values of YM discrete?

Does every P → (M4, g) carry at least one (non-minimal) Yang-Mills connection?
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Gap in higher dimensions, cont.

Theorem (T. Huang ’15 (withdrawn), Feehan ’17 (corrigendum), ’19)

Suppose that A is a smooth Yang-Mills connection on P → Mn, compact, with

YM(A) < ε0. Then A is flat.

Desirable to have gap theorems which apply on bundles P → Mn, n ≥ 4, with

inf
A∈A

YM(A) > 0.

No firm results in the G2 or Spin(7) cases. However:

Theorem (T. Taniguchi ’98)

Given a quaternion-Kähler manifold M with positive scalar curvature, there exists δ0 > 0

as follows. Suppose that A is a pseudo-holomorphic, Yang-Mills connection with

‖F sp(1)
A ‖Ln/2 < δ0; then A is an instanton.
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Strong gap theorems

Drawback of gap theorems: A must be Yang-Mills a priori.

Natural to approach the gap question from the perspective of Yang-Mills flow:

∂A

∂t
= −D∗AFA. (∗)

A strong gap theorem states that (∗) gives a deformation retraction from the set of all

(compatible) connections in B with appropriately small F+ onto M .

We can improve most of the above to strong gap theorems.

Remarks:

Strong gap ⇒ gap

Locally,  Lojasiewicz-Simon inequality ⇒ strong gap; but strong gap can fail globally

even while gap holds

Good reasons to want strong gap.
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Basic properties of (∗)

• Semi-parabolicity:

∂

∂t
Aαjβ = ∇iFij

α
β

= g ik (∂i∂kAαjβ − ∂i∂jAαkβ)+ ∂A#A + A#A#A + Γ#∂A + Γ#A#A.

Donaldson’s DeTurck trick: let A(t) = A0 + a(t), and solve

∂

∂t
aj = ∇iFij +∇j

(
∇iai

)
. (†)

Then (†) is gauge-equivalent to (∗), and

∂

∂t
aj = g ik (∂i∂kaj − ∂i∂jak + ∂j∂iak) + ∂a#a + a#a#a + etc.

= g ik∂i∂kaj + etc.

So (†) is strictly parabolic ⇒ short-time solutions exist.
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Basic properties, cont.

• Global energy identity:

d

dt
YM(A(t)) = −

∫
M

|D∗AFA|2 dV

YM(A(T )) +

∫ T

0

∫
M

|D∗F |2 dVdt = YM(A(0)).

• “Built-in” Coulomb gauge:

D∗ (∂tA) = −D∗D∗F = [Fij ,Fij ] = 0.

• (∗) preserves compatibility (Donaldson ’85, Oliveira-Waldron ’20).
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Basic properties, cont.2

• Pointwise curvature evolution:

∂FA

∂t
= D

(
∂A

∂t

)
= D (−D∗F )− D∗

=0︷︸︸︷
DF

by the second Bianchi Identity. This gives(
∂

∂t
+ ∆A

)
FA = 0

where ∆ is the Hodge Laplacian.

Bochner formula: (
∂

∂t
+∇∗∇

)
F = JF ,F K + Rmg#F .

Split Bochner formula in 4D:(
∂

∂t
+∇∗∇

)
F+ = JF+,F+K + Rmg#F+.
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by the second Bianchi Identity. This gives(
∂

∂t
+ ∆A

)
FA = 0

where ∆ is the Hodge Laplacian.

Bochner formula: (
∂

∂t
+∇∗∇

)
F = JF ,F K + Rmg#F .

Split Bochner formula in 4D:(
∂

∂t
+∇∗∇

)
F+ = JF+,F+K + Rmg#F+.
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Basic properties, cont.3

• Hamilton’s monotonicity formula (’93): Let

Φx(A;R) =
R4−n

(4π)n/2

∫
|FA(y)|2e−

(
d(x,y)

2R

)2

dVy .

For a solution of (∗), we have

Φx

(
A(t − R2);R

)
↘ .

• ε-regularity (Struwe, Chen-Shen ’94): If Φx(R, t − R2) < ε0, then

sup
t−R2/2≤s≤t

y∈BR/2(x)

|∇(k)F (y , s)| < Ck

R2+k
.
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Main difficulties

Main difficulties for (∗):

Finite-time singularities (n > 4 only. Conjecture (Waldron, Calc. Var. ’23): defect

measure vanishes in all dimensions)

Infinite-time convergence with singularities (a.k.a. uniqueness of Uhlenbeck limits)

Special holonomy: separate control of curvature components.
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Strong gap on the 4-sphere

Theorem 1

Let A0 be a smooth connection on an SU(2)-bundle P → S4, with energy

YM(A0) < 4π2|κ(E)|+ 8π2. (1)

If A(t) solves (∗) with A(0) = A0, then A(t) converges smoothly and exponentially to an

instanton on P under the flow.

Moreover, the map A0 7→ limt→∞ A(t) is a deformation retraction from the space of

gauge equivalence classes satisfying (1) onto the moduli space of instantons.

Corollary (Taubes ’84)

Suppose G = SU(2) or SU(3) and M = S4. For k ≥ 0, the moduli space Mk of charge-k

instantons is path-connected.
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Proof of Theorem 1

Step 1. Apply GKS on both bubbles and body ⇒ ‖F+(t)‖ = ‖F+(t)‖L2 < δ for t

sufficiently large.

Step 2. Bochner formula with W+ = 0:(
∂

∂t
+∇∗∇

)
F+ = JF+,F+K− RF+.

Integrate against F+ & use Hölder:

1

2

d

dt
‖F+‖2 + ‖∇F+‖2 ≤

∫
|F+|3 −

∫
R|F+|2 ≤ δ‖F+‖2

L4 − inf R‖F+‖2.

Step 3. Sobolev & Kato: ‖F+‖L4 . ‖∇|F+|‖ . ‖∇F+‖

⇒ 1

2

d

dt
‖F+‖2 +

(
1

CS
− δ
)
‖F+‖2

L4 ≤ −12‖F+‖2

⇒ ‖F+(t)‖L2 . e−ct .

Step 4. Moser: ‖F+(t)‖L∞ . ‖F+(t − 1)‖L2 . e−ct

⇒ smooth convergence.
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Yang-Mills flow on special-holonomy manifolds

Theorem (Oliveira and Waldron, Adv. Math. ’20)

Assume that M has special holonomy and A(0) is compatible. For 0 ≤ γ ≤ 1 and

R2
1 − R2

2 = γ2 (t2 − t1) ,

we have the following “extended” version of Hamilton’s monotonicity formula:

Φx (R2, t2) ≤ Φx (R1, t1) + C (1− γ)

∫ t2

t1

‖F+ (·, t) ‖L∞ dt,

where

F+ =


F+ M = M4

F 7 Hol(M) = G2 or Spin(7)

ΛF Hol(M) = U(n/2) (type (1, 1) conn.)

F sp(1) Hol(M) = Sp(n/4)Sp(1) (pseudoholomorphic conn.).

Corollary

If ‖F+(·, t)‖L∞ remains bounded, then (YM) exists for all time. Moreover, the

infinite-time singular set is calibrated.
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Deformation to G2-instantons?

For a solution of (∗) on a G2-manifold, we may let

FA(t) =

F+=F 7︷ ︸︸ ︷
f 7(t) ¬ φ+F 14(t),

where f 7(t) ∈ Ω1 (gP) and F 14(t) ∈ Ω2
14 (gP) . These evolve by:

(
∂

∂t
+∇∗∇

)
f 7(t) =

[
f 7 × f 7

]
+ 2

[
F 14 · f 7

]
(
∂

∂t
+∇∗∇

)
F 14(t) = JF 14,F 14K− 3

[
f 7 ∧14 f

7
]

+ Rmg#F 14.

Question. Under what conditions does ‖f 7‖ ≤ δ ⇒ ‖f 7‖L∞ ≤ Cδ?
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Deformation to quaternion-Kähler instantons

On a quaternion-Kähler manifold, these cross-terms do not appear!

Theorem 2

Let M be a compact quaternion-Kähler manifold. There exists a constant δ0 > 0,

depending only on the geometry of M, as follows.

Suppose that A0 is a pseudoholomorphic connection on P → M, with

‖F sp(1)
A0
‖M2,4 < δ0.

Then the solution of Yang-Mills flow with A(0) = A0 exists for all time.

Moreover, if M has positive scalar curvature, then A(t) converges smoothly to an

instanton as t →∞.

Problem. Construct pseudoholomorphic connections (e.g. on HPn) with ‖F sp(1)‖M2,4

small but nonzero.
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Thank you!
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Application: path-connectedness of Mk (Taubes)

Theorem (Taubes ’84)

Suppose G = SU(2) or SU(3) and M = S4. For k ≥ 0, the moduli space Mk of charge-k

instantons is path-connected.

Proof sketch. Base case: M0 = {pt}.

Induction step: Insert instanton-anti-instanton pair, keeping energy below k + 2.

Deform to Mk  path from A ∈Mk to concentrated connection A′ ∈Mk−1#M1.

Mk−1#M1 path-connected by assumption.

Corollary (Atiyah-Drinfeld-Hitchin-Manin ’78)

The ADHM construction gives all instantons in Mk .

Questions. • Other base manifolds?

• Higher homotopy groups? (Atiyah-Jones conjecture)
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Application: path-connectedness of Mk (Taubes)
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