Separation of variables and analytic Langlands correspondence

Jörg Teschner

University of Hamburg, Department of Mathematics and DESY

Hitchin's integrable system

Let C be a Riemann surface.

Hitchin moduli space $\mathcal{M}_\mathrm{Hit}(C)$: Moduli space of pairs (\mathcal{E}, φ) ,

- \mathcal{E} : holomorphic $G = SL(2)$ -bundle on C ,
- $\varphi \in H^0(C, \text{End}(\mathcal{E}) \otimes K)$.

 $\mathcal{M}_{\text{Hit}}(C)$ has canonical Poisson structure from Serre-duality between tangent space $T{\rm Bun}_G\simeq H^1(C,{\rm End}(\mathcal{E}))$ to ${\rm Bun}_G$ at $\mathcal E$ and $T^*{\rm Bun}_G\simeq H^0(C,{\rm End}(\mathcal{E})\otimes K).$

Integrability: Let $\theta := \frac{1}{2} \text{tr}(\varphi^2) \in H^0(C, K^2)$. We have

$$
\theta(z) = \sum_{r=1}^{3g-3+n} H_r Q_r(z), \qquad \{H_r, H_s\} = 0.
$$

 \Rightarrow Hamiltonians H_r define integrable structure on $\mathcal{M}_\mathrm{Hit}(C)$.

Fibers of $\pi: \mathcal{M}_\mathrm{Hit}(C) \to H^0(C,K^2)$, $\pi(E,\varphi) = \theta$ are complex tori for generic θ .

Quantisation of the Hitchin system

Theorem: (Beilinson-Drinfeld)

=⇒

There exist $K_{\text{Bun}}^{1/2}$, and differential operators H_r , $r = 1, \ldots, 3g - 3 + n$ on $K^{1/2}_{\text{Bun}}$, having symbols which are global functions on $T^*\text{Bun}_G$ satisfying

$$
[H_r, H_s] = 0, \t r, s = 1, \ldots, 3g - 3 + n.
$$

Hitchin has proven that the algebra of global functions on $T^*\mathrm{Bun}_G$ is generated by the Hamiltonians H_r .

> Differential operators H_r represent a quantisation of the Hamiltonians $H_r!$

Beilinson and Drinfeld furthermore show that **eigenvalues** E_r of H_r, defined by

$$
\mathsf{H}_r\Psi=E_r\Psi,
$$

have a canonical relation with functions on the space $Op(C)$ of opers on C :

Opers

Opers for case $\mathfrak{g} = \mathfrak{sl}_2$: Pairs $\chi = (\mathcal{E}, \nabla_{\chi})$

• $\mathcal{E} = \mathcal{E}_{op}$: Unique up to isomorphism extension

$$
0 \to K^{\frac{1}{2}} \to \mathcal{E}_{\text{op}} \to K^{-\frac{1}{2}} \to 0. \qquad \left[\text{transition functions } \sim \begin{pmatrix} \lambda_{ij} & \partial_{z_j} \lambda_{ij} \\ 0 & \lambda_{ij}^{-1} \end{pmatrix} \right].
$$

• ∇_{χ} locally gauge equivalent to the form

$$
\nabla_{\chi} = dz \left(\partial_z + \begin{pmatrix} 0 & t_{\chi} \\ 1 & 0 \end{pmatrix} \right), \text{ where } t \text{ transforms as projective connection,
$$

$$
t_{\chi}(z) = \left(\varphi'(z) \right)^2 \tilde{t}_{\chi} \left(\varphi(z) \right) - \frac{1}{2} \{ \varphi, z \}, \qquad \{ \varphi, z \} := \frac{\varphi'''}{\varphi'} - \frac{3}{2} \left(\frac{\varphi''}{\varphi'} \right)^2.
$$

Note that $q_\chi = t_\chi - t_0 \in H^0(C,K^2)$ for t_0 fixed, giving coordinates on $\operatorname{Op}(C)$:

$$
q_{\chi} = \sum_{r=1}^{d} E_r(\chi)\theta_r, \qquad \{\theta_r; r = 1,\ldots,d\} \text{ basis for } H^0(C, K^2).
$$

Geometric Langlands-correspondence

A special case of the geometric Langlands-correspondence (Beilinson-Drinfeld,...),

 L g local systems (\mathcal{E}, ∇) on C

 \Leftrightarrow | D-modules on $Bun_G(C)$

with G : complex group 1 with Lie algebra $\mathfrak{g},\ ^{\tt L}\mathfrak{g}$: Langlands dual Lie algebra of $\mathfrak{g},$ can be represented as the **correspondence** between **opers** $\chi = (\mathcal{E}_{op}, \nabla_{\chi})$,

$$
\nabla_{\chi} = dz \left(\partial_z + \begin{pmatrix} 0 & t_{\chi} \\ 1 & 0 \end{pmatrix} \right), \qquad t_{\chi} = t_0 + q_{\chi}, \qquad q_{\chi} = \sum_{r=1}^d E_r(\chi) \theta_r,
$$

and the D -modules represented by the eigenvalue equations

$$
\mathsf{H}_r \Psi = E_r(\chi) \Psi.
$$

Single-valuedness condition

For given pair $(\chi, \bar{\chi})$, where $\chi \in \text{Op}(X)$, $\bar{\chi} \in \overline{\text{Op}}(X)$, we may consider the pair of complex conjugate eigenvalue equations

$$
\begin{aligned} \mathsf{H}_r \, \Psi &= E_r(\chi) \Psi, & r &= 1, \dots, d, \\ \bar{\mathsf{H}}_r \, \Psi &= \bar{E}_r(\bar{\chi}) \Psi, & d &:= 3g - 3 + n. \end{aligned} \tag{1}
$$

The Hitchin Hamiltonian have singularities at wobbly bundles admitting nilpotent Higgs fields. $\mathrm{Bun}_G^{\mathrm{vs}}$: moduli space of stable bundles which are not wobbly. We may then look for smooth solutions on $\operatorname{Bun}_G^{\text{vs}}$ locally of the form

$$
\Psi(\mathbf{x}, \bar{\mathbf{x}}) = \sum_{k,l} C_{kl} \psi_k(\mathbf{x}) \bar{\psi}_l(\bar{\mathbf{x}}), \qquad \begin{aligned} \mathsf{H}_r \, \Psi &= E_r(\chi) \Psi, \\ \bar{\mathsf{H}}_r \, \Psi &= \bar{E}_r(\bar{\chi}) \Psi, \end{aligned} \qquad r = 1, \dots, d,
$$

 $(\mathbf{x}=(x_1,\ldots,x_d)$: local coordinates on $\mathrm{Bun}_G^{\mathrm{vs}}$) which are single-valued. This requires that the nontrivial monodromies that the local sections $\psi_r(\mathbf{x})$ and $\bar{\psi}_s(\bar{\mathbf{x}})$ will generically have (e.g. around wobbly loci) cancel each other.

Separation of variables – making GL explicit

Theorem: There $exist^2$ explicit integral transformations of the form

$$
\Psi(\mathbf{x}, \bar{\mathbf{x}}) = \int d\mathbf{u} d\bar{\mathbf{u}} \ K(\mathbf{x}, \bar{\mathbf{x}} \, | \mathbf{u}, \bar{\mathbf{u}}) \Phi(\mathbf{u}, \bar{\mathbf{u}}), \tag{2}
$$

 $\mathbf{u} = (u_1, \dots, u_D)$, $\bar{\mathbf{u}} = (\bar{u}_1, \dots, \bar{u}_D)$, such that (1) is equivalent to

$$
(\partial_{u_r}^2 - t(u_r))\phi(u_r, \bar{u}_r) = 0, \quad (\bar{\partial}_{\bar{u}_r}^2 - \bar{t}(\bar{u}_r))\phi(u_r, \bar{u}_r) = 0, \quad \forall r.
$$

The proof generalises a paradigm from the theory of quantum integrable models called Separation of Variables (SOV; Sklyanin). It follows that

$$
\Phi(\mathbf{u}, \bar{\mathbf{u}}) = \prod_{r=1}^{D} \phi_r(u_r, \bar{u}_r), \qquad (\partial_{\bar{u}_r}^2 - t(u_r))\phi_r(u_r, \bar{u}_r) = 0,
$$
\n
$$
(\bar{\partial}_{\bar{u}_r}^2 - \bar{t}(\bar{u}_r))\phi_r(u_r, \bar{u}_r) = 0.
$$
\n(3)

The transformation (2) is invertible. Single-valuedness of the kernel K implies that single-valuedness of Φ and Ψ are equivalent. Single-valued solutions to (3) are unique up to normalisation, so $\phi_r(u, \bar{u}) = \phi(u, \bar{u})$ for all r.

 2 Sklyanin, Frenkel '95, Enriquez-Feigin-Roubtsov, Enriquez-Roubtsov, Felder-Schorr, Ribault-J.T., Frenkel-Gukov-J.T.,...., Dinh-J.T.

Single-valuedness

The separation of variables maps single-valued solutions of pairs of complex-conjugate Hitchin eigenvalue equations to

$$
(\partial_u^2 - t(u))\phi(u, \bar{u}) = 0, \qquad (\bar{\partial}_{\bar{u}}^2 - \bar{t}(\bar{u}))\phi(u, \bar{u}) = 0.
$$

It is possible to show that smooth solutions can be represented in the form

$$
\phi(u, \bar{u}) = \chi(u) \cdot C \cdot \chi^{\dagger}(\bar{u}), \qquad \chi(u) = (\chi_1(u), \chi_2(u)), \qquad (\partial_u^2 - t(u))\chi(u) = 0.
$$

The matrix C can be brought to diagonal form by a change of basis. It can be shown that up to changes of C induced by changes of basis the only choice of C which gives single-valued solutions $\phi(u, \bar{u})$ is $C = \text{diag}(1, -1)$. This is single-valued if the monodromy is in $SU(1,1)$, which is conjugate to $SL(2,\mathbb{R})$.

Remark: May allow solutions defined up to a sign, corresponding to solutions $\phi(u, \bar{u})$ defined on a cover of C.

Real opers I

A real oper is an oper with real monodromy. Opers are in one-to-one correspondence to **projective structures** on C . Indeed, one may use the ratios

$$
A(z) = \frac{\chi_1(z)}{\chi_2(z)}, \quad \chi_i(z): \text{ linearly independent solutions of } (\partial_z^2 - t(z))\chi_i(z) = 0,
$$

to define new local coordinates $w = A(z)$ on C. Features:

- Oper represented by $\tilde{t}(w) = 0$,
- Changes of coordinates $w'(w)$: Möbius transformations

An atlas $\{U_i; i\in \mathcal{I}\}$ for C with transition functions represented by Möbius transformations defines a **projective structure**, allowing one to represent C as a cover of a fundamental domain in C.

Example:

Monodromy Fuchsian

 \rightsquigarrow uniformisation

e.g.
$$
C = C_{1,1}
$$
:

Real opers III – Goldman's classification

All real opers can be constructed in this way:

Integer-measured laminations Λ : Homotopy classes of finite collections of simple non-intersecting noncontractible closed curves on S with integral weights, such that

- The weight of a curve is non-negative unless the curve is peripheral.
- A lamination containing a curve of weight zero is equivalent to the lamination with this curve removed.
- A lamination containing two homotopic curves of weights k and $l \sim$ a lamination with one of the two curves removed and weight $k + l$ assigned to the other.

The set of all such laminations on C is denoted as $\mathcal{ML}_C(\mathbb{Z})$. Half-integer measured laminations $\Lambda \in \mathcal{ML}_C(\frac{1}{2})$ $\frac{1}{2}\mathbb{Z})$ can be defined in an analogous way.

Theorem (Goldman '87): Real projective structures are in one-to-one correspondence to half-integer measured laminations $\Lambda \in \mathcal{ML}_C(\frac{1}{2})$ $\frac{1}{2}\mathbb{Z}$).

In other words: All real projective structures can be obtained from the uniformising projective structure by grafting along a $\Lambda \in \mathcal{ML}_C(\frac{1}{2})$ $\frac{1}{2}\mathbb{Z}$).

The work of Etingof, Frenkel and Kazhdan

The work³ of Etingof, Frenkel and Kazhdan (EFK) deepens the story considerable by introducing harmonic analysis aspects.

Up to now: Solution to eigenvalue problem restricted to **single-valuedness** only.

 EFK introduce a smooth algebraic moduli space $\mathrm{Bun}_G^{\mathrm{rs}}(C)$ by considering the stack of bundles $\mathrm{Bun}_G^\circ(C)$ with automorphisms in the center of G , and forgetting automorphisms. On $\mathrm{Bun}_G^{\mathrm{rs}}(C)$ introduce

- $\bullet\,$ Line bundle of half-densities $\Omega_{\rm Bun}^{1/2}:=|K_{\rm Bun}^{1/2}|$, where $|{\cal L}|={\cal L}\otimes\bar{\cal L},$
- $\bullet \ \mathcal{S}_G$ space of smooth compactly supported sections of $\Omega_{\text{Bun}}^{1/2}$, and
- define a Hermitian form $\langle ., . \rangle$ by

$$
\langle v,w\rangle:=\int_{\mathrm{Bun}_G^{\mathrm{rs}}}v\,\bar w,\qquad v,w\in\mathcal S_G.
$$

• Hilbert space \mathcal{H}_G : Completion of \mathcal{S}_G with respect to $\langle ., . \rangle$.

³ arXiv:1908.09677, arXiv:2103.01509, arXiv:2106.05243

The work of Etingof, Frenkel and Kazhdan II

EFK formulate a set of conjectures and prove them in some cases, leading to the following picture:

- The eigenspaces $\mathcal{H}_{\chi,\bar{\chi}}$ generated by single-valued solutions to the pair of eigenvalue equations with eigenvalues $(\chi, \bar{\chi})$ are contained in \mathcal{H}_G , at most one-dimensional, and non-vanishing only if $\bar{\chi}$ is complex conjugate to χ .
- $\bullet\,$ The Hilbert spaces \mathcal{H}_G admit an orthogonal decomposition into the spaces $\mathcal{H}_{\chi,\bar{\chi}}$ (completeness)

EFK furthermore introduce a family of integral operators called Hecke operators, roughly of the form

$$
(\mathbf{H}_{\lambda}f)(\mathcal{E}):=\int_{Z_{\lambda}(\mathcal{E},P')}q_1^*(f),
$$

- $Z_{\lambda}(\mathcal{E}, P')$ space of all possible λ -Hecke modifications of bundle $\mathcal E$ at point P' , isomorphic to closure $\overline{\text{Gr}}_{\lambda}$ of orbit $\text{Gr}_{\lambda} = G[[t]] \cdot \lambda(t) / G[[t]]$.
- q_1^* $_{1}^{\ast}(f)$ pull-back of f under correspondence between bundles defined by Hecke modifications.

The work of Etingof, Frenkel and Kazhdan III

EFK conjecture and prove in some cases that

- the Hecke operators extend to a family of commuting compact normal operators on \mathcal{H}_G ,
- \mathcal{H}_G decomposes into eigenspaces of the Hecke operators,
- the eigenspaces coincide with the eigenspaces $\mathcal{H}_{\chi,\bar{\chi}}$ of the Hitchin Hamiltonians,
- and the eigenspaces $\mathcal{H}_{\chi,\bar{\chi}}$ are non-trivial only if χ is a real oper.

It seems quite remarkable that the conditions of single-valuedness and \bar{x} being the complex conjugate of χ turn out to be equivalent to single-valuedness and squareintegrability in this case.

The work of EFK uses many results from previous work on geometric Langlands as groundwork or input for the functional-analytic extension studied in their work.

Expect further fruitful interplay between algebro-geometric and analytic aspects.

Analytic Langlands correspondence: A brief summary

Analytic Langlands correspondence:

(single-valued L^2 $\left\{ \begin{array}{c} \quad \text{neglex} \ \text{formalsable} \end{array} \right\}$

Hitchin eigen- $\mathcal D$ -modules

Intepretation from the perspective of integrable models:

