Separation of variables and analytic Langlands correspondence

Jörg Teschner

University of Hamburg, Department of Mathematics and DESY

Hitchin's integrable system

Let C be a Riemann surface.

Hitchin moduli space $\mathcal{M}_{\text{Hit}}(C)$: Moduli space of pairs (\mathcal{E}, φ) ,

- \mathcal{E} : holomorphic G = SL(2)-bundle on C,
- $\varphi \in H^0(C, \operatorname{End}(\mathcal{E}) \otimes K).$

 $\mathcal{M}_{\mathrm{Hit}}(C)$ has canonical Poisson structure from Serre-duality between tangent space $T\mathrm{Bun}_G \simeq H^1(C, \mathrm{End}(\mathcal{E}))$ to Bun_G at \mathcal{E} and $T^*\mathrm{Bun}_G \simeq H^0(C, \mathrm{End}(\mathcal{E}) \otimes K)$.

Integrability: Let $\theta := \frac{1}{2} \operatorname{tr}(\varphi^2) \in H^0(C, K^2)$. We have

$$\theta(z) = \sum_{r=1}^{3g-3+n} H_r Q_r(z), \qquad \{H_r, H_s\} = 0.$$

 \Rightarrow Hamiltonians H_r define integrable structure on $\mathcal{M}_{\text{Hit}}(C)$.

Fibers of $\pi : \mathcal{M}_{\text{Hit}}(C) \to H^0(C, K^2)$, $\pi(E, \varphi) = \theta$ are complex tori for generic θ .

Quantisation of the Hitchin system

Theorem: (Beilinson-Drinfeld)

There exist $K_{\text{Bun}}^{1/2}$, and differential operators H_r , $r = 1, \ldots, 3g - 3 + n$ on $K_{\text{Bun}}^{1/2}$, having symbols which are global functions on $T^*\text{Bun}_G$ satisfying

$$[H_r, H_s] = 0, \quad r, s = 1, \dots, 3g - 3 + n.$$

Hitchin has proven that the algebra of global functions on T^*Bun_G is generated by the Hamiltonians H_r .

Differential operators H_r represent a **quantisation** of the Hamiltonians H_r !

Beilinson and Drinfeld furthermore show that eigenvalues E_r of H_r , defined by

$$\mathsf{H}_r\Psi = E_r\Psi,$$

have a canonical relation with functions on the space Op(C) of opers on C:

Opers

Opers for case $\mathfrak{g} = \mathfrak{sl}_2$: Pairs $\chi = (\mathcal{E}, \nabla_{\chi})$

• $\mathcal{E} = \mathcal{E}_{\mathrm{op}}$: Unique up to isomorphism extension

$$0 \to K^{\frac{1}{2}} \to \mathcal{E}_{\mathrm{op}} \to K^{-\frac{1}{2}} \to 0. \qquad \begin{bmatrix} \text{transition functions} \sim \begin{pmatrix} \lambda_{\imath\jmath} & \partial_{z_{\jmath}}\lambda_{\imath\jmath} \\ 0 & \lambda_{\imath\jmath}^{-1} \end{pmatrix} \end{bmatrix}$$

• ∇_{χ} locally gauge equivalent to the form

$$\begin{aligned} \nabla_{\chi} &= dz \left(\partial_{z} + \begin{pmatrix} 0 & t_{\chi} \\ 1 & 0 \end{pmatrix} \right), \quad \text{where } t \text{ transforms as projective connection,} \\ t_{\chi}(z) &= \left(\varphi'(z) \right)^{2} \tilde{t}_{\chi} \big(\varphi(z) \big) - \frac{1}{2} \{ \varphi, z \}, \qquad \{ \varphi, z \} := \frac{\varphi'''}{\varphi'} - \frac{3}{2} \left(\frac{\varphi''}{\varphi'} \right)^{2}. \end{aligned}$$

Note that $q_{\chi} = t_{\chi} - t_0 \in H^0(C, K^2)$ for t_0 fixed, giving coordinates on Op(C):

$$q_{\chi} = \sum_{r=1}^{d} E_r(\chi) \theta_r, \qquad \{\theta_r; r = 1, \dots, d\}$$
 basis for $H^0(C, K^2).$

Geometric Langlands-correspondence

A special case of the geometric Langlands-correspondence (Beilinson-Drinfeld,...),

 ${}^{\rm L}\mathfrak{g}$ local systems (\mathcal{E},∇) on C

 \leftrightarrow

 \mathcal{D} -modules on $\operatorname{Bun}_G(C)$

with G: complex group¹ with Lie algebra \mathfrak{g} , ${}^{\mathrm{L}}\mathfrak{g}$: Langlands dual Lie algebra of \mathfrak{g} , can be represented as the **correspondence** between **opers** $\chi = (\mathcal{E}_{\mathrm{op}}, \nabla_{\chi})$,

$$\nabla_{\chi} = dz \left(\partial_z + \begin{pmatrix} 0 & t_{\chi} \\ 1 & 0 \end{pmatrix} \right), \qquad t_{\chi} = t_0 + q_{\chi}, \qquad q_{\chi} = \sum_{r=1}^d E_r(\chi) \theta_r,$$

and the $\mathcal{D}\text{-}\textbf{modules}$ represented by the eigenvalue equations

$$\mathsf{H}_r \Psi = E_r(\chi) \Psi.$$

Single-valuedness condition

For given pair $(\chi, \overline{\chi})$, where $\chi \in Op(X)$, $\overline{\chi} \in \overline{Op}(X)$, we may consider the pair of complex conjugate eigenvalue equations

$$\begin{aligned} \mathsf{H}_r \,\Psi &= E_r(\chi) \Psi, \qquad r = 1, \dots, d, \\ \bar{\mathsf{H}}_r \,\Psi &= \bar{E}_r(\bar{\chi}) \Psi, \qquad d := 3g - 3 + n. \end{aligned}$$
(1)

The Hitchin Hamiltonian have singularities at **wobbly** bundles admitting nilpotent Higgs fields. $\operatorname{Bun}_G^{vs}$: moduli space of stable bundles which are not wobbly.

We may then look for smooth solutions on $\operatorname{Bun}_G^{\operatorname{vs}}$ locally of the form

$$\Psi(\mathbf{x}, \bar{\mathbf{x}}) = \sum_{k,l} C_{kl} \psi_k(\mathbf{x}) \bar{\psi}_l(\bar{\mathbf{x}}), \qquad \begin{aligned} \mathsf{H}_r \, \Psi &= E_r(\chi) \Psi, \\ \bar{\mathsf{H}}_r \, \Psi &= \bar{E}_r(\bar{\chi}) \Psi, \end{aligned} \qquad r = 1, \dots, d,$$

 $(\mathbf{x} = (x_1, \dots, x_d))$: local coordinates on $\operatorname{Bun}_G^{\operatorname{vs}}$ which are **single-valued**. This requires that the nontrivial monodromies that the local sections $\psi_r(\mathbf{x})$ and $\overline{\psi}_s(\overline{\mathbf{x}})$ will generically have (e.g. around wobbly loci) cancel each other.

Separation of variables – making GL explicit

Theorem: There exist² explicit integral transformations of the form

$$\Psi(\mathbf{x}, \bar{\mathbf{x}}) = \int d\mathbf{u} d\bar{\mathbf{u}} K(\mathbf{x}, \bar{\mathbf{x}} | \mathbf{u}, \bar{\mathbf{u}}) \Phi(\mathbf{u}, \bar{\mathbf{u}}),$$
(2)

 $\mathbf{u} = (u_1, \dots, u_D)$, $\bar{\mathbf{u}} = (\bar{u}_1, \dots, \bar{u}_D)$, such that (1) is equivalent to

$$(\partial_{u_r}^2 - t(u_r))\phi(u_r, \bar{u}_r) = 0, \quad (\bar{\partial}_{\bar{u}_r}^2 - \bar{t}(\bar{u}_r))\phi(u_r, \bar{u}_r) = 0, \quad \forall r.$$

The proof generalises a paradigm from the theory of quantum integrable models called Separation of Variables (SOV; Sklyanin). It follows that

$$\Phi(\mathbf{u}, \bar{\mathbf{u}}) = \prod_{r=1}^{D} \phi_r(u_r, \bar{u}_r), \qquad \begin{aligned} &(\partial_{u_r}^2 - t(u_r))\phi_r(u_r, \bar{u}_r) = 0, \\ &(\bar{\partial}_{\bar{u}_r}^2 - \bar{t}(\bar{u}_r))\phi_r(u_r, \bar{u}_r) = 0. \end{aligned}$$
(3)

The transformation (2) is invertible. Single-valuedness of the kernel K implies that single-valuedness of Φ and Ψ are equivalent. Single-valued solutions to (3) are unique up to normalisation, so $\phi_r(u, \bar{u}) = \phi(u, \bar{u})$ for all r.

²Sklyanin, Frenkel '95, Enriquez-Feigin-Roubtsov, Enriquez-Roubtsov, Felder-Schorr, Ribault-J.T., Frenkel-Gukov-J.T.,..., Dinh-J.T.

Single-valuedness

The separation of variables maps single-valued solutions of pairs of complex-conjugate Hitchin eigenvalue equations to

$$(\partial_u^2 - t(u))\phi(u,\bar{u}) = 0, \qquad (\bar{\partial}_{\bar{u}}^2 - \bar{t}(\bar{u}))\phi(u,\bar{u}) = 0.$$

It is possible to show that smooth solutions can be represented in the form

$$\phi(u,\bar{u}) = \chi(u) \cdot C \cdot \chi^{\dagger}(\bar{u}), \qquad \chi(u) = (\chi_1(u), \chi_2(u)), \qquad (\partial_u^2 - t(u))\chi(u) = 0.$$

The matrix C can be brought to diagonal form by a change of basis. It can be shown that up to changes of C induced by changes of basis the only choice of C which gives single-valued solutions $\phi(u, \bar{u})$ is C = diag(1, -1). This is single-valued if the monodromy is in SU(1, 1), which is conjugate to $SL(2, \mathbb{R})$.

Remark: May allow solutions defined up to a sign, corresponding to solutions $\phi(u, \bar{u})$ defined on a cover of C.

Real opers I

A real oper is an oper with real monodromy. Opers are in one-to-one correspondence to projective structures on C. Indeed, one may use the ratios

$$A(z) = \frac{\chi_1(z)}{\chi_2(z)}, \quad \chi_i(z): \text{ linearly independent solutions of } (\partial_z^2 - t(z))\chi_i(z) = 0,$$

to define new local coordinates w = A(z) on C. Features:

- Oper represented by $\tilde{t}(w)=0$,
- Changes of coordinates w'(w): Möbius transformations

An atlas $\{U_i; i \in \mathcal{I}\}\$ for C with transition functions represented by Möbius transformations defines a **projective structure**, allowing one to represent C as a cover of a fundamental domain in \mathbb{C} .

Example:

Monodromy Fuchsian

 $\rightsquigarrow uniform isation$

e.g.
$$C = C_{1,1}$$
:

Real opers III – Goldman's classification

All real opers can be constructed in this way:

Integer-measured laminations Λ : Homotopy classes of finite collections of simple non-intersecting noncontractible closed curves on S with integral weights, such that

- The weight of a curve is non-negative unless the curve is peripheral.
- A lamination containing a curve of weight zero is equivalent to the lamination with this curve removed.
- A lamination containing two homotopic curves of weights k and $l \sim$ a lamination with one of the two curves removed and weight k + l assigned to the other.

The set of all such laminations on C is denoted as $\mathcal{ML}_C(\mathbb{Z})$. Half-integer measured laminations $\Lambda \in \mathcal{ML}_C(\frac{1}{2}\mathbb{Z})$ can be defined in an analogous way.

Theorem (Goldman '87): Real projective structures are in one-to-one correspondence to half-integer measured laminations $\Lambda \in \mathcal{ML}_C(\frac{1}{2}\mathbb{Z})$.

In other words: All real projective structures can be obtained from the uniformising projective structure by grafting along a $\Lambda \in \mathcal{ML}_C(\frac{1}{2}\mathbb{Z})$.

The work of Etingof, Frenkel and Kazhdan

The work³ of Etingof, Frenkel and Kazhdan (EFK) deepens the story considerable by introducing harmonic analysis aspects.

Up to now: Solution to eigenvalue problem restricted to single-valuedness only.

EFK introduce a smooth algebraic moduli space $\operatorname{Bun}_G^{\operatorname{rs}}(C)$ by considering the stack of bundles $\operatorname{Bun}_G^{\circ}(C)$ with automorphisms in the center of G, and forgetting automorphisms. On $\operatorname{Bun}_G^{\operatorname{rs}}(C)$ introduce

- Line bundle of half-densities $\Omega_{\text{Bun}}^{1/2} := |K_{\text{Bun}}^{1/2}|$, where $|\mathcal{L}| = \mathcal{L} \otimes \overline{\mathcal{L}}$,
- \mathcal{S}_G space of smooth compactly supported sections of $\Omega_{\mathrm{Bun}}^{1/2}$, and
- define a Hermitian form $\langle .,.\rangle$ by

$$\langle v, w \rangle := \int_{\operatorname{Bun}_G^{\operatorname{rs}}} v \, \bar{w}, \qquad v, w \in \mathcal{S}_G.$$

• Hilbert space \mathcal{H}_G : Completion of \mathcal{S}_G with respect to $\langle ., . \rangle$.

³arXiv:1908.09677, arXiv:2103.01509, arXiv:2106.05243

The work of Etingof, Frenkel and Kazhdan II

EFK formulate a set of conjectures and prove them in some cases, leading to the following picture:

- The eigenspaces $\mathcal{H}_{\chi,\bar{\chi}}$ generated by single-valued solutions to the pair of eigenvalue equations with eigenvalues $(\chi,\bar{\chi})$ are contained in \mathcal{H}_G , at most one-dimensional, and non-vanishing only if $\bar{\chi}$ is complex conjugate to χ .
- The Hilbert spaces \mathcal{H}_G admit an orthogonal decomposition into the spaces $\mathcal{H}_{\chi,\bar{\chi}}$ (completeness)

EFK furthermore introduce a family of integral operators called Hecke operators, roughly of the form

$$(\mathbf{H}_{\lambda}f)(\mathcal{E}) := \int_{Z_{\lambda}(\mathcal{E},P')} q_{1}^{*}(f),$$

- $Z_{\lambda}(\mathcal{E}, P')$ space of all possible λ -Hecke modifications of bundle \mathcal{E} at point P', isomorphic to closure $\overline{\mathrm{Gr}}_{\lambda}$ of orbit $\mathrm{Gr}_{\lambda} = G[t] \cdot \lambda(t) / G[t]$.
- $q_1^*(f)$ pull-back of f under correspondence between bundles defined by Hecke modifications.

The work of Etingof, Frenkel and Kazhdan III

EFK conjecture and prove in some cases that

- the Hecke operators extend to a family of commuting compact normal operators on \mathcal{H}_G ,
- \mathcal{H}_G decomposes into eigenspaces of the Hecke operators,
- the eigenspaces coincide with the eigenspaces $\mathcal{H}_{\chi,\bar{\chi}}$ of the Hitchin Hamiltonians,
- and the eigenspaces $\mathcal{H}_{\chi,\bar{\chi}}$ are non-trivial only if χ is a real oper.

It seems quite remarkable that the conditions of single-valuedness and $\bar{\chi}$ being the complex conjugate of χ turn out to be equivalent to single-valuedness and square-integrability in this case.

The work of EFK uses many results from previous work on geometric Langlands as groundwork or input for the functional-analytic extension studied in their work.

Expect further fruitful interplay between algebro-geometric and analytic aspects.

Analytic Langlands correspondence: A brief summary

Analytic Langlands correspondence:

Real opers \leftrightarrow $\begin{cases} \text{single-valued} \\ L^2 \text{-normalisable} \end{cases}$ Hitchin eigen- \mathcal{D} -modules

Intepretation from the perspective of integrable models:

Analytic Langlands	Quantum Integrable models
\mathcal{D} -modules	Local IM: Commuting Hamiltonians
Hecke operators	Non-local IM: Baxter Q-operators
Uniformising oper	Ground state
Grafting	Creation operators