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● Symbolic regression (SR)

● Exhaustive Symbolic Regression (ESR)

● Minimum description length as model selection principle

● Applications to date:

– Cosmic expansion rate

– Galaxy dynamics (radial acceleration relation)

● Upgrades in the works

Overview



  

Symbolic Regression overview

Numerical regression:  y = 6 + 1x + 0.8x2

Symbolic regression:  y = 1 + x2 + 10cos(x)

● Discover functions describing a dataset  
rather than parameters of predefined function



  

● Discover functions describing a dataset  
rather than parameters of predefined function

● Difficulties:

– Larger search space makes 
convergence harder

– Optimisation methods of numerical 
regression not applicable

● Advantages:

– Much more general (reduces 
confirmation bias)

– Easy to prevent overfitting

– Highly interpretable

Symbolic Regression overview

Numerical regression:  y = 6 + 1x + 0.8x2

Symbolic regression:  y = 1 + x2 + 10cos(x)



  

Genetic Algorithm  (e.g. PySR, DataModeler)

Traditional Symbolic Regression
I. Generating functions

Credit: Myles Cranmer



  

Genetic Algorithm  (e.g. PySR, DataModeler)                     “Physics inspired”  (e.g. AI Feynman)

Better for exact data 
with symmetries, 
worse with noise

Unlike GA, doesn’t 
produce entire 
population of possible 
equations

Traditional Symbolic Regression
I. Generating functions

Credit: Myles Cranmer Udrescu & Tegmark 2020



  

● Problem: Can always get 0 error with 
some (very complex) function

● Solution: two objectives, accuracy and 
simplicity

● The best equations are the ones that 
cannot be made more accurate without 
also being made more complex

Traditional Symbolic Regression
II. Assessing functions
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Udrescu+ 2020



  

● Problem: Can always get 0 error with 
some (very complex) function

● Solution: two objectives, accuracy and 
simplicity

● The best equations are the ones that 
cannot be made more accurate without 
also being made more complex 
(“Pareto-optimal”)

“Pareto front”

Traditional Symbolic Regression
II. Assessing functions

Udrescu+ 2020



  

Exhaustive Symbolic Regression
 

Designed to overcome two problems:

● Stochastic method may fail to find any given function

● Typical accuracy definitions fail to account for data uncertainties, and complexity 
definition is largely arbitrary. The two are incommensurable.



  

Exhaustive Symbolic Regression
 

Designed to overcome two problems:

● Stochastic method may fail to find any given function

→ Search exhaustively, complexity-by-complexity

● Typical accuracy definitions fail to account for data uncertainties, and complexity 
definition is largely arbitrary. The two are incommensurable.

→ Use Minimum Description Length (MDL) principle



  

Exhaustive Symbolic Regression
I. Function generation & optimisation

1) Generate all possible trees with given complexity = 
#nodes, with placeholder operators labelled by arity 
(number of arguments to operator)

2) Decorate with all operator permutations



  

Exhaustive Symbolic Regression
I. Function generation & optimisation

1) Generate all possible trees with given complexity = 
#nodes, with placeholder operators labelled by arity 
(number of arguments to operator)

2) Decorate with all operator permutations

3) Simplify and remove duplicates (tree reordering, 
parameter permutations, simplifications, 
reparametrisation invariance, parameter 
combinations)

4) Calculate maximum-likelihood parameter values

5) Repeat for other desired complexities



  

Simplifications make an exhaustive search feasible



  

Many physics functions have complexity < 10

3 5 5

7 9 9



  

Exhaustive Symbolic Regression
II. Model selection principle: minimum description length

● Purpose of functional 
fit is data compression

● Most information-
efficient function has 
minimum L(D)



  

Exhaustive Symbolic Regression
II. Model selection principle: minimum description length

● Purpose of functional 
fit is data compression

● Most information-
efficient function has 
minimum L(D)

● Both accuracy and 
complexity expressed 
in nats → can be 
combined

● Accounts for both 
functional and 
parametric complexity. 
Accuracy is likelihood.



  

Test case 0: Benchmarking

● feynman_I_6_2a dataset from the SRBench 2022 Competition
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Test case 0: Benchmarking
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● feynman_I_6_2a dataset from the SRBench 2022 Competition

● Not only does ESR get by far the lowest error... it discovers the standard normal!



  

Test case 1: The law of cosmic expansion

● Can we determine the functional form of cosmic expansion without assuming ΛCDM?

● How good is the Friedmann equation relative to other functions?

● Data:

– Cosmic chronometers (32 data points)   (Moresco et al 2022)

– Type 1a Supernovae (1590 data points)    (Pantheon+, Scolnic et al 2021)

● Basis operators:



  



  

● ΛCDM ranked 39th for cosmic 
chronometers and 37th for SNe

● Best functions approximate 
ΛCDM at low z, but are simpler

● ~200 functions (up to complexity 
10) more accurate than ΛCDM for 
Pantheon+



  

Test case 2: The radial acceleration relation

● Relates acceleration sourced by 
baryons (gbar) to total acceleration as 
measured by rotation velocity (gobs)

● 2,696 points from 153 late-type 
galaxies (SPARC sample)

● Regularity and low scatter hard to 
understand in ΛCDM



  

Test case 2: The radial acceleration relation

● Relates acceleration sourced by 
baryons (gbar) to total acceleration as 
measured by rotation velocity (gobs)

● 2,696 points from 153 late-type 
galaxies (SPARC sample)

● Regularity and low scatter hard to 
understand in ΛCDM

MOND Interpolating Functions (IFs)



  

1) Are the MOND IFs optimal descriptions of the RAR?

2) Do optimal solutions satisfy the MOND limits (and 
hence may be considered new IFs)?
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1) Are the MOND IFs optimal descriptions of the RAR?

2) Do optimal solutions satisfy the MOND limits (and 
hence may be considered new IFs)?

● Newtonian limit often found; deep-MOND limit rarely

● Can’t recover MOND behaviour even from MOND mocks!  
→ Uncertainties and dynamic range of data insufficient



  

● In a fully Bayesian formulation, compare the evidence:

Upgrades I

( )



  

● In a fully Bayesian formulation, compare the evidence:

To overcome prior-dependence, use the Fractional Bayes Factor:

Upgrades I

( )



  

● A prior that captures physicists’ expectations for 
operator combinations

Currently klog(n), but want sin(x0)+sin(x1) to be a priori 
more likely than sin(sin(x0+x1))...

Upgrades II



  

● A prior that captures physicists’ expectations for 
operator combinations

Currently klog(n), but want sin(x0)+sin(x1) to be a priori 
more likely than sin(sin(x0+x1))...

“Katz back-off model” determines probability of next 
operator given n preceding operators based on a 
training set of equations (from Feynman’s Lectures 
on Physics)

Upgrades II



  

● A prior that captures physicists’ expectations for 
operator combinations

Currently klog(n), but want sin(x0)+sin(x1) to be a priori 
more likely than sin(sin(x0+x1))...

“Katz back-off model” determines probability of next 
operator given n preceding operators based on a 
training set of equations (from Feynman’s Lectures 
on Physics)

Upgrades II

●  Reaching higher complexity:

Starting with the best ESR functions, evaluate all “unit edits” to the function to follow a 
low-description-length path out to higher complexity



  

● Exhaustive Symbolic Regression: Guaranteed to find the best simple 
function for any dataset

● Minimum description length affords principled combination of accuracy 
and simplicity for model comparison

● Cosmic chronometers and supernovae don’t uniquely favour ΛCDM

● The radial acceleration relation doesn’t uniquely favour MOND

● Improvements and many more applications — including yours!

Conclusions

https://github.com/DeaglanBartlett/ESR                                https://zenodo.org/record/7339113 

https://github.com/DeaglanBartlett/ESR
https://zenodo.org/record/7339113


  

Extra Slides



  



  



  



  



  

CCs

SNe



  



  

First 
logarithmic 
derivative

Second 
logarithmic 
derivative



  

SPARC 
data



  

RAR IF 
mock



  

Simple 
IF + 
EFE 
mock



  ESR readily Pareto-dominates all literature fits
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