(or how to find the best function for your data)

Harry Desmond

w/ Deaglan Bartlett & Pedro Ferreira

arXiv:2211.11461 arXiv:2301.04368 arXiv:2304.06333

11 May 2023

Overview

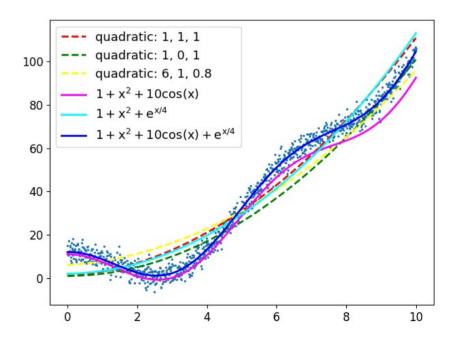
- Symbolic regression (SR)
- Exhaustive Symbolic Regression (ESR)
- Minimum description length as model selection principle
- Applications to date:
 - Cosmic expansion rate
 - Galaxy dynamics (radial acceleration relation)
- Upgrades in the works

Symbolic Regression overview

 Discover functions describing a dataset rather than parameters of predefined function

Numerical regression: $y = 6 + 1x + 0.8x^2$

Symbolic regression: $y = 1 + x^2 + 10\cos(x)$



Symbolic Regression overview

 Discover functions describing a dataset rather than parameters of predefined function

Difficulties:

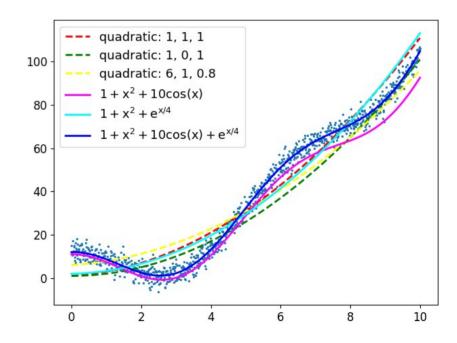
- Larger search space makes convergence harder
- Optimisation methods of numerical regression not applicable

Advantages:

- Much more general (reduces confirmation bias)
- Easy to prevent overfitting
- Highly interpretable

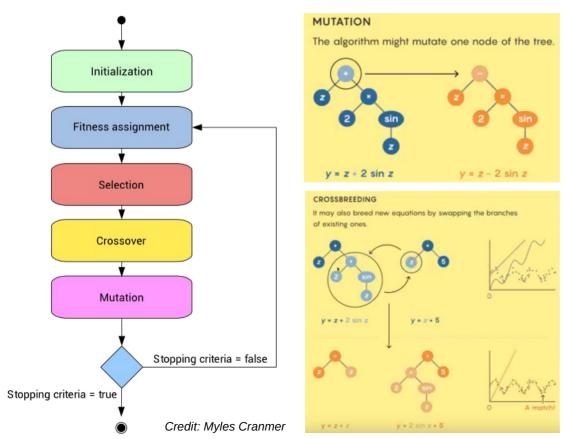
Numerical regression: $y = 6 + 1x + 0.8x^2$

Symbolic regression: $y = 1 + x^2 + 10\cos(x)$



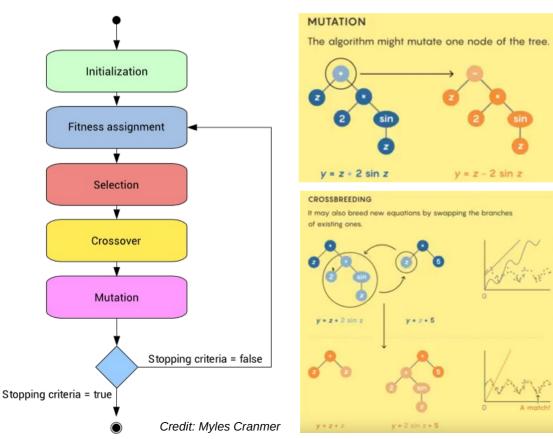
Traditional Symbolic Regression I. Generating functions

Genetic Algorithm (e.g. *PySR*, *DataModeler*)

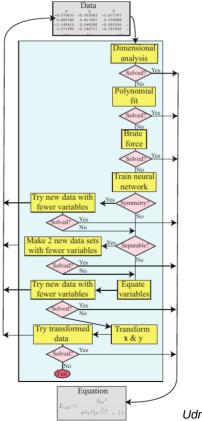


Traditional Symbolic Regression I. Generating functions

Genetic Algorithm (e.g. *PySR*, *DataModeler*)



"Physics inspired" (e.g. Al Feynman)



Better for exact data with symmetries, worse with noise

Unlike GA, doesn't produce entire population of possible equations

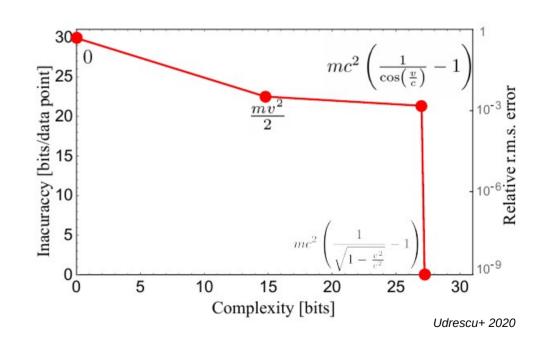
Udrescu & Tegmark 2020

Traditional Symbolic Regression II. Assessing functions

- Problem: Can always get 0 error with some (very complex) function
- Solution: two objectives, accuracy and simplicity
- The best equations are the ones that cannot be made more accurate without also being made more complex

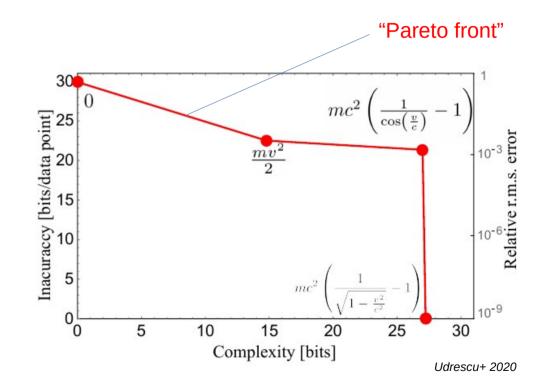
Traditional Symbolic Regression II. Assessing functions

- Problem: Can always get 0 error with some (very complex) function
- Solution: two objectives, accuracy and simplicity
- The best equations are the ones that cannot be made more accurate without also being made more complex



Traditional Symbolic Regression II. Assessing functions

- Problem: Can always get 0 error with some (very complex) function
- Solution: two objectives, accuracy and simplicity
- The best equations are the ones that cannot be made more accurate without also being made more complex ("Pareto-optimal")



Designed to overcome two problems:

Stochastic method may fail to find any given function

 Typical accuracy definitions fail to account for data uncertainties, and complexity definition is largely arbitrary. The two are incommensurable.

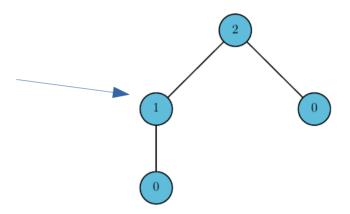
Designed to overcome two problems:

- Stochastic method may fail to find any given function
 - → Search exhaustively, complexity-by-complexity

- Typical accuracy definitions fail to account for data uncertainties, and complexity definition is largely arbitrary. The two are incommensurable.
 - → Use Minimum Description Length (MDL) principle

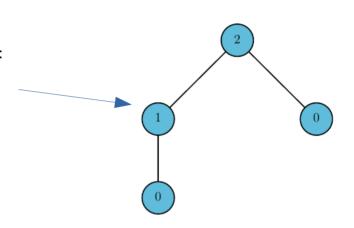
I. Function generation & optimisation

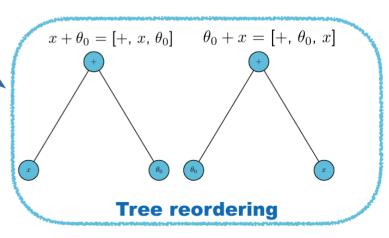
- 1) Generate all possible trees with given complexity = #nodes, with placeholder operators labelled by arity (number of arguments to operator)
- 2) Decorate with all operator permutations



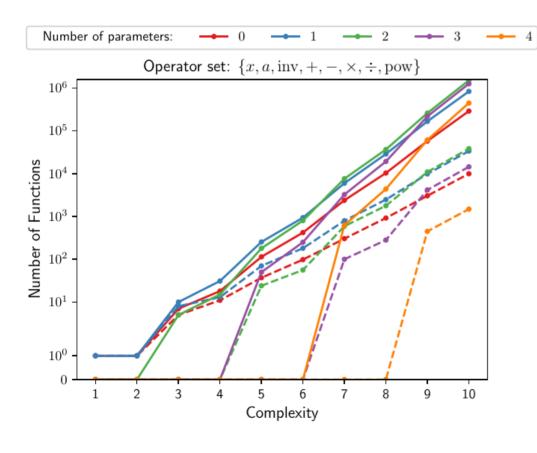
I. Function generation & optimisation

- 1) Generate all possible trees with given complexity = #nodes, with placeholder operators labelled by arity (number of arguments to operator)
- 2) Decorate with all operator permutations
- 3) Simplify and remove duplicates (tree reordering, parameter permutations, simplifications, reparametrisation invariance, parameter combinations)
- 4) Calculate maximum-likelihood parameter values
- 5) Repeat for other desired complexities





Simplifications make an exhaustive search feasible



168 million

Naïve estimate: $\sum_{j=1}^{n} j^k = H_n^{(-k)}$

5.2 million

Total number of decorated trees

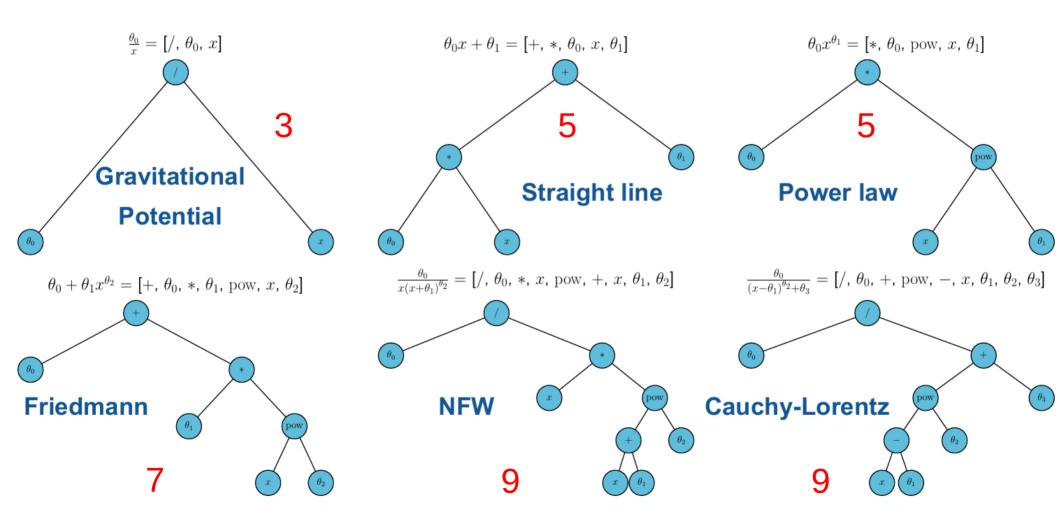
134,234 Number of unique equations

1400
Times fewer equations to consider than our naïve guess

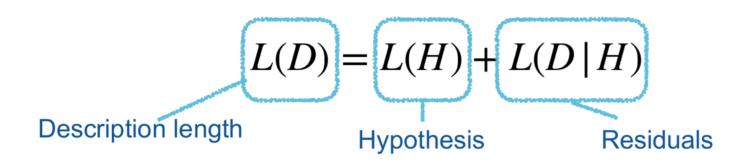
119,861

Number of equations containing at least one parameter

Many physics functions have complexity < 10

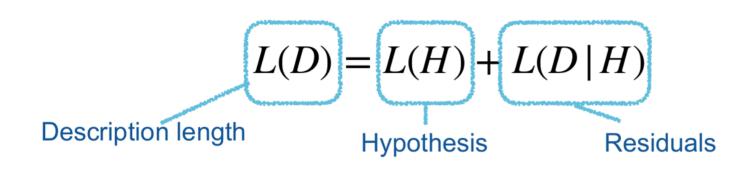


II. Model selection principle: minimum description length

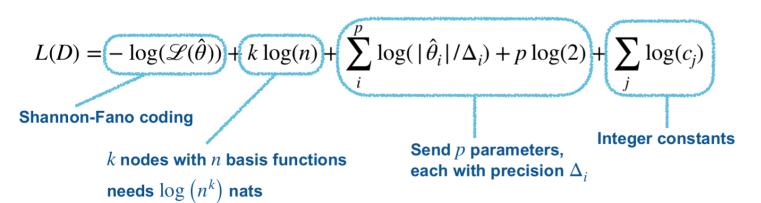


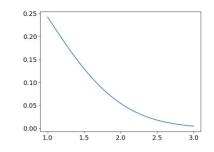
- Purpose of functional fit is data compression
- Most informationefficient function has minimum L(D)

II. Model selection principle: minimum description length

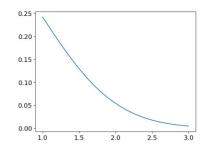


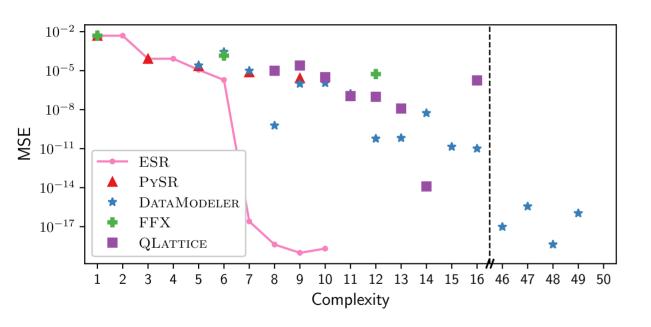
- Purpose of functional fit is *data compression*
- Most informationefficient function has minimum L(D)
- Both accuracy and complexity expressed in nats → can be combined
- Accounts for both functional and parametric complexity. Accuracy is likelihood.



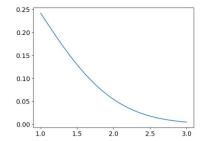


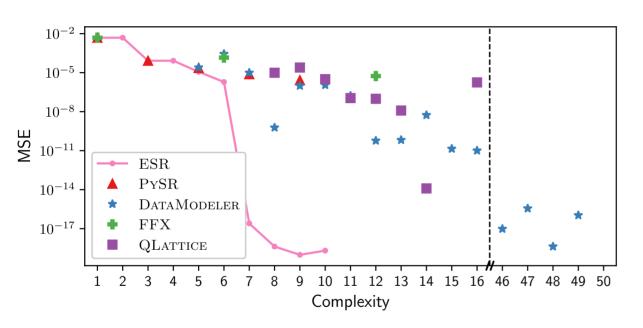
feynman_I_6_2a dataset from the SRBench 2022 Competition

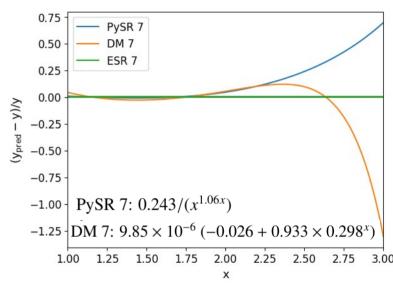




feynman_I_6_2a dataset from the SRBench 2022 Competition

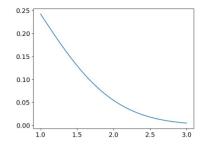


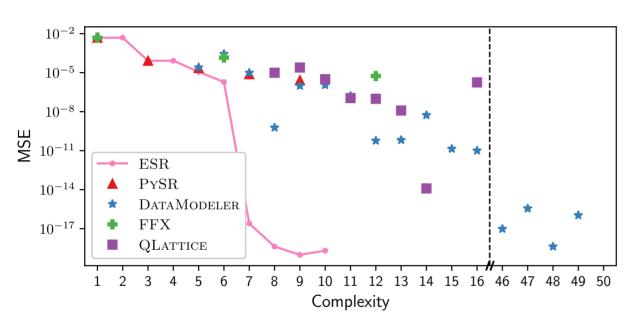


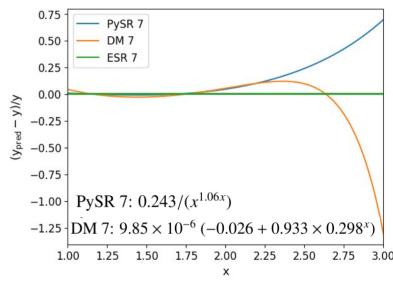


- feynman_I_6_2a dataset from the SRBench 2022 Competition
- Not only does ESR get by far the lowest error...

$$y = \theta_1 \theta_0^{x^2}$$
$$\theta_0 = 0.6065$$
$$\theta_1 = 0.3989$$







- feynman_I_6_2a dataset from the SRBench 2022 Competition
- Not only does ESR get by far the lowest error... it discovers the standard normal!

$$y = \theta_1 \theta_0^{x^2}$$
$$\theta_0 = 1/\sqrt{e}$$
$$\theta_1 = 1/\sqrt{2\pi}$$

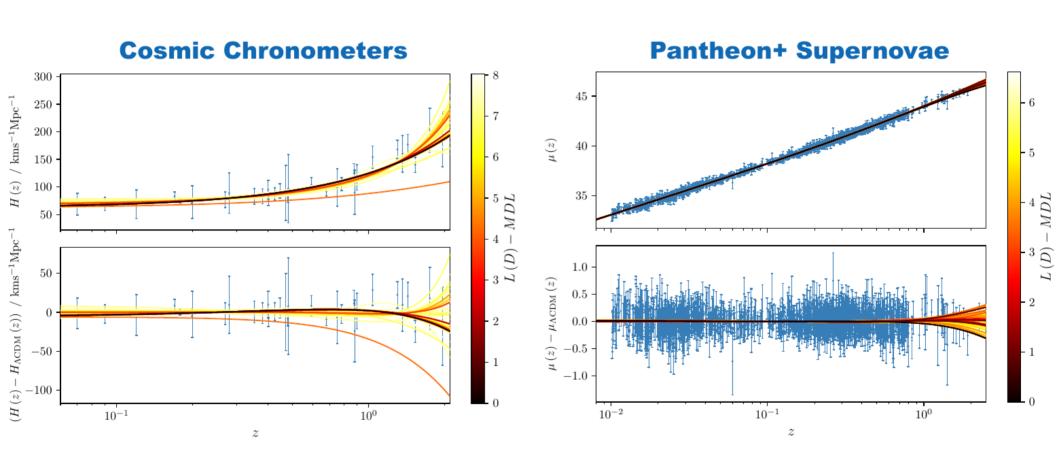
Test case 1: The law of cosmic expansion

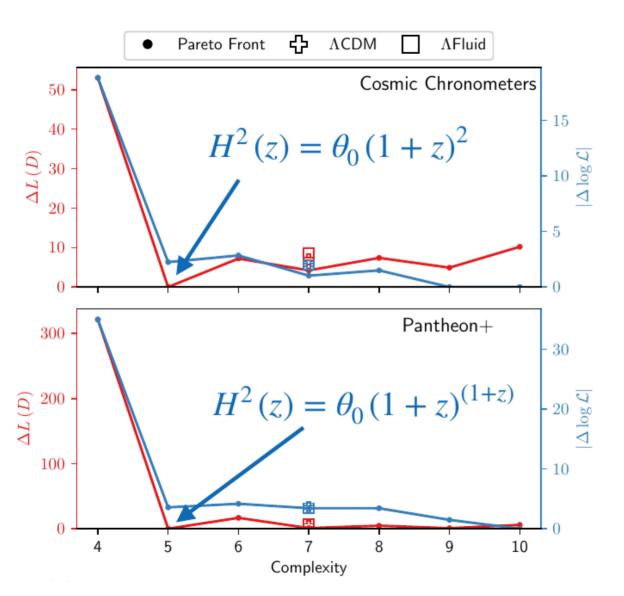
- Can we determine the functional form of cosmic expansion without assuming \(\Lambda \text{CDM} ? \)
- How good is the Friedmann equation relative to other functions?

$$H(z)_{\Lambda \text{CDM}}^2 = \theta_0 + \theta_1 (1+z)^3$$
 $H(z)_{\Lambda \text{fluid}}^2 = \theta_0 + \theta_1 (1+z)^{\theta_2}$

- Data:
 - Cosmic chronometers (32 data points) (Moresco et al 2022)
 - Type 1a Supernovae (1590 data points) (Pantheon+, Scolnic et al 2021)

• Basis operators: $\{x \equiv 1 + z, \theta, \text{inv}, +, -, \times, \div, \text{pow}\}$





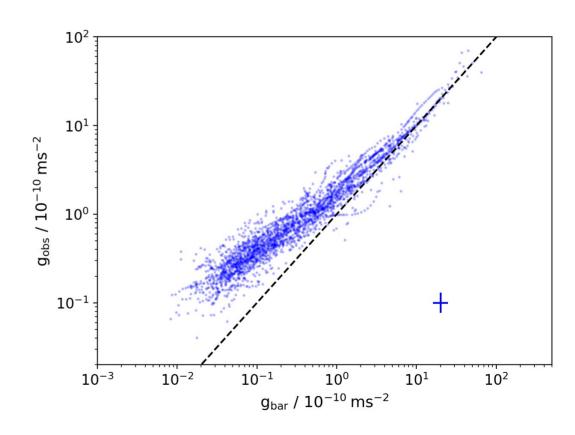
 ACDM ranked 39th for cosmic chronometers and 37th for SNe

Best functions approximate
 ΛCDM at low z, but are simpler

 ~200 functions (up to complexity
 10) more accurate than ΛCDM for Pantheon+

Test case 2: The radial acceleration relation

- Relates acceleration sourced by baryons (g_{bar}) to total acceleration as measured by rotation velocity (g_{obs})
- 2,696 points from 153 late-type galaxies (SPARC sample)
- Regularity and low scatter hard to understand in \(\Lambda\text{CDM}\)



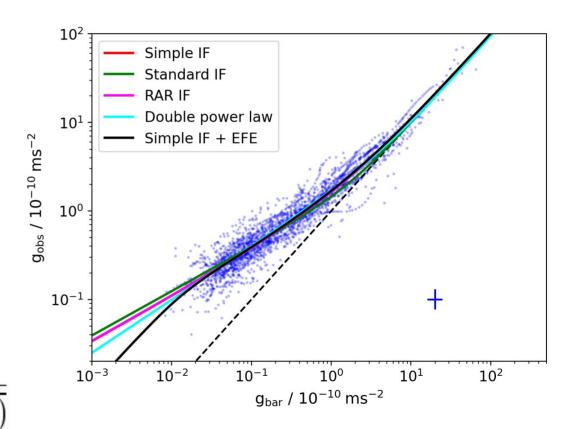
Test case 2: The radial acceleration relation

- Relates acceleration sourced by baryons (g_{bar}) to total acceleration as measured by rotation velocity (g_{obs})
- 2,696 points from 153 late-type galaxies (SPARC sample)
- Regularity and low scatter hard to understand in \(\Lambda\)CDM

MOND Interpolating Functions (IFs)

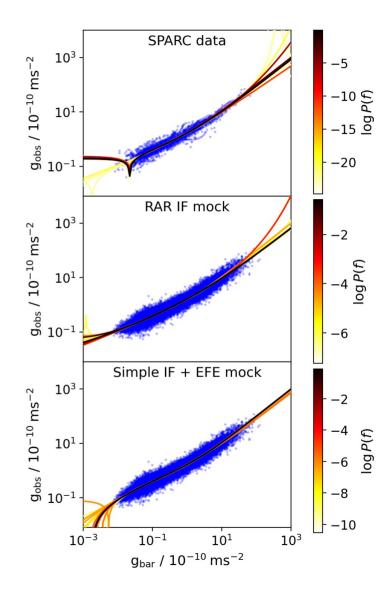
Simple —
$$g_{obs} = g_{bar}/2 + \sqrt{g_{bar}^2/4 + g_{bar}g_0}$$

Standard — $g_{obs} = \frac{1}{\sqrt{2}} \sqrt{g_{bar}^2 + \sqrt{g_{bar}^2 \left(g_{bar}^2 + 4g_0^2\right)}}$
RAR — $g_{obs} = g_{bar}/(1 - \exp(-\sqrt{g_{bar}/g_0}))$

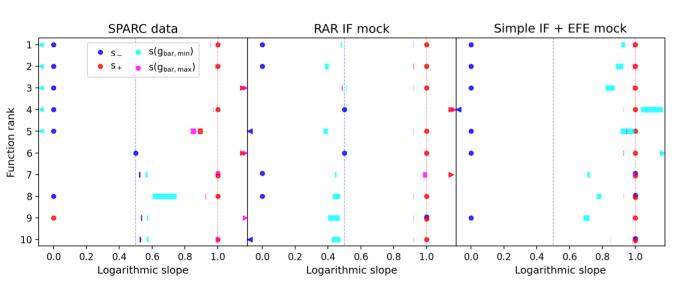


- 1) Are the MOND IFs optimal descriptions of the RAR?
- 2) Do optimal solutions satisfy the MOND limits (and hence may be considered new IFs)?

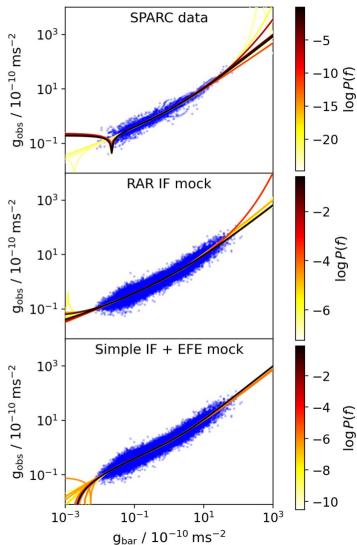
- 1) Are the MOND IFs optimal descriptions of the RAR?
- 2) Do optimal solutions satisfy the MOND limits (and hence may be considered new IFs)?



- 1) Are the MOND IFs optimal descriptions of the RAR?
- 2) Do optimal solutions satisfy the MOND limits (and hence may be considered new IFs)?



- Newtonian limit often found; deep-MOND limit rarely
- Can't recover MOND behaviour even from MOND mocks!
 → Uncertainties and dynamic range of data insufficient



Upgrades I Vocasion Control Vocasion Con

In a fully Bayesian formulation, compare the evidence:

$$P(f_i|D) = \frac{1}{P(D)} \int P(D|f_i, \theta_i) P(\theta_i|f_i) P(f_i) d\theta_i \qquad \log P(f_i|D) = -\log P(f_i) - \log \mathcal{Z}(D|f_i)$$

$$\log \mathcal{Z}(D|f_i) \simeq \log H(D, f_i, \hat{\theta}_i) + \frac{p}{2} \log 2\pi - \frac{1}{2} \log \left| \det \hat{\mathbf{I}}^H \right| \simeq \frac{p}{2} \log 2\pi - BIC/2 \quad \left(\hat{I}_{\alpha\beta}^H = -\partial_\alpha \partial_\beta \log H(D, f_i, \theta_i) |_{\hat{\theta}_i} \right)$$

Upgrades I WORKIN PROGRESS

In a fully Bayesian formulation, compare the evidence:

$$P(f_i|D) = \frac{1}{P(D)} \int P(D|f_i, \theta_i) P(\theta_i|f_i) P(f_i) d\theta_i \qquad \log P(f_i|D) = -\log P(f_i) - \log \mathcal{Z}(D|f_i)$$

$$\log \mathcal{Z}\left(D|f_i\right) \simeq \log H(D,f_i,\hat{\boldsymbol{\theta}}_i) + \frac{p}{2}\log 2\pi - \frac{1}{2}\log\left|\det\hat{\boldsymbol{I}}^H\right| \\ \simeq \frac{p}{2}\log 2\pi - BIC/2 \quad \left(\hat{I}_{\alpha\beta}^H = -\partial_\alpha\partial_\beta\log H(D,f_i,\boldsymbol{\theta}_i)|_{\hat{\boldsymbol{\theta}}_i}\right)$$

To overcome prior-dependence, use the *Fractional Bayes Factor*:

$$B_b = \frac{q_1(b)}{q_2(b)}, \quad q_i(b) = \frac{\int P(D|f_i, \theta_i) P(\theta_i|f_i) d\theta_i}{\int P(D|f_i, \theta_i)^b P(\theta_i|f_i) d\theta_i}$$

Upgrades II

A prior that captures physicists' expectations for operator combinations

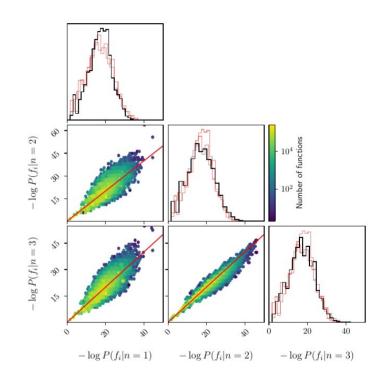
Currently klog(n), but want sin(x0)+sin(x1) to be a priori more likely than sin(sin(x0+x1))...

Upgrades II

A prior that captures physicists' expectations for operator combinations

Currently klog(n), but want sin(x0)+sin(x1) to be a priori more likely than sin(sin(x0+x1))...

"Katz back-off model" determines probability of next operator given *n* preceding operators based on a training set of equations (from Feynman's *Lectures on Physics*)

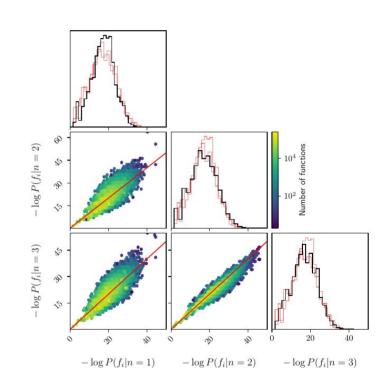


Upgrades II

A prior that captures physicists' expectations for operator combinations

Currently klog(n), but want sin(x0)+sin(x1) to be a priori more likely than sin(sin(x0+x1))...

"Katz back-off model" determines probability of next operator given *n* preceding operators based on a training set of equations (from Feynman's *Lectures on Physics*)



Reaching higher complexity:

Starting with the best ESR functions, evaluate all "unit edits" to the function to follow a low-description-length path out to higher complexity

Conclusions

- Exhaustive Symbolic Regression: Guaranteed to find the best simple function for any dataset
- Minimum description length affords principled combination of accuracy and simplicity for model comparison
- Cosmic chronometers and supernovae don't uniquely favour ACDM
- The radial acceleration relation doesn't uniquely favour MOND
- Improvements and many more applications including yours!

Extra Slides

Precision of constants - tradeoff between accuracy and information needed

True $\hat{\theta}_i$ uniformly distributed within $\pm \Delta_i/2$ of transmitted value - may not transmit true MLP

Taylor expand log-likelihood about true value:

$$-\log(\mathcal{L}(\hat{\theta} + \mathbf{d})) \approx -\log(\mathcal{L}(\hat{\theta})) + \frac{1}{2}\mathbf{d}^{\mathrm{T}}\mathbf{I}\mathbf{d} \qquad I_{ij} = \frac{\mathrm{d}^{2}(-\log\mathcal{L})}{\mathrm{d}\theta_{i}\,\mathrm{d}\theta_{j}}\Big|_{\hat{\theta}}$$

Giving expected contribution to description length

$$L(\mathbf{\Delta}) = \frac{1}{2} \sum_{ij} \langle \mathbf{I}_{ij} d_i d_j \rangle - \sum_i \log(\Delta_i)$$

Minimise this:

$$L(\Delta_i) = \frac{1}{24} \mathbf{I}_{ii} \Delta_i^2 - \log(\Delta_i) \quad \Longrightarrow \quad \Delta_i = \left(\frac{12}{\mathbf{I}_{ii}}\right)^{1/2}$$

The Description Length of a Function

$$L(D) = \left(-\log(\mathcal{L}(\hat{\theta})) + k\log(n) - \frac{p}{2}\log(3) + \sum_{i}^{p} \left(\frac{1}{2}\log(\mathbf{I}_{ii}) + \log(|\hat{\theta}_{i}|)\right)$$

$$\frac{1}{2} \left(p \log (N) - 2 \log \left(\mathcal{L} \right) \right) = \frac{1}{2} \text{BIC} \qquad \text{(for large number of data points, } N\text{)}$$

- Description length looks like BIC plus corrections due to structural complexity (prior on model)
- For large N, equivalent to minimising the BIC (an approximation to the evidence)

$$P(H) = \exp(-L(D)) / \sum (\exp(-L(D)))$$

Cosmic Chronometers - Standard Clocks



Image credit: AAS NOVA

$$H(z) = -\frac{1}{1+z} \frac{\mathrm{d}z}{\mathrm{d}t} \approx -\frac{1}{1+z} \frac{\delta z}{\delta t}$$

- Passively evolving stellar population are standard clocks measure δt
- Directly measure δz
- (Cosmological) model-independent measurement of H(z)
- We use sample of 32 CC H(z) measurements

Type la Supernovae - Standard Candles

$$d_{\rm L}(z) = (1+z) \int_0^z \frac{\mathrm{d}z'}{H(z')}$$

$$\mu(z) = 5 \log_{10} \left(\frac{d_{L}(z)}{10 \text{ pc}} \right)$$

$$\mu = m_{\rm B} + \alpha x_1 - \beta c - M_0$$

Amplitude

Stretch

Colour

Rest-frame

magnitude

Pantheon+ sample with SH0ES Cepheid calibration

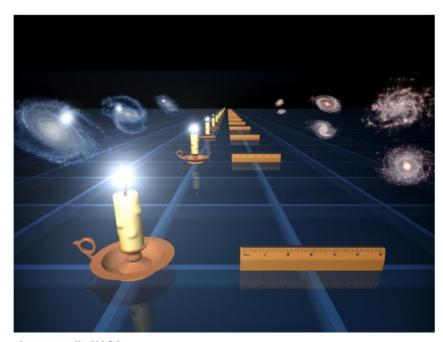


Image credit: NASA

Scolnic et al. 2021 (arXiv:2112.03863) Riess et al. 2022 (arXiv:2112.04510)

C	C (C	S

SNe

Rank	$y(x) / \text{km}^2 \text{s}^{-2} \text{Mpc}^{-2}$	Complexity	Pa	arameters		Codelength					
Karik	g(x) / Km s - Nipc	Complexity	θ_0	θ_1 θ_2		Residuals ¹	Function ²	Parameter ³	Total		
1	$\theta_0 x^2$	5	3883.44	-	-	8.36	5.49	2.53	16.39		
2	$ \theta_0 ^{x^{\theta_1}}$	5	3982.43	0.22	-	7.97	5.49	5.24	18.70		
3	$\theta_0 \theta_1 ^{-x}$	5	1414.43	0.31	-	7.57	6.93	5.58	20.08		
4	$\theta_0 x^{\theta_1}$	5	3834.51	2.03	-	8.35	6.93	5.08	20.36		
5	$x^2 \left(\theta_0 + x\right)$	7	3881.85	-	-	8.36	9.70	2.53	20.60		
:	:	:	:	:	:	:	:	:	:		
39	$\theta_0 + \theta_1 x^3$	9	3164.02	1481.71	-	7.28	12.48	3.76	23.51		
:		:	:	:	:	:	:	:	:		
84	$\theta_0 + \theta_1 x^{\theta_2}$	7	3322.96	1374.97	3.08	7.27	11.27	6.52	25.06		

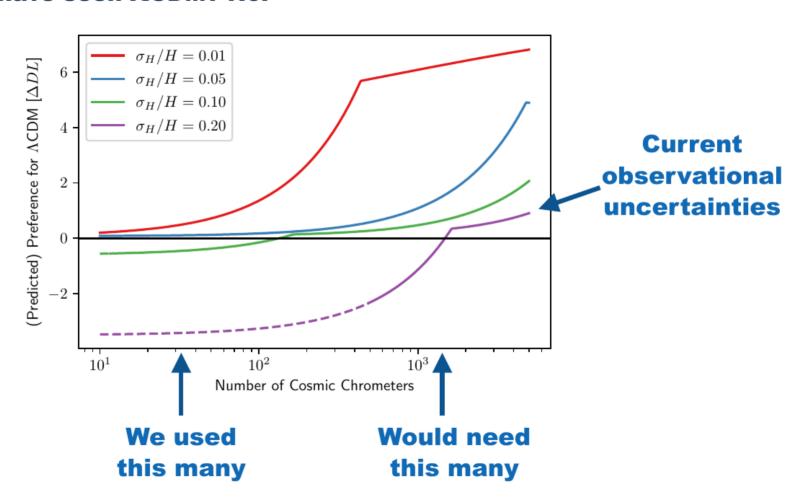
 $\frac{1 - \log \mathcal{L}(\hat{\boldsymbol{\theta}})}{1 - \log \mathcal{L}(\hat{\boldsymbol{\theta}})} = \frac{2k \log(n) + \sum_{j} \log(c_j)}{1 - \log(c_j)} = \frac{3 - \frac{p}{2} \log(3) + \sum_{i}^{p} (\frac{1}{2} \log(I_{ii}) + \log(|\hat{\theta}_i|))}{1 - \log(1 + \log(1))}$

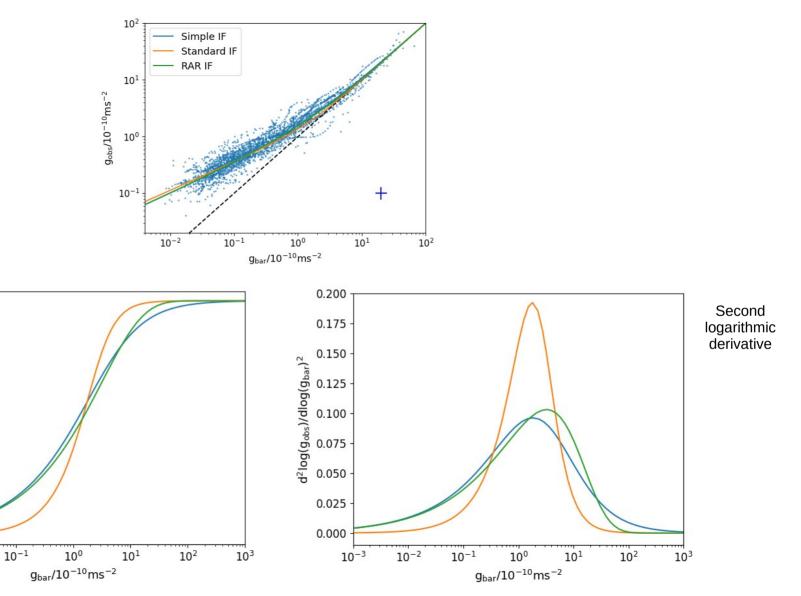
Rank	$y(x) / \text{km}^2 \text{s}^{-2} \text{Mpc}^{-2}$	Complexity	Pa	arameters		Codelength					
Karik	y(x) / Km s Mpc	Complexity	θ_0	θ_1	θ_2	Residuals ¹	Function ²	Parameter ³	Total		
1	$\theta_0 x^x$	5	5345.02	-	-	706.18	6.93	5.11	718.22		
2	$ \theta_0 ^{x^{\theta_1}}$	9	5280.11	0.16	-	705.11	5.49	8.41	719.01		
3	$\theta_0 \theta_1 ^{-x}$	5	1694.95	0.32	-	701.79	6.93	10.33	719.05		
4	$ heta_0 x^{x^{ heta_1}} heta_0 ^{ heta_1 ^x}$	7	5378.69	0.78	-	702.45	9.70	6.98	719.13		
5	$ \theta_0 ^{ \theta_1 ^x}$	5	1898.47	1.14	-	701.88	5.49	12.64	720.02		
:	:	:	:	:	:	:	:	:	:		
37	$\theta_0 + \theta_1 x^3$	9	3591.09	1773.63	-	701.85	12.48	8.81	723.13		
:	:	:	:	:	:	:	:	:	:		
96	$\theta_0 + \theta_1 x^{\theta_2}$	7	3280.83	2069.32	2.73	701.64	11.27	12.19	725.10		

 $^{1} - \log \mathcal{L}(\hat{\theta})$ $^{2}k \log(n) + \sum_{j} \log(c_{j})$ $^{3} - \frac{p}{2} \log(3) + \sum_{i}^{p} (\frac{1}{2} \log(I_{ii}) + \log(|\hat{\theta}_{i}|))$

Should we have seen Λ CDM? No.

Mock cosmic chronometer data assuming ΛCDM (Planck18)





1.0

0.9

dlog(g_{obs})/dlog(g_{bar}) 0.0 8.0

0.6

0.5

 10^{-3}

10-2

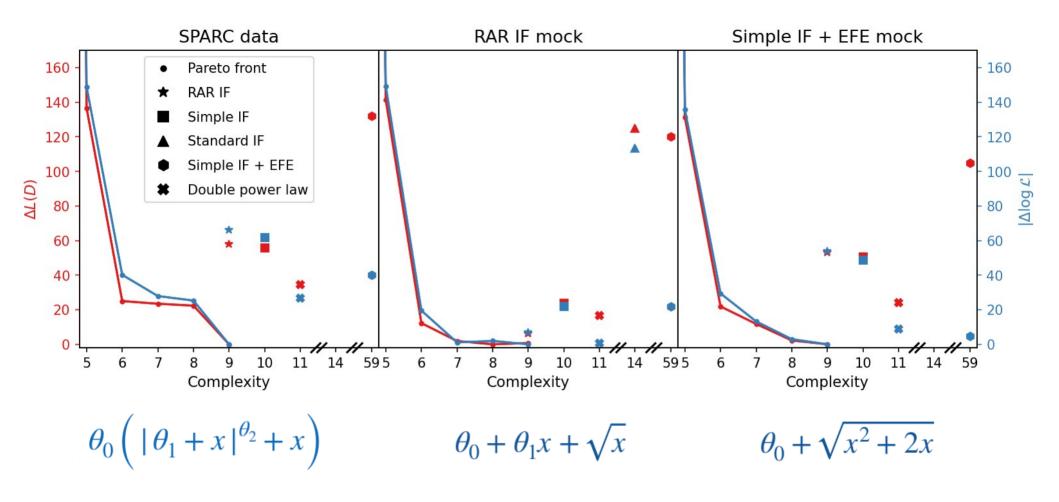
First

logarithmic derivative

,	Rank	Function	Comp.	P(f)			Description length					
	Ttank	runction	comp.	1 (J)	θ_0	$ heta_1$	θ_2	θ_3	$\mathrm{Resid.}^1$	$\rm Func.^2$	$Param.^3$	Total
	1	$\theta_0 \left(\theta_1 + x ^{\theta_2} + x \right)$	9	9.3×10^{-1}	0.84	-0.02	0.38	_	-1279.1	14.5	14.0	-1250.6
	2	$ \theta_1 ^x + \theta_0 ^{\theta_2} + x$	9	6.4×10^{-2}	-0.99	0.64	0.36	_	-1279.9	12.5	19.6	-1247.9
	3	$ \theta_0 ^{ \theta_1-x ^{\theta_2}- heta_3}$	9	2.0×10^{-3}	$\text{-}1.4{\times}10^2$	0.02	0.14	0.89	-1276.4	12.5	19.5	-1244.4
	4	$ \theta_0(\theta_1+x) ^{\theta_2}+x$	9	1.4×10^{-4}	0.35	-0.02	0.34	_	-1268.9	14.5	12.7	-1241.7
	5	$\left \theta_0 - \theta_1 - x ^{\theta_2}\right ^{\theta_3}$	9	1.0×10^{-5}	-0.30	0.02	0.42	2.14	-1271.1	12.5	19.5	-1239.1
	6	$\sqrt{x} \exp\left(\frac{ \theta_0 + x ^{\theta_1}}{2}\right)$	9	1.5×10^{-9}	-0.02	0.36	_	_	-1257.9	17.5	10.0	-1230.3
SPARC	7	$\left(\frac{ \theta_0 ^x}{x}\right)^{\theta_1} + x$	9	2.4×10^{-10}	1.87	-0.52	_	_	-1250.6	14.5	7.6	-1228.5
<u>data</u>	8	$\sqrt{ \theta_0+x }+\theta_1x$	8	1.8×10^{-10}	-1.8×10^{-3}	0.72	_	_	-1245.6	12.9	4.5	-1228.2
	9	$\sqrt{\frac{ \theta_0 + x }{\theta_0 + \frac{1}{\sqrt[4]{x}}}} + \frac{\theta_1 x}{\theta_1}$	8	9.6×10^{-11}	-0.22	-2.14	_	_	-1251.1	14.3	9.2	-1227.6
	10	$\left(\sqrt{x} + \frac{1}{x}\right)^{\theta_0} + x$	9	8.2×10^{-11}	-0.53	_	_	_	-1248.3	16.1	4.8	-1227.4
	:	:	:	:	:	:	:	:	:	÷	:	:
	17	$x/(\exp(\theta_0) - \theta_1 ^{\sqrt{x}})$	9	$2.2{ imes}10^{-11}$	0.03	0.44	_	_	-1250.9	17.5	7.3	-1226.1
	_	Double power law	11	9.7×10^{-16}	4.65	3.96	1.03	0.60	-1252.3	17.7	18.5	-1216.1
	_	Simple IF	10	5.5×10^{-25}	1.11	_	_	_	-1217.3	18.6	3.9	-1194.8
	_	RAR IF	9	6.7×10^{-26}	1.13	_	_	_	-1212.8	16.1	3.9	-1192.7
	_	$Simple\ IF\ +\ EFE$	59	5.0×10^{-69}	1.16	6.8×10^{-3}	_	_	-1238.9	139.9	5.6	-1093.4
	_	Standard IF	14	9×10^{-150}	1.54	_	_	_	-939.5	27.9	4.1	-907.5
		$1 - \log \mathcal{L}(\hat{\boldsymbol{\theta}})$		$2k\log(n) + \sum_{n=0}^{\infty}$	$^{3} - \frac{p}{2}\log(3) + \sum_{i}^{p}(\log(I_{ii})^{1/2} + \log(\hat{\theta}_{i}))$							

	Rank	Function	Comp.	p. $P(f)$			Description length					
	Ttalik	runction	Comp.	1 (1)	θ_0	θ_1	θ_2	θ_3	$\mathrm{Resid.}^1$	$\mathrm{Func.}^2$	Param. ³	Total
	1	$\theta_0 + \theta_1 x + \sqrt{x}$	8	5.6×10^{-1}	9.1×10^{-3}	0.63	_	_	-2045.2	12.9	4.9	-2027.4
	2	$\sqrt{ \theta_0 + x } + \theta_1 x$	8	2.8×10^{-1}	$3.0{\times}10^{-3}$	0.64	_	_	-2044.4	12.9	4.8	-2026.
	3	$\theta_0 x + x^{\theta_1}$	7	8.2×10^{-2}	0.64	0.49	_		-2045.2	11.3	8.5	-2025.
	4	$\sqrt{x} \exp\left(\frac{x^{\theta_0}}{2}\right)$	7	$3.5{\times}10^{-2}$	0.36	_	_	_	-2040.7	12.5	3.5	-2024.
	5	$(\theta_0 + x) \left(\theta_1 + \frac{1}{\sqrt{x}}\right)$	9	$1.1{\times}10^{-2}$	1.3×10^{-3}	0.64	_	_	-2044.5	16.1	4.8	-2023.
	6	$\frac{1}{\sqrt{ \theta_0+\frac{1}{x} }}+x$	8	8.8×10^{-3}	1.74	_	_	_	-2038.5	12.9	2.3	-2023.
	7	$(x \theta_0)^{(x \theta_1)^{\theta_2}}$	9	3.1×10^{-3}	-2.09	-1.4×10^{-4}	0.04	_	-2045.3	12.5	10.6	-2022.
AR IF	8	$\theta_0 x + \theta_1 + x ^{\theta_2}$	9	2.4×10^{-3}	0.64	1.4×10^{-3}	0.49		-2045.4	14.5	8.9	-2022.
<u>nock</u>	9	$x\left(\theta_0 - x ^{\theta_1} - \theta_2\right)$	9	$2.3{\times}10^{-3}$	$1.2{\times}10^{-3}$	-0.51	-0.64		-2045.3	14.5	8.9	-2021.
<u></u>	10	$(\theta_0 - x) \left(\theta_1 - x^{\theta_2}\right)$	9	$2.2{\times}10^{-3}$	-6.5×10^{-4}	-0.64	-0.51	_	-2045.4	14.5	9.0	-2021.
	:	:	:	:	:	:	:	:	:	:	:	:
	27	$x/(\exp(\theta_0) - \exp(-\sqrt{x}))$	9	$3.2{\times}10^{-4}$	-0.01		_	_	-2039.3	17.5	1.9	-2020.
	:	:	:	÷	÷	÷	:	:	:	:	:	:
	41	$x/(\exp(\theta_0) - \theta_1 ^{\sqrt{x}})$	9	1.1×10^{-4}	-5.0×10^{-3}	0.38	_	_	-2042.1	17.5	5.7	-2018.9
	_	RAR IF	9	1.0×10^{-3}	1.14	_	_	_	-2041.1	16.1	3.9	-2021.
	_	Double power law	11	$3.4{\times}10^{-8}$	1.25	1.47	0.90	0.54	-2047.2	17.7	18.7	-2010.
	_	Simple IF	10	2.8×10^{-11}	1.12		_	_	-2026.2	18.6	3.9	-2003.
	_	Standard IF	14	$2.9{ imes}10^{-55}$	1.54		_	_	-1934.4	27.9	4.1	-1902.
	_	$Simple\ IF\ +\ EFE$	59	5.9×10^{-64}	1.12	0	_	_	-2026.2	139.9	3.9	-1882.
		$1 - \log \mathcal{L}(\hat{\boldsymbol{\theta}})$	^{2}k	$\log(n) + \sum_{i}$	$\log(c_j)$ $^3 - \frac{p}{2}\log(3) + \sum_{i}^{p}(\log(I_{ii})^{1/2} + \log(\hat{\theta}_i))$							

_												
	Rank	Function	Comp.	P(f)			Description length					
_				- (3)	θ_0	$ heta_1$	θ_2	θ_3	Resid. ¹	Func. ²	Param. ³	Total
	1	$\theta_0 + \sqrt{x^2 + 2x}$	9	8.9×10^{-1}	-0.06	_	_	_	-2017.7	14.5	3.1	-2000.0
	2	$\theta_0 + \sqrt{x \theta_1 + x }$	8	$9.3{ imes}10^{-2}$	-0.06	1.97	_	_	-2017.9	12.9	7.3	-1997.8
	3	$- \theta_0 ^{\sqrt{x}} + \theta_1 + x$	8	5.6×10^{-3}	0.26	0.95	_	_	-2017.9	12.9	10.1	-1995.0
	4	$(\theta_0 - x) \left(\theta_1 - x^{\theta_2}\right)$	9	3.3×10^{-3}	3.1×10^{-3}	-0.71	-0.53	_	-2019.7	14.5	10.7	-1994.4
	5	$x^{\theta_0} - \theta_1(\theta_2 - x)$	9	$2.4{ imes}10^{-3}$	0.39	0.79	0.12	_	-2020.9	14.5	12.3	-1994.1
	6	$ \theta_0-x ^{\theta_1}-\theta_2x$	9	2.0×10^{-3}	$5.5{\times}10^{-3}$	0.48	-0.71	_	-2019.1	14.5	10.6	-1994.0
0:	7	$x \theta_0 ^{- \theta_1 ^{x^{\theta_2}}}$	9	$1.7{ imes}10^{-3}$	0.04	-0.16	0.33	_	-2018.1	12.5	11.9	-1993.8
Simple	8	$x\left(\theta_0 + \theta_1 + x ^{\theta_2}\right)$	9	1.5×10^{-3}	0.71	0.01	-0.53	_	-2018.7	14.5	10.6	-1993.7
<u>IF +</u> EFE	9	$ \theta_0 ^{ \theta_1 ^{x^{\theta_2}}} + x$	9	6.5×10^{-4}	7.0×10^{-6}	0.03	0.17	_	-2016.7	12.5	11.4	-1992.8
<u>mock</u>	10	$\exp\left(\theta_0 - \frac{1}{\sqrt[4]{x}}\right) + x$	9	5.5×10^{-4}	0.57	_	_	_	-2014.0	17.5	3.9	-1992.6
	:	÷ :	:	:	:	:	:	:	÷	:	÷	:
_	21	$x/(\exp(\theta_0) - \theta_1 ^{\sqrt{x}})$	9	1.8×10^{-5}	0.03	0.44	_	_	-2014.2	17.5	7.4	-1989.3
	_	Double power law	11	3.4×10^{-11}	3.53	3.31	0.98	0.60	-2012.3	17.7	18.6	-1976.0
	_	Simple IF	10	$1.2{ imes}10^{-22}$	1.11	_	_	_	-1972.1	18.6	3.9	-1949.6
	_	RAR IF	9	7.0×10^{-24}	1.13	_	_	_	-1966.9	16.1	3.9	-1946.8
	_	$Simple\ IF\ +\ EFE$	59	3.8×10^{-57}	1.19	8.6×10^{-3}	_	_	-2016.0	139.9	5.9	-1870.2
	_	Standard IF	14	2×10^{-141}	1.54	_	_	_	-1708.3	27.9	4.1	-1676.3
_		$^{1}-\log\mathcal{L}(\hat{oldsymbol{ heta}})$		$^{2}k\log(n) + \sum_{n=0}^{\infty}$	$\log(c_j)$	$\log(c_j) \qquad \qquad ^3 - \frac{p}{2}\log(3) + \sum_{i}^{p}(\log(I_{ii})^{1/2} + \log(\hat{\theta}_i))$						



ESR readily Pareto-dominates all literature fits