Lie categories

Žan Grad

Instituto Superior Técnico Centro de Análise Matemática, Geometria e Sistemas Dinâmicos Spring 2023

Warmup ●○○	Basic definitions & examples	Reversibility 0000	Lie algebroids 000	Ranks and extensions
Motivat	ion			

We begin with a physical interpretation of the notion of a category:

Mathematics	Physics	
Objects	States	
Morphisms	Processes	
Composition of morphisms	Succession of processes	
Invertible morphism	Reversible process	

In this way, a given physical system can be viewed as a category.

Usually, the set of all states (*phase space*) of a given physical system has more structure, e.g. it is a topological space or a smooth manifold, and the same holds for the set of processes.

We are interested in categories whose set of objects and set of morphisms are smooth manifolds – categories *internal* to **Diff**.

Warmup	Basic definitions & examples	Reversibility	Lie algebroids	Ranks and extensions
000				

Example from statistical physics

Consider the space

$$\Delta^n = \left\{ (p_0, \dots, p_n) \in [0, 1]^{n+1} \mid \sum_{i=0}^n p_i = 1 \right\}$$

of probability distributions on the finite set $\{0, \ldots, n\}$. In physics, Δ^n corresponds to the set of configurations of a statistical ensemble of particles, each of which can be in one of the "microstates" $\{0, \ldots, n\}$.

The expected surprise (or entropy) of $p := (p_i)_{i=0}^n \in \Delta^n$ is given as

$$S(p) = -\sum_{i=0}^{n} p_i \log p_i.$$

Second law of thermodynamics asserts that the only transitions which can occur are

$$\mathcal{C} = \{(q,p) \in \Delta^n \times \Delta^n \mid S(q) - S(p) \ge 0\} = (\Delta S)^{-1}([0,\infty))$$

where (q, p) is interpreted as the transition $p \rightarrow q$.

Warmup	Basic definitions & examples	Reversibility	Lie algebroids	Ranks and extensions
000				

Example from statistical physics

Consider the space

$$\Delta^n = \left\{ (p_0, \dots, p_n) \in [0, 1]^{n+1} \mid \sum_{i=0}^n p_i = 1 \right\}$$

of probability distributions on the finite set $\{0, ..., n\}$. In physics, Δ^n corresponds to the set of configurations of a statistical ensemble of particles, each of which can be in one of the "microstates" $\{0, ..., n\}$. The *expected surprise* (or *entropy*) of $p := (p_i)_{i=0}^n \in \Delta^n$ is given as

$$S(p) = -\sum_{i=0}^{n} p_i \log p_i.$$

Second law of thermodynamics asserts that the only transitions which can occur are

$$\mathcal{C} = \{(q,p) \in \Delta^n imes \Delta^n \mid S(q) - S(p) \geq 0\} = (\Delta S)^{-1}([0,\infty))$$

where (q, p) is interpreted as the transition $p \rightarrow q$.

Warmup 00●	Basic definitions & examples	Reversibility 0000	Lie algebroids 000	Ranks and extensions
NI				

- - A (small) category $\mathcal{C} \rightrightarrows \mathcal{X}$ consists of
 - A set of objects X,

Notation

• A set of morphisms C.

It comes equipped with *source* and *target* maps $s, t \colon \mathcal{C} \to \mathcal{X}$

$$s(x \xrightarrow{g} y) = x, \quad t(x \xrightarrow{g} y) = y,$$

and with the composition and unit maps

$$m: \mathcal{C}^{(2)} \to \mathcal{C}, \quad m(g, h) = gh,$$

$$u: \mathcal{X} \to \mathcal{C}, \qquad u(x) = 1_x,$$

where $C^{(2)} = \{(g, h) \in C \times C \mid s(g) = t(h)\}$ is the set of composable pairs of morphisms. (One should keep in mind the associativity axiom, etc.)

Warmup 00●	Basic definitions & examples	Reversibility 0000	Lie algebroids	Ranks and extensions

Notation

We also denote:

The precomposition and postcomposition by a morphism $g \in C$ are expressed in this notation as the following maps:

$$\begin{split} L_g &: \mathcal{C}^{s(g)} \to \mathcal{C}^{t(g)}, \quad h \mapsto gh, \\ R_g &: \mathcal{C}_{t(g)} \to \mathcal{C}_{s(g)}, \quad h \mapsto hg. \end{split}$$

Warmup	Basic definitions & examples	Reversibility	Lie algebroids	Ranks and extensions
000	•000000	0000	000	

The axioms of a Lie category

- A *Lie category* is a category $C \rightrightarrows X$, such that:
- \mathcal{C} and \mathcal{X} are smooth manifolds.
- $s, t: C \rightarrow X$ are smooth submersions.
- $m: \mathcal{C}^{(2)} \to \mathcal{C}$ and $u: \mathcal{X} \to \mathcal{C}$ are smooth maps.

We require the object manifold \mathcal{X} to have no boundary, but allow \mathcal{C} to have one – if it does, we also impose the following condition:

• $s|_{\partial C}$ and $t|_{\partial C}$ are submersions.

We call this the *regular boundary* condition.

Warmup	Basic definitions & examples	Reversibility	Lie algebroids	Ranks and extensions
000	•000000	0000	000	

The axioms of a Lie category

- A *Lie category* is a category $C \rightrightarrows X$, such that:
- \mathcal{C} and \mathcal{X} are smooth manifolds.
- $s, t: C \rightarrow X$ are smooth submersions.
- $m: \mathcal{C}^{(2)} \to \mathcal{C}$ and $u: \mathcal{X} \to \mathcal{C}$ are smooth maps.

We require the object manifold \mathcal{X} to have no boundary, but allow \mathcal{C} to have one – if it does, we also impose the following condition:

• $s|_{\partial C}$ and $t|_{\partial C}$ are submersions.

We call this the *regular boundary* condition.

Warmup	Basic definitions & examples	Reversibility	Lie algebroids	Ranks and extensions
000	○●○○○○○	0000	000	
First pr	onerties			

- C_x, C^x are smooth manifolds, for any $x \in \mathcal{X}$ (by implicit map theorem).
- $C^{(2)} = (s \times t)^{-1}(\Delta_{\mathcal{X}})$ is a smooth manifold (by transversality theorem), so the requirement of *m* being smooth is sensible.
- The latter implies that L_g: C^{s(g)} → C^{t(g)} and R_g: C_{t(g)} → C_{s(g)} are smooth maps. This means we obtain a covariant functor C → Diff, given by x ↦ C^x, g ↦ L_g, and a contravariant one: x ↦ C_x, g ↦ R_g.
- u: X → C is a section of s: C → X, so an injective immersion and a homeomorphism onto its image, with continuous inverse s|_{u(X)}.

Warmup	Basic definitions & examples	Reversibility	Lie algebroids	Ranks and extensions
000	000000	0000	000	
First pr	operties			

- C_x, C^x are smooth manifolds, for any $x \in \mathcal{X}$ (by implicit map theorem).
- C⁽²⁾ = (s × t)⁻¹(Δ_χ) is a smooth manifold (by transversality theorem), so the requirement of m being smooth is sensible.
- The latter implies that L_g: C^{s(g)} → C^{t(g)} and R_g: C_{t(g)} → C_{s(g)} are smooth maps. This means we obtain a covariant functor C → Diff, given by x ↦ C^x, g ↦ L_g, and a contravariant one: x ↦ C_x, g ↦ R_g.
- u: X → C is a section of s: C → X, so an injective immersion and a homeomorphism onto its image, with continuous inverse s|_{u(X)}.

Warmup	Basic definitions & examples	Reversibility	Lie algebroids	Ranks and extensions
000	0●00000	0000	000	
First pr	operties			

- C_x, C^x are smooth manifolds, for any $x \in \mathcal{X}$ (by implicit map theorem).
- C⁽²⁾ = (s × t)⁻¹(Δ_χ) is a smooth manifold (by transversality theorem), so the requirement of m being smooth is sensible.
- The latter implies that L_g: C^{s(g)} → C^{t(g)} and R_g: C_{t(g)} → C_{s(g)} are smooth maps. This means we obtain a covariant functor C → Diff, given by x ↦ C^x, g ↦ L_g, and a contravariant one: x ↦ C_x, g ↦ R_g.
- u: X → C is a section of s: C → X, so an injective immersion and a homeomorphism onto its image, with continuous inverse s|_{u(X)}.

Warmup	Basic definitions & examples	Reversibility	Lie algebroids	Ranks and extensions
000	0●00000	0000	000	
First nr	ronerties			

- C_x, C^x are smooth manifolds, for any $x \in \mathcal{X}$ (by implicit map theorem).
- C⁽²⁾ = (s × t)⁻¹(Δ_χ) is a smooth manifold (by transversality theorem), so the requirement of m being smooth is sensible.
- The latter implies that L_g: C^{s(g)} → C^{t(g)} and R_g: C_{t(g)} → C_{s(g)} are smooth maps. This means we obtain a covariant functor C → Diff, given by x ↦ C^x, g ↦ L_g, and a contravariant one: x ↦ C_x, g ↦ R_g.
- u: X → C is a section of s: C → X, so an injective immersion and a homeomorphism onto its image, with continuous inverse s|_{u(X)}.

Warmup	Basic definitions & examples	Reversibility	Lie algebroids	Ranks and extensions
000	000000	0000	000	
First pr	operties			

In the case $\partial C \neq \emptyset$, the regular boundary condition ensures that all these properties still hold, and moreover that:

•
$$\partial(\mathcal{C}_x) = \mathcal{C}_x \cap \partial \mathcal{C}$$
 and $\partial(\mathcal{C}^x) = \mathcal{C}^x \cap \partial \mathcal{C}$.

■ C⁽²⁾ ⊂ C × C is a smooth manifold with corners (luckily for us, transversality theorems for manifolds with corners were developed in the 90's). Can you guess what its corners are?

Warmup	Basic definitions & examples	Reversibility	Lie algebroids	Ranks and extensions
000	00●0000	0000	000	
Example	e 1: Lie monoids			

A *Lie monoid* is a Lie category with $\mathcal{X} = \{*\}$. Equivalently, it is a monoid M together with a structure of a smooth manifold, possibly with a boundary, so that $m: M \times M \to M$ is smooth.

Specific examples:

- Lie groups.
- $[0,\infty)$ or \mathbb{H}^n for addition; $[0,\infty)$ for multiplication.
- Matrices F^{n×n} for multiplication; more generally, endomorphisms
 End(V) of a finite-dim. vector space V.
- Finite-dimensional unital algebras (e.g. $\mathbb{R}, \mathbb{C}, \mathbb{H}$).
- det⁻¹(0,1] ⊂ $\mathbb{R}^{n \times n}$, $\overline{\mathbb{D}} \subset \mathbb{C}$, $\cup_{k=0}^{\infty} \frac{1}{2^k} S^1 \subset \mathbb{C}$, $\overline{\mathbb{B}^4} \subset \mathbb{H}$,...

Warmup	Basic definitions & examples	Reversibility	Lie algebroids	Ranks and extensions
000	00●0000	0000	000	
Example	e 1: Lie monoids			

A *Lie monoid* is a Lie category with $\mathcal{X} = \{*\}$. Equivalently, it is a monoid M together with a structure of a smooth manifold, possibly with a boundary, so that $m: M \times M \to M$ is smooth.

Specific examples:

- Lie groups.
- $[0,\infty)$ or \mathbb{H}^n for addition; $[0,\infty)$ for multiplication.
- Matrices F^{n×n} for multiplication; more generally, endomorphisms End(V) of a finite-dim. vector space V.
- Finite-dimensional unital algebras (e.g. $\mathbb{R}, \mathbb{C}, \mathbb{H}$).
- det⁻¹(0,1] $\subset \mathbb{R}^{n \times n}, \ \overline{\mathbb{D}} \subset \mathbb{C}, \ \cup_{k=0}^{\infty} \frac{1}{2^k} S^1 \subset \mathbb{C}, \ \overline{\mathbb{B}^4} \subset \mathbb{H}, \ldots$

Warmup 000	Basic definitions & exa	mples R o	eversibility	Lie algebroids 000	Ranks and extensions

Example 2: A triviality producing a slight non-triviality

If X is a smooth manifold without boundary and M a Lie monoid,

$$\mathcal{C} = X \times M \times X \rightrightarrows X$$

is a trivial Lie category, with composition defined as

$$(z,g,y)(y,h,x)=(z,gh,x).$$

For $M = \{e\}$ the trivial group, we get the *pair groupoid*.

Warmup	Basic definitions & examples	Reversibility	Lie algebroids	Ranks and extensions
	000000			

Example 2: A triviality producing a slight non-triviality

Now consider the pair groupoid over ${\mathbb R}$ and "throw half the arrows away", i.e. consider

$$\mathcal{C} = \{(y, x) \in \mathbb{R} imes \mathbb{R} \mid x \leq y\}
ightarrow \mathbb{R}.$$

This is just the order category on $\mathbb{R}!$ Easy to visualize:

Warmup	Basic definitions & examples	Reversibility	Lie algebroids	Ranks and extensions
	0000000			

Example 3: Endomorphism category

Let $\pi \colon E \to X$ be a vector bundle with fibre V. The set

$$\operatorname{End}(E) = \{\xi \colon E_x \to E_y \mid x, y \in X \text{ and } \xi \text{ is linear} \}$$

is a category over X, with obvious structure maps.

Bonus: End(E) is enriched over Vect, i.e. the Hom-sets are vector spaces and composition is bilinear.

Warmup	Basic definitions & examples	Reversibility	Lie algebroids	Ranks and extensions
	0000000			

Example 3: Endomorphism category

Moral: Lie categories describe smooth families of endomorphisms of an abstract structure, parametrized by the base manifold.

0000 00000 0000 0000 0000	

Example 4: Bundles of Lie monoids

A bundle of Lie monoids is a Lie category $C \rightrightarrows X$ with s = t =: p.

Concrete examples: (again let $E \rightarrow X$ be a vector bundle)

- Endomorphism bundle $E^* \otimes E \xrightarrow{p} X$, a subcategory of End(*E*).
- Exterior bundle

$$\Lambda(E) = \bigoplus_{i=0}^{\operatorname{rank} E} \Lambda^k(E),$$

where composition of $\alpha \in \Lambda^k(E_x)$ and $\beta \in \Lambda^\ell(E_x)$ is just $\alpha \wedge \beta \in \Lambda^{k+\ell}(E_x)$, and the units are $1_x = 1 \in \mathbb{F} = \Lambda^0(E_x)$.

Note that bundles of Lie monoids are not necessarily locally trivial.

Bundles of Lie monoids enriched over **Vect** would rightfully be called *bundles of unital associative algebras*.

Warmup	Basic definitions & examples	Reversibility	Lie algebroids	Ranks and extensions
	0000000			

Example 4: Bundles of Lie monoids

A bundle of Lie monoids is a Lie category $C \rightrightarrows X$ with s = t =: p.

Concrete examples: (again let $E \rightarrow X$ be a vector bundle)

- Endomorphism bundle $E^* \otimes E \xrightarrow{p} X$, a subcategory of End(E).
- Exterior bundle

$$\Lambda(E) = \bigoplus_{i=0}^{\operatorname{rank} E} \Lambda^k(E),$$

where composition of $\alpha \in \Lambda^k(E_x)$ and $\beta \in \Lambda^\ell(E_x)$ is just $\alpha \wedge \beta \in \Lambda^{k+\ell}(E_x)$, and the units are $1_x = 1 \in \mathbb{F} = \Lambda^0(E_x)$.

Note that bundles of Lie monoids are not necessarily locally trivial. Bundles of Lie monoids enriched over **Vect** would rightfully be called *bundles of unital associative algebras*.

Warmup	Basic definitions & examples	Reversibility	Lie algebroids	Ranks and extensions
	000000			

Example 5: Lie groupoids

A *Lie groupoid* is a Lie category with all morphisms invertible. These structures enjoy a lot of attention from geometers.

Well-known examples include:

- Bundles of Lie groups (e.g. any vector bundle for addition).
- The fundamental groupoid of a smooth manifold, i.e. homotopy classes of paths, relative to endpoints.
- Monodromy groupoid of a foliation on a manifold. It consists of homotopy classes of paths, relative to endpoints, contained within the leaves.
- The gauge groupoid of a principal bundle $\pi: P \xrightarrow{G} M$. It consists of *G*-equivariant maps between π -fibres.
- Symplectic groupoids ≡ Lie groupoids endowed with a multiplicative symplectic form; deep applications in Poisson geometry.

Warmup	Basic definitions & examples	Reversibility	Lie algebroids	Ranks and extensions
	000000			

Example 5: Lie groupoids

A *Lie groupoid* is a Lie category with all morphisms invertible. These structures enjoy a lot of attention from geometers.

Well-known examples include:

- Bundles of Lie groups (e.g. any vector bundle for addition).
- The fundamental groupoid of a smooth manifold, i.e. homotopy classes of paths, relative to endpoints.
- Monodromy groupoid of a foliation on a manifold. It consists of homotopy classes of paths, relative to endpoints, contained within the leaves.
- The gauge groupoid of a principal bundle π: P → M. It consists of G-equivariant maps between π-fibres.
- Symplectic groupoids ≡ Lie groupoids endowed with a multiplicative symplectic form; deep applications in Poisson geometry.

Warmup 000	Basic definitions & examples	Reversibility ●000	Lie algebroids 000	Ranks and extensions
Reversi	bility			

In any category \mathcal{C} , its *core*

$$\mathcal{G}(\mathcal{C}) = \{g \in \mathcal{C} \mid g \text{ is invertible}\}$$

forms a subcategory. Natural question: if C is a Lie category, under what conditions is $\mathcal{G}(C)$ a Lie groupoid? When is it open in C?

In general, $\mathcal{G}(\mathcal{C})$ is neither: an easy counterexample is provided by the "disjoint union" of pair groupoid and order category on \mathbb{R} .

Warmup 000	Basic definitions & examples	Reversibility ●000	Lie algebroids 000	Ranks and extensions
Reversit	oility			

In any category \mathcal{C} , its *core*

$$\mathcal{G}(\mathcal{C}) = \{g \in \mathcal{C} \mid g \text{ is invertible}\}$$

forms a subcategory. Natural question: if C is a Lie category, under what conditions is $\mathcal{G}(C)$ a Lie groupoid? When is it open in C?

In general, $\mathcal{G}(\mathcal{C})$ is neither: an easy counterexample is provided by the "disjoint union" of pair groupoid and order category on \mathbb{R} .

Warmup 000	Basic definitions & examples	Reversibility 0●00	Lie algebroids 000	Ranks and extensions

Units dictate the invertibles

To provide sufficient conditions for the questions about openness and smoothness of $\mathcal{G}(\mathcal{C})$, we observe the following.

Lemma

For any Lie category $\mathcal{C} \rightrightarrows \mathcal{X}$, there holds:

 $u(\mathcal{X}) \subset \operatorname{Int} \mathcal{C} \text{ implies } \mathcal{G}(\mathcal{C}) \subset \operatorname{Int} \mathcal{C},$ $u(\mathcal{X}) \subset \partial \mathcal{C} \text{ implies } \mathcal{G}(\mathcal{C}) \subset \partial \mathcal{C}.$

Lie monoid case: all invertible elements are either in the interior, or in the boundary.

Warmup 000	Basic definitions & examples	Reversibility 00●0	Lie algebroids 000	Ranks and extensions

Sufficient conditions for $\mathcal{G}(\mathcal{C})$ to be a Lie groupoid

Motivated by the last result, we say that a Lie category $\mathcal{C} \rightrightarrows \mathcal{X}$ has a *normal boundary*, if either of the following holds:

- $u(\mathcal{X}) \subset \operatorname{Int} \mathcal{C}$.
- $\partial C \subset C$ is a wide subcategory, i.e. a subcategory with $u(\mathcal{X}) \subset \partial C$.

Theorem

If $C \rightrightarrows \mathcal{X}$ is a Lie category with a normal boundary, then $\mathcal{G}(C)$ is an embedded Lie subcategory of C. More precisely:

- If $u(\mathcal{X}) \subset \operatorname{Int} \mathcal{C}$, then $\mathcal{G}(\mathcal{C})$ is open in $\operatorname{Int} \mathcal{C}$.
- If $u(\mathcal{X}) \subset \partial \mathcal{C}$, then $\mathcal{G}(\mathcal{C})$ is open in $\partial \mathcal{C}$.

Warmup 000	Basic definitions & examples	Reversibility 00●0	Lie algebroids 000	Ranks and extensions

Sufficient conditions for $\mathcal{G}(\mathcal{C})$ to be a Lie groupoid

Motivated by the last result, we say that a Lie category $C \rightrightarrows X$ has a *normal boundary*, if either of the following holds:

- $u(\mathcal{X}) \subset \operatorname{Int} \mathcal{C}$.
- $\partial C \subset C$ is a wide subcategory, i.e. a subcategory with $u(\mathcal{X}) \subset \partial C$.

Theorem

If $C \rightrightarrows \mathcal{X}$ is a Lie category with a normal boundary, then $\mathcal{G}(C)$ is an embedded Lie subcategory of C. More precisely:

- If $u(\mathcal{X}) \subset \operatorname{Int} \mathcal{C}$, then $\mathcal{G}(\mathcal{C})$ is open in $\operatorname{Int} \mathcal{C}$.
- If $u(\mathcal{X}) \subset \partial \mathcal{C}$, then $\mathcal{G}(\mathcal{C})$ is open in $\partial \mathcal{C}$.

Warmup 000	Basic definitions & examples	Reversibility 000●	Lie algebroids 000	Ranks and extensions
First co	nsequence: \mathcal{G} is a	functor		

If $F: \mathcal{C} \to \mathcal{D}$ is a smooth functor between Lie categories with normal boundaries, functoriality implies $F(\mathcal{G}(\mathcal{C})) \subset \mathcal{G}(\mathcal{D})$, so we can define $\mathcal{G}(F) = F|_{\mathcal{G}(\mathcal{C})}$.

We thus obtain a functor

$\mathcal{G}\colon \textbf{LieCat}_{\partial} \to \textbf{LieGrpd}$

from the category of Lie categories with normal boundary, to the category of Lie groupoids (without boundary).

Warmup Basic	definitions & examples	Reversibility	Lie algebroids	Ranks and extensions
0000 0000	0000	0000	●00	0000

A *Lie algebroid* over a smooth manifold \mathcal{X} is a vector bundle $A \rightarrow \mathcal{X}$, together with:

A Lie bracket on its sections:

$$[\cdot,\cdot]\colon \Gamma^\infty(A)\times\Gamma^\infty(A)\to \Gamma^\infty(A),$$

A morphism of vector bundles

$$\rho: A \to T\mathcal{X},$$

called the *anchor* of A.

The following form of Leibniz rule is also required to hold:

$$[\alpha, f\beta] = f[\alpha, \beta] + \rho(\alpha)(f)\beta,$$

for all $\alpha, \beta \in \Gamma^{\infty}(A)$ and $f \in C^{\infty}(\mathcal{X})$.

Warmup 000	Basic definitions & examples	Reversibility 0000	Lie algebroids ○●○	Ranks and extensions

Generalizing the construction of Lie algebras of Lie groups:

A *left-invariant* vector field on a Lie category $C \rightrightarrows X$ is a vector field $X \in \mathfrak{X}(C)$ such that:

• X is tangent to *t*-fibres, i.e. $X_g \in \ker dt_g$ for all $g \in C$.

•
$$d(L_g)_h(X_h) = X_{gh}$$
 for all $(g, h) \in C^{(2)}$.

Lemma

The vector space $\mathfrak{X}^{L}(\mathcal{C})$ is closed under the Lie bracket, and canonically isomorphic to the vector space $\Gamma^{\infty}(A^{L}(\mathcal{C}))$ of sections of the vector bundle $A^{L}(\mathcal{C}) = u^{*}(\ker dt)$ over \mathcal{X} .

The isomorphism is given by restricting to the units, $ev(X) = X|_{u(X)}$, so all information of a left-invariant vector field is contained at the units u(X).

Warmup 000	Basic definitions & examples	Reversibility 0000	Lie algebroids ○●○	Ranks and extensions

The *left Lie algebroid* of a Lie category $\mathcal{C} \rightrightarrows \mathcal{X}$ is the vector bundle $A^{L}(\mathcal{C}) \rightarrow \mathcal{X}$, endowed with the Lie bracket $[\cdot, \cdot]$ on its sections as induced by the isomorphism ev, together with the anchor map $\rho^{L} \colon A^{L}(\mathcal{C}) \rightarrow \mathcal{TX}$,

$$\rho^L = \mathsf{d}s|_{\mathcal{A}^L(\mathcal{C})}.$$

We similarly define the *right Lie algebroid* $A^{R}(\mathcal{C}) \rightarrow \mathcal{X}$. On a Lie groupoid, the left and right algebroid are isomorphic – the isomorphism is induced by inversion.

If we are given a morphism $F: \mathcal{C} \to \mathcal{D}$ over $id_{\mathcal{X}}$, it induces a morphism of left (resp. right) Lie algebroids, given by

$$\Gamma^{\infty}(A^{L}(\mathcal{C})) \ni \alpha \mapsto \mathsf{d}F \circ \alpha \in \Gamma^{\infty}(A^{L}(\mathcal{D})).$$

Upshot: A^L and A^R are functors **LieCat** \rightarrow **LieAlgd**.

Warmup 000	Basic definitions & examples	Reversibility 0000	Lie algebroids ○●○	Ranks and extensions

The *left Lie algebroid* of a Lie category $\mathcal{C} \rightrightarrows \mathcal{X}$ is the vector bundle $A^{L}(\mathcal{C}) \rightarrow \mathcal{X}$, endowed with the Lie bracket $[\cdot, \cdot]$ on its sections as induced by the isomorphism ev, together with the anchor map $\rho^{L} \colon A^{L}(\mathcal{C}) \rightarrow \mathcal{TX}$,

$$\rho^L = \mathsf{d}s|_{\mathcal{A}^L(\mathcal{C})}.$$

We similarly define the *right Lie algebroid* $A^{R}(\mathcal{C}) \rightarrow \mathcal{X}$. On a Lie groupoid, the left and right algebroid are isomorphic – the isomorphism is induced by inversion.

If we are given a morphism $F \colon C \to D$ over id_X , it induces a morphism of left (resp. right) Lie algebroids, given by

$$\Gamma^{\infty}(\mathcal{A}^{\mathcal{L}}(\mathcal{C})) \ni \alpha \mapsto \mathsf{d} F \circ \alpha \in \Gamma^{\infty}(\mathcal{A}^{\mathcal{L}}(\mathcal{D})).$$

Upshot: A^L and A^R are functors **LieCat** \rightarrow **LieAlgd**.

000 000000 0000	000	

Are the Lie algebroids of C and $\mathcal{G}(C)$ the same?

Proposition

Let $C \rightrightarrows \mathcal{X}$ be a Lie category. If the units of C are contained in the interior of C, i.e. $u(\mathcal{X}) \subset \operatorname{Int} C$, then the left and right Lie algebroids of C are isomorphic to the Lie algebroid of its core $\mathcal{G}(C)$.

On the other hand, if $\partial C \subset C$ is a wide subcategory, then the Lie algebroid $A(\mathcal{G}(C))$ of the core will always fail to be isomorphic to the two Lie algebroids of C, since the rank of the vector bundle $A(\mathcal{G}(C))$ is one less than the rank of $A^{L}(C)$ and $A^{R}(C)$.

However, we conjecture that in this case $A^{L}(\mathcal{C}) \cong A^{R}(\mathcal{C})$.

Warmup	Basic definitions & examples	Reversibility	Lie algebroids	Ranks and extensions
000		0000	000	●000
The ra	nks of a morphism			

The *left* and *right* rank of a morphism $g \in C$ are given by

$$\operatorname{rank}^L_{\mathcal{C}}(g) = \operatorname{rank} \operatorname{d}(L_g)_{1_{\operatorname{s}(g)}}, \quad \operatorname{rank}^R_{\mathcal{C}}(g) = \operatorname{rank} \operatorname{d}(R_g)_{1_{\operatorname{t}(g)}}.$$

Some nomenclature:

- $g \in C$ has full left rank, if rank_C(g) = dim C dim X.
- $g \in C$ has *constant* left rank, if L_g has constant rank.

Clearly, any invertible morphism has full and constant rank.

This is a generalization of rank from linear algebra – given a matrix A from the Lie monoid $\mathbb{R}^{n \times n}$, there holds:

$$\operatorname{rank}_{\mathbb{R}^{n\times n}}(A) = n\operatorname{rank}(A).$$

Warmup	Basic definitions & examples	Reversibility	Lie algebroids	Ranks and extensions
000		0000	000	○●○○

Some nontrivial properties of ranks

- The subset $\{g \in \mathcal{C} \mid \mathsf{rank}_{\mathcal{C}}^{L}(g) \text{ is full}\} \subset \mathcal{C}$ is open in \mathcal{C} .
- Left rank of g is constant on invertibles: rank^L_C(g) = rank d(L_g)_h holds for any h ∈ G(C)^{s(g)}. Again, "units dictate invertibles."
- Left translations define an integrable singular distribution on C:

$$D = \coprod_{g \in \mathcal{C}} \operatorname{Im} \mathsf{d}(L_g)_{1_{s(g)}} \subset \ker \mathsf{d}t \subset T\mathcal{C}.$$

The integral manifold of D through $g \in C$ is $L_g(\mathcal{G}(C)^{s(g)})$, whose dimension equals rank $_{\mathcal{C}}^L(g)$.

Warmup	Basic definitions & examples	Reversibility	Lie algebroids	Ranks and extensions
				0000

Extensions of Lie categories to groupoids

We have seen examples of Lie categories arising from Lie groupoids, by restricting to a submanifold, e.g. the order category or $[0,\infty)$ for addition. We want to understand them better.

An *extension* of a Lie category $\mathcal{C} \rightrightarrows \mathcal{X}$ is a Lie groupoid $\mathcal{G} \rightrightarrows \mathcal{X}$ together with smooth injective immersive functor $F \colon \mathcal{C} \to \mathcal{G}$ over the identity $id_{\mathcal{X}}$. In other words, \mathcal{G} is a Lie groupoid such that \mathcal{C} is its wide Lie subcategory.

Warmup	Basic definitions & examples	Reversibility	Lie algebroids	Ranks and extensions
				0000

Properties of extendable Lie categories

- A Lie category $\mathcal{C} \rightrightarrows \mathcal{X}$ that is extendable to a Lie groupoid $\mathcal{G} \rightrightarrows \mathcal{X}$ enjoys the following properties:
- Cancellativity of morphisms: all left and right translations are injective.
- All morphisms have full and constant ranks.
- If dim $\mathcal{G} = \dim \mathcal{C}$, then $A^{L}(\mathcal{C}) \cong A(\mathcal{G}) \cong A^{R}(\mathcal{C})$.

Further research:

- Ongoing: constructing an isomorphism between left an right Lie algebroid when $\partial C \subset C$ is a wide subcategory.
- Open questions: Are Lie monoids parallelizable? Are Hom-sets C^y_x submanifolds? (We know this holds e.g. for extendable categories.)
- Existence of a class of Lie algebroids that integrate to Lie categories, but not groupoids.
- Infinite dimensional Lie categories e.g. infinitely many microstates in a canonical ensemble, or the tensor bundle $\bigoplus_{k=0}^{\infty} \otimes^k E$.
- Multiplicative structures, e.g. multiplicative symplectic forms and multiplicative Ehresmann connections on Lie categories.
- Haar systems, smooth sieves and smooth Grothendieck sites, Morita equivalences, ...