Lie categories

Žan Grad

Instituto Superior Técnico Centro de Análise Matemática, Geometria e Sistemas Dinâmicos Spring 2023

We begin with a physical interpretation of the notion of a category:

In this way, a given physical system can be viewed as a category.

Usually, the set of all states (*phase space*) of a given physical system has more structure, e.g. it is a topological space or a smooth manifold, and the same holds for the set of processes.

We are interested in categories whose set of objects and set of morphisms are smooth manifolds – categories *internal* to Diff.

Example from statistical physics

Consider the space

$$
\Delta^n = \{ (p_0, \ldots, p_n) \in [0,1]^{n+1} \mid \sum_{i=0}^n p_i = 1 \}
$$

of probability distributions on the finite set *{*0*, . . . , ⁿ}*. In physics, [∆]*ⁿ* corresponds to the set of configurations of a statistical ensemble of particles, each of which can be in one of the "microstates" *{*0*, . . . , n}*. The *expected surprise* (or *entropy*) of $p := (p_i)_{i=0}^n \in \Delta^n$ is given as

$$
S(p)=-\sum_{i=0}^n p_i \log p_i.
$$

Second law of thermodynamics asserts that the only transitions which can occur are

$$
\mathcal{C} = \{ (q, p) \in \Delta^n \times \Delta^n \mid S(q) - S(p) \geq 0 \} = (\Delta S)^{-1}([0, \infty))
$$

where (q, p) is interpreted as the transition $p \rightarrow q$.

Example from statistical physics

Consider the space

$$
\Delta^n = \{ (p_0, \ldots, p_n) \in [0,1]^{n+1} \mid \sum_{i=0}^n p_i = 1 \}
$$

of probability distributions on the finite set *{*0*, . . . , ⁿ}*. In physics, [∆]*ⁿ* corresponds to the set of configurations of a statistical ensemble of particles, each of which can be in one of the "microstates" *{*0*, . . . , n}*. The *expected surprise* (or *entropy*) of $p := (p_i)_{i=0}^n \in \Delta^n$ is given as

$$
S(p)=-\sum_{i=0}^n p_i \log p_i.
$$

Second law of thermodynamics asserts that the only transitions which can occur are

$$
\mathcal{C}=\{(q,p)\in \Delta^n\times \Delta^n\mid S(q)-S(p)\geq 0\}=(\Delta S)^{-1}([0,\infty))
$$

where (q, p) is interpreted as the transition $p \rightarrow q$.

- A (small) category $\mathcal{C} \rightrightarrows \mathcal{X}$ consists of
- \blacksquare A set of objects \mathcal{X} ,
- A set of morphisms \mathcal{C} .

It comes equipped with *source* and *target* maps $s, t: \mathcal{C} \rightarrow \mathcal{X}$

$$
s(x \xrightarrow{g} y) = x, \quad t(x \xrightarrow{g} y) = y,
$$

and with the *composition* and *unit* maps

$$
m: C^{(2)} \to C, \quad m(g, h) = gh,
$$

$$
u: \mathcal{X} \to C, \qquad u(x) = 1_x,
$$

where $C^{(2)} = \{(g, h) \in C \times C \mid s(g) = t(h)\}$ is the set of composable pairs of morphisms. (One should keep in mind the associativity axiom, etc.)

Notation

We also denote:

$$
\underbrace{C_x = s^{-1}(x)}_{\text{morphisms in } C}, \quad \underbrace{C^y = t^{-1}(y)}_{\text{morphisms in } C}, \quad \underbrace{C_x^y = C_x \cap C^y}_{\text{Hom}(x,y)}.
$$

The precomposition and postcomposition by a morphism $g \in \mathcal{C}$ are expressed in this notation as the following maps:

$$
L_g: C^{s(g)} \to C^{t(g)}, \quad h \mapsto gh,
$$

\n
$$
R_g: C_{t(g)} \to C_{s(g)}, \quad h \mapsto hg.
$$

The axioms of a Lie category

- A *Lie category* is a category $\mathcal{C} \rightrightarrows \mathcal{X}$, such that:
- *C* and *X* are smooth manifolds.
- *s, t* : $C \rightarrow \mathcal{X}$ are smooth submersions.
- *m*: $C^{(2)}$ → *C* and *u*: X → *C* are smooth maps.

We require the object manifold *X* to have no boundary, but allow *C* to have one – if it does, we also impose the following condition:

s|[∂]*^C* and *t|*[∂]*^C* are submersions.

We call this the *regular boundary* condition.

The axioms of a Lie category

- A *Lie category* is a category $\mathcal{C} \rightrightarrows \mathcal{X}$, such that:
- \blacksquare *C* and *X* are smooth manifolds.
- *s, t* : $C \rightarrow \mathcal{X}$ are smooth submersions.
- *m*: $C^{(2)}$ → *C* and *u*: X → *C* are smooth maps.

We require the object manifold *X* to have no boundary, but allow *C* to have one $-$ if it does, we also impose the following condition:

s|[∂]*^C* and *t|*[∂]*^C* are submersions.

We call this the *regular boundary* condition.

- \mathcal{C}_x , \mathcal{C}^x are smooth manifolds, for any $x \in \mathcal{X}$ (by implicit map theorem).
- $\mathcal{C}^{(2)} = (s \times t)^{-1} (\Delta_{\mathcal{X}})$ **is a smooth manifold (by transversality** theorem), so the requirement of *m* being smooth is sensible.
- **E** The latter implies that $L_g: C^{s(g)} \to C^{t(g)}$ and $R_g: C_{t(g)} \to C_{s(g)}$ are smooth maps. This means we obtain a covariant functor $C \rightarrow$ Diff, given by $x \mapsto C^x$, $g \mapsto L_g$, and a contravariant one: $x \mapsto C_x$, $g \mapsto R_g$.
- **■** *u*: $X \rightarrow C$ is a section of *s*: $C \rightarrow X$, so an injective immersion and a homeomorphism onto its image, with continuous inverse $s|_{u(X)}$.

- \mathcal{C}_x , \mathcal{C}^x are smooth manifolds, for any $x \in \mathcal{X}$ (by implicit map theorem).
- $C^{(2)} = (s \times t)^{-1} (\Delta_{\mathcal{X}})$ is a smooth manifold (by transversality theorem), so the requirement of *m* being smooth is sensible.
- **E** The latter implies that $L_g: C^{s(g)} \to C^{t(g)}$ and $R_g: C_{t(g)} \to C_{s(g)}$ are smooth maps. This means we obtain a covariant functor $C \rightarrow$ Diff, given by $x \mapsto C^x$, $g \mapsto L_g$, and a contravariant one: $x \mapsto C_x$, $g \mapsto R_g$.
- **■** *u*: $X \rightarrow C$ is a section of *s*: $C \rightarrow X$, so an injective immersion and a homeomorphism onto its image, with continuous inverse $s|_{u(X)}$.

- \mathcal{C}_x , \mathcal{C}^x are smooth manifolds, for any $x \in \mathcal{X}$ (by implicit map theorem).
- $C^{(2)} = (s \times t)^{-1} (\Delta_{\mathcal{X}})$ is a smooth manifold (by transversality theorem), so the requirement of *m* being smooth is sensible.
- The latter implies that $L_g: C^{s(g)} \to C^{t(g)}$ and $R_g: C_{t(g)} \to C_{s(g)}$ are smooth maps. This means we obtain a covariant functor $C \rightarrow$ Diff, given by $x \mapsto C^x$, $g \mapsto L_g$, and a contravariant one: $x \mapsto C_x$, $g \mapsto R_g$.
- **■** *u* : $X \rightarrow C$ is a section of *s* : $C \rightarrow X$, so an injective immersion and a homeomorphism onto its image, with continuous inverse $s|_{u(X)}$.

- \mathcal{C}_x , \mathcal{C}^x are smooth manifolds, for any $x \in \mathcal{X}$ (by implicit map theorem).
- $C^{(2)} = (s \times t)^{-1} (\Delta_{\mathcal{X}})$ is a smooth manifold (by transversality theorem), so the requirement of *m* being smooth is sensible.
- The latter implies that $L_g: C^{s(g)} \to C^{t(g)}$ and $R_g: C_{t(g)} \to C_{s(g)}$ are smooth maps. This means we obtain a covariant functor $C \rightarrow$ Diff, given by $x \mapsto C^x$, $g \mapsto L_g$, and a contravariant one: $x \mapsto C_x$, $g \mapsto R_g$.
- **■** *u* : $X \to C$ is a section of *s* : $C \to X$, so an injective immersion and a homeomorphism onto its image, with continuous inverse $s|_{u(X)}$.

In the case $\partial \mathcal{C} \neq \emptyset$, the regular boundary condition ensures that all these properties still hold, and moreover that:

$$
\blacksquare \; \partial(\mathcal{C}_x) = \mathcal{C}_x \cap \partial \mathcal{C} \text{ and } \partial(\mathcal{C}^x) = \mathcal{C}^x \cap \partial \mathcal{C}.
$$

■ $C^{(2)}$ \subset $C \times C$ is a smooth manifold with corners (luckily for us, transversality theorems for manifolds with corners were developed in the 90's). Can you guess what its corners are?

A *Lie monoid* is a Lie category with $\mathcal{X} = \{*\}$. Equivalently, it is a monoid *M* together with a structure of a smooth manifold, possibly with a boundary, so that $m: M \times M \rightarrow M$ is smooth.

Specific examples:

- Lie groups.
- **■** $[0, \infty)$ or \mathbb{H}^n for addition; $[0, \infty)$ for multiplication.
- Matrices $\mathbb{F}^{n \times n}$ for multiplication; more generally, endomorphisms End(*V*) of a finite-dim. vector space *V*.
- Finite-dimensional unital algebras (e.g. R*,* C*,* H).
- det⁻¹(0,1] ⊂ ℝ^{n×n}, $\overline{\mathbb{D}} \subset \mathbb{C}$, ∪_{$\kappa=0}^{\infty} \frac{1}{2^k} S^1 \subset \mathbb{C}$, $\overline{\mathbb{B}^4} \subset \mathbb{H}, \ldots$}

A *Lie monoid* is a Lie category with $\mathcal{X} = \{*\}$. Equivalently, it is a monoid *M* together with a structure of a smooth manifold, possibly with a boundary, so that $m: M \times M \rightarrow M$ is smooth.

Specific examples:

- Lie groups.
- **■** $[0, \infty)$ or \mathbb{H}^n for addition; $[0, \infty)$ for multiplication.
- Matrices $\mathbb{F}^{n \times n}$ for multiplication; more generally, endomorphisms End(*V*) of a finite-dim. vector space *V*.
- Finite-dimensional unital algebras (e.g. R*,* C*,* H).
- $\det^{-1}(0,1] \subset \mathbb{R}^{n \times n}, \ \overline{\mathbb{D}} \subset \mathbb{C}, \ \cup_{k=0}^{\infty} \frac{1}{2^k} S^1 \subset \mathbb{C}, \ \overline{\mathbb{B}^4} \subset \mathbb{H}, \dots$

If *X* is a smooth manifold without boundary and *M* a Lie monoid,

$$
C = X \times M \times X \rightrightarrows X
$$

is a *trivial Lie category*, with composition defined as

$$
(z,g,y)(y,h,x)=(z,gh,x).
$$

For $M = \{e\}$ the trivial group, we get the *pair groupoid*.

Example 2: A triviality producing a slight non-triviality

Now consider the pair groupoid over $\mathbb R$ and "throw half the arrows away", i.e. consider

$$
\mathcal{C} = \{ (y, x) \in \mathbb{R} \times \mathbb{R} \mid x \leq y \} \rightrightarrows \mathbb{R}.
$$

This is just the order category on $\mathbb{R}!$ Easy to visualize:

Example 3: Endomorphism category

Let $\pi: E \to X$ be a vector bundle with fibre V. The set

$$
End(E) = \{ \xi \colon E_x \to E_y \mid x, y \in X \text{ and } \xi \text{ is linear} \}
$$

is a category over *X*, with obvious structure maps.

Bonus: End(*E*) is enriched over Vect, i.e. the Hom-sets are vector spaces and composition is bilinear.

Example 3: Endomorphism category

Moral: Lie categories describe smooth families of endomorphisms of an abstract structure, parametrized by the base manifold.

Example 4: Bundles of Lie monoids

A *bundle* of Lie *monoids* is a Lie category $C \rightrightarrows \mathcal{X}$ with $s = t =: p$.

Concrete examples: (again let $E \rightarrow X$ be a vector bundle)

Endomorphism bundle $E^* \otimes E \stackrel{p}{\to} X$, a subcategory of End (E) . **Exterior bundle**

$$
\Lambda(E) = \bigoplus_{i=0}^{\text{rank }E} \Lambda^k(E),
$$

where composition of $\alpha \in \Lambda^k(E_\mathsf{x})$ and $\beta \in \Lambda^\ell(E_\mathsf{x})$ is just $\alpha \wedge \beta \in \Lambda^{k+\ell}(E_\mathsf{x})$, and the units are $1_\mathsf{x}=1 \in \mathbb{F}=\Lambda^0(E_\mathsf{x})$.

Note that bundles of Lie monoids are not necessarily locally trivial. Bundles of Lie monoids enriched over Vect would rightfully be called *bundles of unital associative algebras*.

Example 4: Bundles of Lie monoids

A *bundle* of Lie *monoids* is a Lie category $C \rightrightarrows \mathcal{X}$ with $s = t =: p$.

Concrete examples: (again let $E \to X$ be a vector bundle)

- Endomorphism bundle $E^* \otimes E \stackrel{p}{\to} X$, a subcategory of End $(E).$
- \blacksquare Exterior bundle

$$
\Lambda(E)=\bigoplus_{i=0}^{\operatorname{rank} E}\Lambda^k(E),
$$

where composition of $\alpha \in \Lambda^k(E_\times)$ and $\beta \in \Lambda^\ell(E_\times)$ is just $\alpha \wedge \beta \in \Lambda^{k+\ell}(E_\mathsf{x})$, and the units are $1_\mathsf{x}=1 \in \mathbb{F}=\Lambda^0(E_\mathsf{x})$.

Note that bundles of Lie monoids are not necessarily locally trivial. Bundles of Lie monoids enriched over Vect would rightfully be called *bundles of unital associative algebras*.

Example 5: Lie groupoids

A *Lie groupoid* is a Lie category with all morphisms invertible. These structures enjoy a lot of attention from geometers.

Well-known examples include:

- Bundles of Lie groups (e.g. any vector bundle for addition).
- The fundamental groupoid of a smooth manifold, i.e. homotopy classes of paths, relative to endpoints.
- **Monodromy groupoid of a foliation on a manifold. It consists of** homotopy classes of paths, relative to endpoints, contained within the
- The gauge groupoid of a principal bundle $\pi \colon P \overset{\mathcal{G}}{\to} M$. It consists of $\mathcal{L}_{\mathcal{A}}$ *G*-equivariant maps between π -fibres.
- Symplectic groupoids \equiv Lie groupoids endowed with a multiplicative symplectic form; deep applications in Poisson geometry.

Example 5: Lie groupoids

A *Lie groupoid* is a Lie category with all morphisms invertible. These structures enjoy a lot of attention from geometers.

Well-known examples include:

- Bundles of Lie groups (e.g. any vector bundle for addition).
- **The fundamental groupoid of a smooth manifold, i.e. homotopy classes** of paths, relative to endpoints.
- **Monodromy groupoid of a foliation on a manifold. It consists of** homotopy classes of paths, relative to endpoints, contained within the leaves.
- The gauge groupoid of a principal bundle $\pi \colon P \stackrel{G}{\to} M$. It consists of *G*-equivariant maps between π-fibres.
- Symplectic groupoids \equiv Lie groupoids endowed with a multiplicative symplectic form; deep applications in Poisson geometry.

In any category *C*, its *core*

$$
\mathcal{G}(\mathcal{C}) = \{ g \in \mathcal{C} \mid g \text{ is invertible} \}
$$

forms a subcategory. Natural question: if *C* is a Lie category, under what conditions is *G*(*C*) a Lie groupoid? When is it open in *C*?

In general, $G(C)$ is neither: an easy counterexample is provided by the "disjoint union" of pair groupoid and order category on R.

In any category *C*, its *core*

$$
\mathcal{G}(\mathcal{C}) = \{ g \in \mathcal{C} \mid g \text{ is invertible} \}
$$

forms a subcategory. Natural question: if *C* is a Lie category, under what conditions is *G*(*C*) a Lie groupoid? When is it open in *C*?

In general, $G(C)$ is neither: an easy counterexample is provided by the "disjoint union" of pair groupoid and order category on R.

Units dictate the invertibles

To provide sufficient conditions for the questions about openness and smoothness of $G(C)$, we observe the following.

Lemma

For any Lie category $C \rightrightarrows \mathcal{X}$, *there holds:*

u(*X*) ⊂ Int *C implies* $\mathcal{G}(\mathcal{C})$ ⊂ Int \mathcal{C} *,* $u(\mathcal{X}) \subset \partial \mathcal{C}$ *implies* $\mathcal{G}(\mathcal{C}) \subset \partial \mathcal{C}$ *.*

Lie monoid case: all invertible elements are either in the interior, or in the boundary.

Sufficient conditions for *G*(*C*) to be a Lie groupoid

Motivated by the last result, we say that a Lie category $\mathcal{C} \rightrightarrows \mathcal{X}$ has a *normal boundary*, if either of the following holds:

- **⊂ Int** *C***.**
- \blacksquare ∂ $\mathcal{C} \subset \mathcal{C}$ is a wide subcategory, i.e. a subcategory with $u(\mathcal{X}) \subset \partial \mathcal{C}$.

If $C \rightrightarrows \mathcal{X}$ *is* a Lie category with a normal boundary, then $\mathcal{G}(C)$ *is* an *embedded Lie subcategory of C. More precisely:*

- \blacksquare *If* $u(X)$ ⊂ Int *C*, then $G(C)$ *is open in* Int *C*.
- \blacksquare *If* $u(X) \subset \partial C$, then $G(C)$ *is open in* ∂C *.*

Sufficient conditions for *G*(*C*) to be a Lie groupoid

Motivated by the last result, we say that a Lie category $\mathcal{C} \rightrightarrows \mathcal{X}$ has a *normal boundary*, if either of the following holds:

- **⊂ Int** *C***.**
- **■** $\partial \mathcal{C} \subset \mathcal{C}$ is a wide subcategory, i.e. a subcategory with $u(\mathcal{X}) \subset \partial \mathcal{C}$.

Theorem

If $C \rightrightarrows \mathcal{X}$ *is* a Lie category with a normal boundary, then $\mathcal{G}(C)$ *is* an *embedded Lie subcategory of C. More precisely:*

- *■ If* $u(X)$ ⊂ Int *C,* then $G(C)$ *is open in* Int *C.*
- \blacksquare *If* $u(\mathcal{X}) \subset \partial \mathcal{C}$, then $\mathcal{G}(\mathcal{C})$ *is open in* $\partial \mathcal{C}$ *.*

If $F: \mathcal{C} \to \mathcal{D}$ is a smooth functor between Lie categories with normal boundaries, functoriality implies $F(G(C)) \subset G(D)$, so we can define $\mathcal{G}(F) = F|_{\mathcal{G}(C)}$.

We thus obtain a functor

G : LieCat[∂] → LieGrpd

from the category of Lie categories with normal boundary, to the category of Lie groupoids (without boundary).

A *Lie algebroid* over a smooth manifold X is a vector bundle $A \rightarrow X$, together with:

A Lie bracket on its sections:

$$
[\cdot,\cdot]\colon \Gamma^\infty(A)\times \Gamma^\infty(A)\to \Gamma^\infty(A),
$$

■ A morphism of vector bundles

$$
\rho\colon A\to\mathcal{T}\mathcal{X},
$$

called the *anchor* of *A*.

The following form of Leibniz rule is also required to hold:

$$
[\alpha, f\beta] = f[\alpha, \beta] + \rho(\alpha)(f)\beta,
$$

for all $\alpha, \beta \in \Gamma^{\infty}(A)$ and $f \in C^{\infty}(\mathcal{X})$.

Generalizing the construction of Lie algebras of Lie groups:

A *left-invariant* vector field on a Lie category $\mathcal{C} \rightrightarrows \mathcal{X}$ is a vector field $X \in \mathfrak{X}(\mathcal{C})$ such that:

■ *X* is tangent to *t*-fibres, i.e. $X_g \in \text{ker } dt_g$ for all $g \in \mathcal{C}$.

$$
\blacksquare d(L_g)_h(X_h) = X_{gh} \text{ for all } (g, h) \in \mathcal{C}^{(2)}.
$$

Lemma

The vector space $\mathfrak{X}^{\perp}(\mathcal{C})$ *is closed under the Lie bracket, and canonically isomorphic to the vector space* ^Γ∞(*AL*(*C*)) *of sections of the vector bundle* $A^L(C) = u^*$ (ker d*t*) *over* X *.*

The isomorphism is given by restricting to the units, $ev(X) = X|_{u(X)}$, so all information of a left-invariant vector field is contained at the units $u(\mathcal{X})$.

The *left Lie algebroid* of a Lie category $\mathcal{C} \rightrightarrows \mathcal{X}$ is the vector bundle $A^L(\mathcal{C}) \to \mathcal{X}$, endowed with the Lie bracket $[\cdot, \cdot]$ on its sections as induced by the isomorphism ev, together with the anchor map ρ^L : $A^L(\mathcal{C}) \to T\mathcal{X}$,

$$
\rho^L = \mathsf{ds}|_{A^L(\mathcal{C})}.
$$

We similarly define the *right Lie algebroid* $A^R(C) \to \mathcal{X}$. On a Lie groupoid, the left and right algebroid are isomorphic – the isomorphism is induced by inversion.

If we are given a morphism $F: \mathcal{C} \to \mathcal{D}$ over $\mathrm{id}_{\mathcal{X}}$, it induces a morphism of left (resp. right) Lie algebroids, given by

$$
\Gamma^{\infty}(A^{L}(\mathcal{C})) \ni \alpha \mapsto dF \circ \alpha \in \Gamma^{\infty}(A^{L}(\mathcal{D})).
$$

Upshot: A^L and A^R are functors **LieCat** \rightarrow **LieAlgd**.

The *left* Lie *algebroid* of a Lie category $C \rightrightarrows \mathcal{X}$ is the vector bundle $A^L(\mathcal{C}) \to \mathcal{X}$, endowed with the Lie bracket $[\cdot, \cdot]$ on its sections as induced by the isomorphism ev, together with the anchor map $\rho^L \colon A^L(\mathcal{C}) \to T\mathcal{X}$,

$$
\rho^L = \mathsf{d} s|_{A^L(\mathcal{C})}.
$$

We similarly define the *right Lie algebroid* $A^R(C) \to \mathcal{X}$. On a Lie groupoid, the left and right algebroid are isomorphic – the isomorphism is induced by inversion.

If we are given a morphism $F: \mathcal{C} \to \mathcal{D}$ over id_{\mathcal{X}}, it induces a morphism of left (resp. right) Lie algebroids, given by

$$
\Gamma^{\infty}(A^{L}(\mathcal{C})) \ni \alpha \mapsto dF \circ \alpha \in \Gamma^{\infty}(A^{L}(\mathcal{D})).
$$

Upshot: A^L and A^R are functors **LieCat** \rightarrow **LieAlgd**.

Are the Lie algebroids of *C* and *G*(*C*) the same?

Proposition

Let $C \rightrightarrows \mathcal{X}$ *be a Lie category.* If the *units* of *C* are contained in the *interior of C, i.e. u*(*X*) ⊂ Int *C, then the left and right Lie algebroids of C are isomorphic to the Lie algebroid of its core G*(*C*)*.*

On the other hand, if ∂*C* ⊂ *C* is a wide subcategory, then the Lie algebroid $A(G(\mathcal{C}))$ of the core will always fail to be isomorphic to the two Lie algebroids of C, since the rank of the vector bundle $A(G(\mathcal{C}))$ is one less than the rank of $A^L(C)$ and $A^R(C)$.

However, we conjecture that in this case $A^L(C) \cong A^R(C)$.

The *left* and *right rank* of a morphism $g \in C$ are given by

$$
\operatorname{\textsf{rank}}^L_{\mathcal{C}}(g) = \operatorname{\textsf{rank}} \operatorname{\textsf{d}}(L_g)_{1_{s(g)}}, \quad \operatorname{\textsf{rank}}^R_{\mathcal{C}}(g) = \operatorname{\textsf{rank}} \operatorname{\textsf{d}}(R_g)_{1_{t(g)}}.
$$

Some nomenclature:

- *g* ∈ *C* has *full* left rank, if rank $_C^L(g)$ = dim C − dim X .
- *g* ∈ *C* has *constant* left rank, if L_g has constant rank.

Clearly, any invertible morphism has full and constant rank.

This is a generalization of rank from linear algebra – given a matrix *A* from the Lie monoid R*n*×*n*, there holds:

$$
\operatorname{rank}_{\mathbb{R}^{n\times n}}(A)=n\operatorname{rank}(A).
$$

Some nontrivial properties of ranks

- The subset $\{g \in \mathcal{C} \mid \text{rank}_\mathcal{C}^L(g) \text{ is full}\} \subset \mathcal{C}$ is open in $\mathcal{C}.$
- Left rank of *g* is constant on invertibles: $\operatorname{rank}_{\mathcal{C}}^L(g) = \operatorname{rank} d(L_g)_h$ holds for any $h \in \mathcal{G}(\mathcal{C})^{s(g)}$. Again, "units dictate invertibles."
- Left translations define an integrable singular distribution on C:

$$
D=\coprod_{g\in\mathcal{C}}\operatorname{Im}\operatorname{d}(\mathcal{L}_g)_{1_{s(g)}}\subset\ker\operatorname{d} t\subset\mathcal{T}\mathcal{C}.
$$

The integral manifold of *D* through $g \in \mathcal{C}$ is $L_g(\mathcal{G}(\mathcal{C})^{s(g)})$, whose dimension equals rank $_c^L(g)$.

Extensions of Lie categories to groupoids

We have seen examples of Lie categories arising from Lie groupoids, by restricting to a submanifold, e.g. the order category or $[0, \infty)$ for addition. We want to understand them better.

An *extension* of a Lie category $\mathcal{C} \rightrightarrows \mathcal{X}$ is a Lie groupoid $\mathcal{G} \rightrightarrows \mathcal{X}$ together with smooth injective immersive functor $F: \mathcal{C} \to \mathcal{G}$ over the identity $id_{\mathcal{X}}$. In other words, G is a Lie groupoid such that C is its wide Lie subcategory.

Properties of extendable Lie categories

- A Lie category $\mathcal{C} \rightrightarrows \mathcal{X}$ that is extendable to a Lie groupoid $\mathcal{G} \rightrightarrows \mathcal{X}$ enjoys the following properties:
- Cancellativity of morphisms: all left and right translations are injective.
- All morphisms have full and constant ranks.
- **■** If dim $G = \dim C$, then $A^L(C) \cong A(G) \cong A^R(C)$.

Further research:

- Ongoing: constructing an isomorphism between left an right Lie algebroid when ∂*C* ⊂ *C* is a wide subcategory.
- Open questions: Are Lie monoids parallelizable? Are Hom-sets *^C^y x* submanifolds? (We know this holds e.g. for extendable categories.)
- **EXISTENCE 2** Class of Lie algebroids that integrate to Lie categories, but not groupoids.
- **n** Infinite dimensional Lie categories $-$ e.g. infinitely many microstates in a canonical ensemble, or the tensor bundle $\oplus_{k=0}^{\infty} \otimes^{k} E$.
- Multiplicative structures, e.g. multiplicative symplectic forms and multiplicative Ehresmann connections on Lie categories.
- Haar systems, smooth sieves and smooth Grothendieck sites, Morita equivalences, ...