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Introduction

Mathematics in AI and ML

I Mathematics provides the framework for understanding AI
algorithms and their properties.

I Mathematics serves as a unifying language.

I A deep understanding of mathematics can lead to the
discovery of new techniques, algorithms, and approaches that
push the boundaries of AI and data science.



Introduction

Goals

I Expanding beyond basic mathematical methods

I Discuss the role of abstraction in identifying underlying
patterns and principles in AI

I Share lessons learned from designing data science MS track
and teaching an advanced mathematical course on data
science and AI.

I Showcase how AI can contribute to the advancement of
mathematical theory and methods

I Stimulate conversation around the evolving role of
mathematics in AI.



Traditional Mathematical Foundations

Traditional Mathematical Foundations

I Linear algebra

I Probability and statistics

I Optimization methods

I Information theory

I Graph theory



Traditional Mathematical Foundations

Opportunities: Integrating AI-Relevant Topics

I Enhance existing courses with AI-relevant content:
I Incorporate matrix decompositions and basic graph theory in

linear algebra courses
I Introduce Markov chains and Monte Carlo integration in

probability and statistics courses
I Explore multi-step ODE integration and accelerated

optimization algorithms in numerical analysis courses

I Benefits:
I Improve students’ understanding of AI applications in various

mathematical fields
I Encourage interdisciplinary thinking and problem-solving skills
I Prepare students for advanced studies and careers in AI and

data science



Traditional Mathematical Foundations

Challenges: Balancing Course Content and Teaching
Strategies

I Addressing potential issues in curriculum design:
I Balancing an already packed course syllabus
I Deciding which topics to remove or condense to make room

for AI-relevant content
I Ensuring students have the necessary prerequisites and

foundational knowledge for the new material

I Adapting teaching methodologies and resources:
I Maintaining student engagement and motivation while

introducing advanced topics
I Utilizing effective teaching strategies to accommodate

AI-focused content
I Continuously updating course materials to keep pace with the

rapidly evolving field of AI



A data science track in an applied mathematics MS

Existing CS courses (a sample)

I Machine Learning: Regression, support vector machines,
neural networks, with a focus on practical applications and
learning theory.

I Deep Generative Modeling: Deep Generative Models,
Normalizing Flows, Neural ODEs/SDEs, Deep Equilibrium
Models, Energy-based Models, and various applications in
computer vision, music, and NLP domains.

I Stochastic Gradient Descent Methods: Convergence and
complexity theory of serial, parallel, and distributed variants of
SGD, including accelerated methods and a unified analysis of
SGD variants.

I Federated Learning: Federated learning, covering supervised
machine learning, privacy, distributed and edge computing,
optimization, communication compression, and systems.



A data science track in an applied mathematics MS

Existing AMCS courses (a sample)

I Numerical Optimization: Optimality conditions for smooth
optimization problems including unconstrained, linear
programming, quadratic programming, global optimization,
and linearly/non-linearly constrained optimization.

I Advanced Probability:measure-theoretic probability, covering
probability spaces, random variables, expectations, limit
theorems, Radon-Nikodym theorem, conditional expectations,
martingales, and applications to Markov chains.

I Advanced Simulation: modern stochastic simulation
methods, Markov-chain based algorithms like Markov chain
Monte Carlo and Sequential Monte Carlo. It covers the
development and analysis of various algorithms and their
applications in Bayesian inverse problems.

I + Real analysis, functional analysis, numerical linear algebra....



A data science track in an applied mathematics MS

Key Challenges and Opportunities

I Supplement existing CS courses with mathematical methods
directly relevant to ML

I Develop courses on the foundations of ML, focusing on:
I Approximation properties of deep neural networks
I Abstract mathematical methods

I Create new courses exploring ML applications, such as: ML
methods for solving high-dimensional PDEs



A data science track in an applied mathematics MS

New courses

I Math Foundation of Machine Learning regression
(including ridge and Lasso), dimensionality reduction,
randomized projection methods, clustering, and graph-based
methods, PCA, nearest neighbor classification, k-means,
mixture models, and spectral clustering.

I Deep Learning and Analysis deep learning techniques,
focusing on mathematical and numerical aspects. It targets
math students exploring deep learning technology seeking a
stronger theoretical foundation. Topics include neural
networks, finite element spaces, gradient descent, and
multigrid methods.

I Random PDEs: hierarchical and machine learning
approximation Explores random PDEs, addressing
uncertainties in models, and emphasizes efficient numerical
solutions using machine learning techniques.



Advanced mathematical tools for ML

Abstract Mathematics in AI/ML

I Essential foundations: Traditional mathematical techniques
provide critical tools for AI/ML/data science researchers

I Going beyond: A deeper understanding of AI/ML demands
the exploration of abstract mathematical concepts

I The role of abstract tools in AI/ML:
I Uncovering underlying patterns and principles across diverse

AI/ML problems and domains
I Facilitating the creation of generalizable solutions and

innovative approaches
I Connecting AI/ML with other areas of mathematics and

fostering interdisciplinary research
I Approaching abstract mathematics in AI/ML:

I Emphasize the importance of abstract thinking
I Encourage students to develop their abstract thinking skills
I Promote collaboration between mathematicians and

researchers in AI/ML



Advanced mathematical tools for ML

Tentative Syllabus

1. The calculus of variations point of view in supervised learning

2. Properties of random functionals, compactness, and
convergence

3. Regularizers, introduction to reproducing kernel Hilbert spaces

4. Laws of large numbers, ergodic theorem

5. Distances on probability measures: Monge-Kantorowich
problem, KL divergence, cross entropies

6. Spaces of sequences of random variables, Kolmogorov
extension theorem, Markov processes

7. Reinforcement learning: dynamic programming principle, value
& policy iterations

8. Topics in optimal control and a dynamical systems view of
deep learning

9. Applications to PDEs and a posteriori estimates



Advanced mathematical tools for ML

Deep Learning and Calculus of Variations

I Training deep learning models often involves minimizing a loss
function, which can be viewed as a functional

I Techniques from calculus of variations can help analyze and
optimize the loss functionals in deep learning

I Insights from calculus of variations can improve the stability
and convergence properties of deep learning algorithms



Advanced mathematical tools for ML

An architecture agnostic approach

Many problems in ML can be phrased a the following problem

I Given an admissible set of maps A
I Find a map T ∈ A that minimizes a functional J(T )

This is exacly the setting of calculus of variations.



Advanced mathematical tools for ML

Traditional calculus of variations approach

In standard calculus of variations, one usually studies this problem
as follows

I Show existence of an optimal map - this is usually a
combination of the compactness of A with some continuity of
J.

I Determine necessary optimality conditions (eg Euler-Lagrange
equations).

I Study sufficient conditions, often under convexity
assumptions.



Advanced mathematical tools for ML

An old problem - new questions

Unfortunately in the applications at hand, J is not accessible. So,
the actual setting is

I Given an admissible set of maps A
I Find a map Tn ∈ A that minimizes a random functional

Jn(Tn)

Then, the key question is: is Tn close to optimal for J?



Advanced mathematical tools for ML

Convergence problem

I Γ-convergence is the area of mathematics that studies the
convergence of functionals Jn.

I In statistical learning theory similar problems are often
addressed in the contex of VC dimension or Rademacher
bounds.



Advanced mathematical tools for ML

Empirical risk minimization

Often the setting in ML is the following, we have a underlying
probabiliy measure µ in a product space X × Y , T : X → Y and
we seek to minimize the expected risk

J(T ) =

∫
X×Y

c(T (x), y)dµ(x , y).

The empirical risk functional, Jn, is as follows, we have a iid
sequence (Xk ,Yk) with joint law µ.

Jn(T ) =
1

n

∑
c(T (Xk),Yk).



Advanced mathematical tools for ML

A simple abstract approach - existence

I Let A be a compact set on a Banach space.

I Suppose that J is Lipschitz in A
The two preceding conditions imply the existence of a minimizer T̄ .



Advanced mathematical tools for ML

A simple abstract approach - approximation

Assume in addition the following:

I for every ε and every δ, there is N for each T ∈ A

P(Jn(T )− J(T ) > ε) < δ,

for all n > N.

Because A is compact it admits an ε-cover that is a finite set
T 1 . . .T d such that for any T there exists i such that
‖T − T i‖ < ε. Fix ε and δ
Let Tn be a minimizer of Jn. Then, with probability larger that
1− dδ

J(Tn)− J(T̄ ) ≤ Cε



Advanced mathematical tools for ML

Functional Analysis in Machine Learning

I Compactness in Banach spaces is a key concept in Functional
Analysis and has significant implications for Machine Learning
(ML) as explained before

I Two notable techniques in ML that draw from Functional
Analysis are:
I Regularization: Adding a regularization term to the objective

function, which promotes compactness in the solution space
(e.g., J(T )→ J(T ) + |T |∗)

I Kernel methods: Transforming the problem of minimizing Jn
into a finite-dimensional optimization problem, making use of
the Representer theorem and feature space mapping



Advanced mathematical tools for ML

Empirical risk minimization - revisited

Often the law of large numbers is used to justify that

Jn(T ) =
1

n

∑
c(T (Xk),Yk)→ J(T )

But the (standard) LLN is only valid for independent sequences....



Advanced mathematical tools for ML

Convergence of averages of random variables

Suppose we have a sequence of random variables Zk . When is it
true that

1

n

n∑
k=1

Zk

converges? and if so, what is the limit?
What about if the sequence is not iid?



Advanced mathematical tools for ML

Alternate Convergence Conditions for Averages

I Birkhoff’s Ergodic Theorem: Applicable for ergodic processes

I Martingale Convergence Theorem: Applicable for martingales
with bounded moments

I Markov Chains: Applicable for finite, irreducible, and
aperiodic chains with unique stationary distributions

I Cesàro Mean Convergence: Applicable when the sequence
converges in distribution

I de Finetti’s Theorem: Applicable for exchangeable sequences
of random variables



Advanced mathematical tools for ML

Probability Theory in ML

A solid grasp of probability theory is essential for understanding
the theoretical foundations of Machine Learning. Convergence of
averages of random variables is a key concept:

I ML algorithms estimate unknowns (e.g., parameters,
functions) from data, typically treated as random variables.

I Convergence properties reveal algorithm behavior as sample
size increases.

I Various learning scenarios demand distinct convergence results
(e.g., i.i.d., time-series, exchangeable data).

I Comprehending assumptions and conditions helps select
suitable algorithms and tools.

I Identifying limitations informs the development of robust ML
algorithms tailored to specific data and applications.



Advanced mathematical tools for ML

Spaces of maps

What are typical choices for set A? What are the domain X and
range Y of the maps in A? How do we parametrize maps in A?
I Range Y : Common choices for Y include discrete sets

(classification), vector spaces, and probability measures on a
set K , with Y = P(K ) (reinforcement learning, language
models).

I Parametrization via layer composition: Examples are ReLU +
linear layers (finite element spaces) and residual NN
(controlled dynamical systems).

I Group equivariance: For a group G acting on X and Y , we
require T (g(x)) = g(T (x)). A prominent instance is the
translation group with Convolutional Neural Networks
(CNNs), where convolution layers exhibit equivariance to
translation, retaining the same translation in input and output
maps.



Advanced mathematical tools for ML

Metrics in Spaces of Probability Measures

When Y is a normed space a typical distance is the a function of
the norm

c(T (x), y) = c̃(‖T (x)− y‖).

However, when Y = P(K ), distances on probability measures are
needed, such as:

I Monge-Kantorovich distance

I Divergences like KL-divergence



Experiences and Lessons Learned

Impact

I A highly flexible track was developed in the AMCS program,
enabling a professional MS offering for ARAMCO and
potential future offerings for the Saudi Ministry of Interior
employees.

I The new courses attracted students from various programs
and had some of the highest enrollment among AMCS
courses.



Experiences and Lessons Learned

Abstract Mathematics in AI/ML

I The course only touched the surface of abstract methods in
AI/ML, with numerous potential research directions to
explore.

I A significant portion of my 20+ years of research is directly
linked to reinforcement learning, which may also be true for
other mathematicians in various fields.

I Midway through the course, it became evident that we needed
to delve deeper into language models and their impact on
mathematics, leading us to dedicate the final weeks to
exploratory projects.



Experiences and Lessons Learned

Language models

I A language model is a probability measure Pθ that
approximates the empirical probability measure on natural
language texts, P.

I Often Pθ can be used to compute conditional probabilities.
For example

Pθ(”4”|”What is 2+2? Answer:”)

I Often language models are used with a sampler that generates
high probability texts.



Experiences and Lessons Learned

Class projects research goals

I Understand the LLM capabilities for mathematical research

I Develop effective strategies for their use

I Propose research directions



Experiences and Lessons Learned

Mathematics paper structure

We can think that a research paper is structured by layers

I Paper overall structure: introduction, assumptions,
background material,

I Section specific strucuture: introduction (problem statement,
main results...). assumptions (statement of the assumptions,
relevance in the paper, examples....)

I Mathematical results organization (theorems, proofs,
examples....)

I Paragraph and sentence level structure.

I Spelling

Tools: Spell checkers, grammar checkers, Large language models



Experiences and Lessons Learned

Introduction critic

Prompt: Consider the introduction below. Answer the following
questions, provide evidence, and offer specific suggestions.
I Did the authors ”establish the importance of the field, provide

background information, and define terminology if necessary?”
I Did the authors ”present the problem and current research

focus?”
I Did the authors ”explain the motivation for the problem?”
I Did the authors ”give an account of prior research in the field

and its connection to the current problem?”
I Did the authors ”identify a gap in the research, explain the

relevance of closing this gap, and describe how their problem
contributes to addressing this issue?”

I Did the authors ”describe the main result and explain any
improvement the main result brings?”

I Did the authors ”explain the main techniques used?”



Experiences and Lessons Learned

Introduction critic results

Here are some samples:

I The motivation for the problem is not explicitly mentioned.
Suggestion: Explain the motivation for studying the stochastic
analog of Aubry-Mather theory.

I The authors do mention prior research and provide citations
for it. However, the connection to the current problem could
be made clearer.

I The authors do not explicitly mention a gap in the research.
Clearly identify the gap in the research and explain how
addressing the problem contributes to closing this gap.

I Yes, the authors mention the techniques used, such as
Fenchel-Rockafellar duality theorem and viscosity solutions of
Hamilton-Jacobi equations.



Experiences and Lessons Learned

Shortcomings and limitations

37246823682746378+8236749723467923468 = 8273996547150669846

whereas the right answer is

8273995948742179846



Experiences and Lessons Learned

Shortcomings and limitations

Problem: Show that (0,1) is a closed set.
Solution: The set (0,1), its complement is the set
[−∞, 0) ∪ [1,+∞), which is clearly an open set. Therefore, (0,1)
is a closed set.



Experiences and Lessons Learned

Progress

Problem: Show that (0,1) is a closed set.
Solution: To show that the interval (0, 1) is not a closed set, we
can use the definition of a closed set, which states that a set is
closed if it contains all of its limit points. A limit point of a set S is
a point x such that every open neighborhood around x contains at
least one point from S different from x itself. Now, consider the
set (0, 1). It does not include the endpoints 0 and 1. However,
both 0 and 1 are limit points of this set, as for any open
neighborhood around them, we can always find a point in (0, 1).



Experiences and Lessons Learned

Semantic generation

Can we efficiently generate datasets to train LLM to perform
semantic conversion:

I ”The sum of 2 and 3 is 5” → ”The sum of 2 and 3 is
Plus[2,5]”

I ” A gym charges 50 dollars per month for a basic membership
and an additional 30 dollars per month for a personal trainer.
If Mike signs up for the basic membership and personal trainer
for 3 months, he spends 240 dollars in total.” → ”A gym
charges 50 dollars per month for a basic membership and an
additional 30 dollars per month for a personal trainer. If Mike
signs up for the basic membership and personal trainer for 3
months, he spends Times[3, Plus[50, 30]] dollars in total.”



Experiences and Lessons Learned

Successes and Failures of LLMs

I English language: Abundant examples and training data.
Multi-step logical reasoning less relevant.

I Coding: Numerous examples, compact language, multi-step
reasoning necessary.

I Arithmetic operations: Limited language, fewer examples
compared to potential scenarios, multi-step reasoning
necessary.

I Mathematical reasoning: Limited examples, diverse language,
multi-step logical reasoning essential.



Experiences and Lessons Learned

Creating a database of all theorems, examples, exercises

I Can we take one lecture note latex source and extract in a
structured way all theorems, proofs, exercises... [prototype
done]

I Can we do it for all available online (probably yes, in progress)



Experiences and Lessons Learned

Expanding database - example

I Take the following proposition and proof. Organize the proof
in logical steps:

I Take each of the steps and transform it into an exercise with
a solution



Experiences and Lessons Learned

Proposition

Let E and F be vector spaces and let T : E → F be a linear map.
The following sets are linear spaces:

1. {x ∈ E : T (x) = 0} – this set is called the kernel of T , and is
denoted by kernelT .

2. {y ∈ F : y = T (x), for some x ∈ E} – this set is called the
image or range of T , and is denoted by imageT .



Experiences and Lessons Learned

Exercise 1: Show that the kernel of a linear map is a
subspace.
Let E and F be vector spaces and let T : E → F be a linear map.
Show that the kernel of T , denoted by
kernelT = {x ∈ E : T (x) = 0}, is a subspace of E .
Solution:
To show that kernelT is a subspace, it suffices to show that it is
closed under the vector space operations:

I If x1, x2 ∈ kernelT , then T (x1 + x2) = T (x1) + T (x2) = 0, by
linearity. So, x1 + x2 ∈ kernelT .

I For any scalar λ and x ∈ kernelT , we have
T (λx) = λT (x) = 0. Thus, λx ∈ kernelT .



Experiences and Lessons Learned

Programming - thinking functionally

I The latex parser was written in Python and has around 1000
lines of code

I The code was almost 100% written in GPT4 with minimal
human intervention from English descriptions.

I The key to write the code efficiently was to think functionally
and write the code as a composition of functions

I Functional thinking reduces errors, allows for systematic
testing and ease of change.



Experiences and Lessons Learned

Programming - Example

”Write a python code that takes a latex string and returns a list
with all labels used in the latex string. Write also a unit test.
Document all code with numerous comments.”



Experiences and Lessons Learned

import re

def extract_labels(latex_string):
    """
    Extracts all labels used in a LaTeX string.
    
    Args:
        latex_string (str): The LaTeX string to process.
        
    Returns:
        list: A list containing all the labels found in the LaTeX string.
    """
    # Regular expression pattern to match LaTeX label command
    pattern = r'\\label\{([^}]+)\}'
    
    # Find all occurrences of the pattern in the LaTeX string
    matches = re.findall(pattern, latex_string)
    
    # Return the list of labels
    return matches

# Unit Test
def test_extract_labels():
    latex_string = '''
    \begin{equation}
    E = mc^2 \label{mass_energy_equivalence}
    \end{equation}
    
    \begin{figure}
    \includegraphics{example.png}
    \caption{Example figure}
    \label{fig:example}
    \end{figure}
    
    As shown in Equation \ref{mass_energy_equivalence} and Figure 

\ref{fig:example}...
    '''
    
    expected_labels = ['mass_energy_equivalence', 'fig:example']
    extracted_labels = extract_labels(latex_string)
    
    assert extracted_labels == expected_labels, f"Expected 

{expected_labels}, but got {extracted_labels}"
    
    print("Unit test passed.")

# Run the unit test
test_extract_labels()



Experiences and Lessons Learned

Conclusions

I Mathematics programs can play a significant role in the AI
revolution by providing basic skills training to practitioners
and developing high-level approaches that address the core
foundations.

I Various mathematical questions in AI are closely related to the
research conducted in mathematics across different contexts.

I The exciting advancements in language models may have a
considerable impact on mathematics, potentially at the level
of theorem proving.

I The functional programming paradigm is expected to
substantially accelerate research.

I Due to LLMs, the entry barrier to research in AI applications
has been significantly lowered.

I Mathematicians should seize the opportunity to explore and
contribute to the advancements in mathematics and AI.


	Introduction
	Traditional Mathematical Foundations
	A data science track in an applied mathematics MS
	Advanced mathematical tools for ML
	Experiences and Lessons Learned

