

Deep Reinforcement Learning-based Integrated Guidance & Control for a Launcher Landing Problem

Seminar in Mathematics, Physics & Machine Learning

April 27, 2023 Paulo Rosa (paulo.rosa@deimos.com.pt)

Trademarks "Elecnor Deimos", "Deimos" and the logo of Deimos (Elecnor Group) encompass Flecnor Group's companies of Aerospace, Technology and Information Systems: Deimos Space S.L.U. (Tres Cantos, Madrid, Spain). Deimos En *Deimos Space UK Ltd. (Harwell, Oxford, United Kingdom), Deimos Space S.R.L. (Bucharest, Romania).*

Introduction Challenges Addressed

• How can we cope with the level of uncertainty in a reusable launch mission?

• Can we really trust AI for that task?

EXPANDING FRONTIERS

www.elecnor-deimos.com and the state of the contract of the co

deimos

TECHNOLOGY COMPANY OF THE ELECNOR GROUP

SPACE

Capabilities to lead a complete space mission

SPACE AREAS

SPACE SCIENCE & EXPLORATION

SATELLITE NAVIGATION

EARTH **OBSERVATION**

SPACE SITUATIONAL **AWARENESS**

LAUNCHERS

Expertise across the entire value chain in satellite systems Deimos technology is present in more than 60 satellites

PHASE 0 PHASE A PHASE B PHASE C/D PHASE E USER

DEFINITION DESIGN DEVELOPMENT LAUNCH APPLICATIONS

deimos

SATELLITE SYSTEMS

DEIMOS-1

First Spanish Earth Observation **Satellite** Copernicus contributing mission

Operated by Deimos Imaging

DEIMOS-2

Integrated and tested at Deimos Satellite Systems premises

Operated by Deimos Imaging

Example Projects

ADRIOS/ClearSpace-1 DEIMOS is the GNC SS Responsible

GNC Subsystem and Mission Analysis responsibility

Includes all the phases of the mission, i.e. orbital, rendezvous & capture, and de-orbiting

 $D = \frac{1}{2}$, and $D = \frac$

Orbex Prime Launcher GNC

DEIMOS Flight Systems responsible for

- Mission Analysis
- Guidance, Navigation, and Control for all flight phases
	- Ascent phase (up to 80 km)
	- Orbital phase (including circularization burn maneuvers, safe modes implementation, etc.)
- GNC Failure, Detection, Isolation, and Recovery (FDIR)

- How can we cope with the level of uncertainty in a reusable launch mission?
- Can we really trust AI for that task?

AI4GNC: Artificial intelligence techniques for GNC design, implementation, and verification

AI4GNC Consortium

- Overall project coordination
- ESA-i4GNC framework development
- Application to the DRL case study
- Overall software implementation of the tool

• **INESC-ID**

- Literature review, trade-off analysis and AI-based GNC design support
- Contribution for topics such as adaptive control and reinforcement learning control

• **TASC**

- Responsible for the robust+ML modelling and V&V techniques, inc. the study cases consolidation and test plan
- Support the selection of the study cases, as well as the implementation of the algorithms

• **LUND**

• Contribute with state-of-the-art knowledge on analytic robustness and convergence guarantees (e.g. Integral Quadratic Constraints (IQCs)), especially in the presence on nonlinearities, e.g. NNs

• **DEIMOS Engineering Systems**

• ML/AI techniques development for embedded GNC systems, inc. the learning and simulation approach and associated simulator

AI4GNC Scope and Goals of the Activity

Goal 1: Implement ESA-iGNC, an AI-based GNC E2E design & analysis framework for layered architectures

- " Cover the GNC system modeling, design and V&V process as per the SoW
- Supported by efficient optimization algorithms and formal mathematical techniques
- **Ensuring robustness, performance, convergence, and explainable** results

Goal 2: Exploit recent advances in control and AI

- . Revisit the theory and techniques developed in the last two decades, including, but not limited to, fields such as IQCs, robust control, adaptive control, safe and robust reinforcement learning, and system identification
- Increase autonomy through onboard intelligence

Goal 3: Perform Trade-off analyses

- . Different concepts to be considered, including full dedicated design architectures and augmentation strategies for already-existing control architectures
- " Trade-off the offline design effort with the online real-time implementation requirements

Goal 4: Evaluate the proposed AI-based GNC design and V&V tool in a representative benchmark

- Define the criteria to sleect the benchmark
- Derive study cases and apply the tool to those
- Apply the tool to the benchmark

ESA-i4GNC (Enhanced Safe AI for GNC) Framework

deimos

Framework definition

ESA-i4GNC tool

- Implement the architecture in a systematic and structured manner
- Allow the implementation of diverse algorithms: model-based & data-driven
- Requirements satisfaction
- Support and manage models with different levels of fidelity/complexity
- Object-Oriented Programming (OOP)

Framework definition

Framework definition

Libraries and additional functionalities

Additional functionalities:

- **esai4gnc install:** installs the tool by adding the necessary files to the MATLAB path
- **esai4gnc_clean**: cleans the tool by removing all the unnecessary files generated while running the tool (cache, slprj,…)
- **autoDoc_ESAi4GNC:** automatically documents the tool using the M2HTML tool, generating HTML files
- **Profiler:** provides the profile execution time when initializing tool and running any simulation

Libraries:

- **CVX**
- **MPT 3.0**
- **S-TaLiRo Runtime Verification**
- **M2HTML**
- **RL Coach**
- Other Python libraries, e.g. **juliacall**

Examples

Totals

Profiler Auto-documentation

Generated on Wed 13-Jul-2022 14:44:54 by m2html @ 2005

 $1.053 s$

100%

Benchmark

Benchmark Reusable Launch Vehicle

Reusable Launch Vehicle

- Phases of interest:
	- \triangleright First stage entry
	- ➢ **Descent and precision landing**
- Focus was given to the demonstration of the techniques and the ESA-i4GNC tool
- Parameters from Falcon 9 and RETALT RLV, although the techniques are applied to RETALT RLV:
	- ➢ **Wind model**
	- ➢ **Aerodynamic model**

Benchmark Selected Benchmark

- 6 DOF **Landing Burn Scenario** of a Reusable Launcher Vehicle (**RETALT**)
	- Realistic Aerodynamics DB
	- Actuator (TVC) model
	- Wind model
	- Flexible modes
- **Baseline GNC**:
	- SCVX guidance
	- Ideal navigation
	- PID controller

LANDING BURN

Benchmark Proposed GNC Architecture

RLVs Challenges To Support the Case Studies Definition

deimos

Case Studies

Case Studies Definition of Baseline Case Studies

In this presentation…

Deep RL for trajectory tracking (Case Study #8)

GOAL: Implementation of a **Reinforcement Learning** technique to address the **G&C** problem for the landing phase of a **RLV**

- On-board solution
- Address non linearities of the RLV dynamics
- Map sensors measurements to action commands

Implementation:

- RL Coach toolbox
- Agent: DDPG (Actor Critic)
- Environment: RETALT landing simulator

Approach:

• Incremental $1D \rightarrow 2D \rightarrow 3D$

1D vertical landing problem \rightarrow Action = [Thrust]

Observation $=$ [altitude, velocity]

Reward 1 : $-|v_x - v_t| - 1e^{-10} \cdot Thrust + 30 \cdot (x < 0.1 \& |v_x| < 2) + 80 \cdot (x < 0.1 \& |v_x| < 0.5) - 1000 \cdot (x > x_0) - 50 \cdot (v_x > 3)$

Case Study #8 2 DoF vertical scenario

Case Study #8 Application of the Techniques – 2D with **rate limiters**

- Control the action rates instead of the action values
- The rates are integrated and feedback as input of the NN
- Initial conditions, upper and lower bounds for the **integrators**
- Penalization when the rate leads to violation of the action bounds

 $R = -|v - v_t| - 0.1 \cdot ((T_c + \Delta t \cdot \Delta T) > T_{max}$ or $(T_c + \Delta t \cdot \Delta T) < 0)$...

Case Study #8 Application of the Techniques – 3D with **rate limiters**

Performance animation when considering the SCVX guidance:

Performance animation for the initial NN obtained:

Case Study #8 Animation comparison

Performance animation for the final NN obtained:

 $\mathbf{0}$

East [km]

Case Study #8 Verification results

 $\overline{5}$ -0.5

 $\frac{100}{2}$ 7.6 Mass $\overline{3}$ 7.4

6.8

5 10

- **97 %** success rate (970 out of 1000)
- All the failed runs are related to the horizontal velocity
- Error always below 1.5 m/s

- **NN** yields better **position accuracy**
- **SCVX** guidance re-computed each 5 sec better **velocity accuracy**

This indicates we are reaching a Pareto optimal set, with Deep-RL being a remarkable solution to the problem

Verification of the NN

Case Study #8 Neural Network V&V with nn_robustness_analysis

- NN trained for the 1D scenario
- Original NN presented: $[x. v v_t] \longrightarrow [Thrust]$
	- NN trained to learn the observation state
	- NN trained to learn *tanh* activation fun.
- Discrete time dynamics implemented
	- $s(t + 1) = A s(t) + B u(t) + C$
- Greedy Simulator Guided partitioner
- CROWN propagator

Concatenated NN

Case Study #8 Neural Network V&V: Preliminary Results

- Blue dots: Dynamic propagation
- Boxes: Reachable set
- 200 propagator calls

 30

30

35

35

- RCS1: negative rotation

RCS2: positive rotation

Case Study #8 Neural Network V&V: Final Results

• Smaller NN trained through supervised learning with the previous concatenated NN

Alternative to Deep RL: **Supervised Learning**

• **Description**: Supervised Learning approach to train a NN with demonstrations of the

Case Study #8 Supervised Learning Approach

deimos

Neural Network

Imitation

Control

 \boldsymbol{u}

Plant Model horizon State profile **Control** profile Initial condition \mathcal{X}_0 State χ **Control** $\overline{\overline{u}}$

- 10 thousand expert demonstrations
- 1 million datapoints
- Training with DAgger algorithm

Case Study #8 Supervised Learning Approach - Results

60

60

Sample

80

 $\overline{\Theta}$ roll

 $\overline{\bigcirc}$ pitch

 $-\times - NN$

100

 θ yaw

80

100

Comparison between expert guidance and NN output:

Way Forward

Way Forward - Maturation Plan & Roadmap

Deep Reinforcement Learning G&C

• **Application scenarios**

- In-Orbit Servicing (IOS)
- Active Debris Removal (ADR)
- Entry, Descent and Precision Landing (EDL):
	- Reusable Launch Vehicle (RLV); Re-entry vehicles with Inflatable Heat-Shields (IHS)

• **Potential indicator: HIGH**

- Remarkable results of the Monte-Carlo campaign
- The NN training can be repeated whenever the dynamics change
- Non-iterative algorithm with guaranteed computational time
- NN validation approaches exist

Way Forward - Maturation Plan & Roadmap

ML-based Guidance Optimization Surrogates

• **Application scenarios**

- In-Orbit Servicing (IOS)
- Active Debris Removal (ADR)
- Entry, Descent and Precision Landing (EDL):
	- Reusable Launch Vehicle (RLV); Re-entry vehicles with Inflatable Heat-Shields (IHS)

• **Potential indicator: HIGH**

- Good results in the approximation of an online optimization algorithm
- The training process is typically easier than the Deep RL method, although it requires a very high number of expert demonstration
- NN validation approaches exist

Conclusions

- **Very promising results** in the use of AI/ML/RL for complex GNC problems
- **AI4GNC** addresses **8 Case Studies** considering an overall **realistic RETALT RLV dynamics** benchmark
- **ESA-i4GNC framework** developed in MATLAB/Simulink using an OOP approach and exploiting libraries in AI community
	- The framework **SW will be published soon in GitHub**

Stay tuned!!

Acknowledgements

The results presented have been achieved under funding by the ESA TDE programme with ESA contract No. 4000134108/21/NL/CRS. The view expressed in this presentation can in no way be taken to reflect the official opinion of ESA.

ESA Contact Point: joris.belhadj@esa.int **DEIMOS Contact Point:** paulo.rosa@deimos.com.pt

Trademarks "Elecnor Deimos", "Deimos" and the logo of Deimos (Elecnor Group) encompass Elecnor Group's companies of Aerospace, Technology and Information Systems: Deimos Space S.L.U. (Tres Cantos, Madrid, Spain), Deimos En *Deimos Space UK Ltd. (Harwell, Oxford, United Kingdom), Deimos Space S.R.L. (Bucharest, Romania).*