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Introduction
Challenges Addressed

• How can we cope with the level of
uncertainty in a reusable launch
mission?

• Can we really trust AI for that task?
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SPACE
Capabilities to lead a 
complete space 
mission
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Expertise across the entire value chain in satellite systems

Deimos technology is present in more than 60 satellites
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MORE THAN 500 CONTRACTS



SATELLITE SYSTEMS

DEIMOS-1

First Spanish Earth Observation 
Satellite

Copernicus contributing mission

Operated by Deimos Imaging

DEIMOS-2

Integrated and tested at Deimos 
Satellite Systems premises

Operated by Deimos Imaging

CHARACTERISTICS

Optical

Resolution: 22 m

Coverage: 600 km

APPLICATIONS

Crop yield prediction

Emergency response

Maritime surveillance

LAUNCH July 2009

CHARACTERISTICS

Optical Multispectral

Resolution: 75 cm

Coverage: 12 km

APPLICATIONS

Intelligence

Emergency response

Urban planning

LAUNCH June 2014
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Example 
Projects
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ADRIOS/ClearSpace-1
DEIMOS is the GNC SS Responsible

GNC Subsystem and 

Mission Analysis 

responsibility

Includes all the phases of the 

mission, i.e. orbital, rendezvous & 

capture, and de-orbiting
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DEIMOS Flight Systems responsible for
• Mission Analysis
• Guidance, Navigation, and Control for all flight phases

• Ascent phase (up to 80 km)
• Orbital phase (including circularization burn 

maneuvers, safe modes implementation, etc.)
• GNC Failure, Detection, Isolation, and Recovery (FDIR)

Orbex
Prime Launcher GNC

Image credits: Orbex
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RRTB

• Mission and system engineering for fairing/upper stage recovery
• Support to technology development & modelling

DEIMOS contribution:

• Operations: CONOPS analysis, trade-off,
definition.

• Mission Engineering: trajectory design,
orbit and launch site selection, risk and safety
assessment, feasibility assessment,
requirements definition.

• Aerodynamics: preliminary CFD analysis of
the decelerator. Concept feasibility validation.

• Performance: Flying qualities, controllability,
flight stability of the return leg.

• GNC: Concept of the return leg. Develop
guidance and control algorithms,
implementation of the navigation solution.
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• How can we cope with the level of uncertainty in a reusable launch
mission?

• Can we really trust AI for that task?

AI4GNC: Artificial intelligence techniques for 
GNC design, implementation, and verification
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AI4GNC
Consortium

• DEIMOS Engenharia
• Overall project coordination
• ESA-i4GNC framework development
• Application to the DRL case study
• Overall software implementation of the tool

• INESC-ID
• Literature review, trade-off analysis and AI-based GNC 

design support
• Contribution for topics such as adaptive control and 

reinforcement learning control

• TASC
• Responsible for the robust+ML modelling and V&V techniques, inc. the study cases consolidation and test plan
• Support the selection of the study cases, as well as the implementation of the algorithms

• LUND
• Contribute with state-of-the-art knowledge on analytic robustness and convergence guarantees (e.g. Integral Quadratic 

Constraints (IQCs)), especially in the presence on nonlinearities, e.g. NNs

• DEIMOS Engineering Systems
• ML/AI techniques development for embedded GNC systems, inc. the learning and simulation approach and associated 

simulator 
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AI4GNC
Scope and Goals of the Activity
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AI4GNC
Building Blocks

Requirements
for RLV mission

Benchmark selected
and implemented

RLV simulator 
implemented

Training process  and 
AI/ML/RL methods 
implemented

Visualization tools 
for the simulator 
and the AI/ML/RL 
implemented

Compressed
sensing for LFTs

Compressed
sensing for LFTs

Successive convexification 
and ability to use many 
optimization toolboxes

RL Guidance & 
deep-RL 
integrated G&C

LBMPC
& LBKF

STL-based
analysis

NN verification implemented, 
including IQC-based

Requirements
for RLV mission
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ESA-i4GNC

(Enhanced Safe AI for GNC)

Framework
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ESA-i4GNC - Design Framework
Framework definition

ESA-i4GNC tool

• Implement the architecture in a systematic 
and structured manner

• Allow the implementation of diverse 
algorithms: model-based & data-driven

• Requirements satisfaction

• Support and manage models with different 
levels of fidelity/complexity

• Object-Oriented Programming (OOP)
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ESA-i4GNC - Design Framework
Framework definition
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ESA-i4GNC - Design Framework
Framework definition
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ESA-i4GNC - Design Framework
Libraries and additional functionalities

Additional functionalities:

• esai4gnc_install: installs the tool by adding the
necessary files to the MATLAB path

• esai4gnc_clean: cleans the tool by removing all the
unnecessary files generated while running the tool
(cache, slprj,…)

• autoDoc_ESAi4GNC: automatically documents the tool
using the M2HTML tool, generating HTML files

• Profiler: provides the profile execution time when
initializing tool and running any simulation

Libraries:

• CVX

• MPT 3.0

• S-TaLiRo Runtime Verification

• M2HTML

• RL Coach

• Other Python libraries, e.g.

juliacall
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ESA-i4GNC - Design Framework
Examples

Profiler
Auto-documentation
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ESA-i4GNC - Design Framework
MATLAB-Python interface – RL Python tool

Simulator
[State, Reward, Done]

RL Algorithm
[Action]

.txt

.txtTCP/IP

TCP/IP
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Benchmark
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Benchmark
Reusable Launch Vehicle

Reusable Launch Vehicle

• Phases of interest:

➢ First stage entry

➢ Descent and precision landing

• Focus was given to the demonstration of the 
techniques and the ESA-i4GNC tool

• Parameters from Falcon 9 and RETALT RLV, 
although the techniques are applied to RETALT 
RLV:

➢ Wind model

➢ Aerodynamic model

https://www.retalt.eu/
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Benchmark
Selected Benchmark

28

• 6 DOF Landing Burn Scenario of a 

Reusable Launcher Vehicle (RETALT)

• Realistic Aerodynamics DB

• Actuator (TVC) model

• Wind model

• Flexible modes

• Baseline GNC:

• SCVX guidance

• Ideal navigation

• PID controller

1st Stage features Value

Height [m] 71.2

Diameter [m] 6

Dry mass [kg] 59300

Propellant mass (incl. 
descent propellant) [kg]

621500

Specific Impulse SL [s] 401.6

Thrust SL [kN] 11453

Mass [kg] Position [m] Velocity [m/s] Attitude [q]
Angular vel. 

[rad/s]

80334
[2874,-1288, -

82.2]
[-189.9, 151.3, 

9.6]
[0.943, 0.006, 
0.018, -0.329]

[0, 0, 0]

Initial Conditions



DEG-CMS-SUPSC03-PRE-12-E © Copyright DEIMOS 29

Benchmark
Proposed GNC Architecture

Guidance Control

MVM

Navigation

Reference
Trajectory Reference attitude

and actuation

Actual actuation

GUI mode CON mode

Status & data

Status 
& data

Engine mode

Status 
& data

NAV mode

Estimated state Estimated state

TVC/Engine

RCS

GNSS IMU FADS Altimeter

Position

Accelerations Air angles

Altitude
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RLVs Challenges
To Support the Case Studies Definition

Trajectory 
generation for 

the landing 
phase

Attitude control

Center of 
gravity 

estimation

Aerodynamic 
fin failure 
detection

RCS failure 
tolerance

Aerodynamic 
fin failure 
tolerance

MCI estimation Thruster 
misalignment

Main engine re-
ignition

Trajectory 
tracking for the 

aerodynamic 
phase

Inertia 
estimation 

during the flip 
over before the 
boostback burn

Fuel sloshing
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Case Studies
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Case Studies
Definition of Baseline Case Studies

Case 
Study #

Description

1 RL-based adaptive control to regulate the attitude in response to disturbances

2
RL-based adaptive control to regulate the trajectory in the aerodynamic phase with respect to the reference 
trajectory

3 NN approximation of the QUEST algorithm for three axis attitude estimation from vector observation data

4 Sparse regression, compressed sensing, compressed learning and potential connections with LFT modelling

5 Learning-based model predictive control (LBMPC) for attitude control

6 IQC formalism for NN-based attitude control verification

7 Learning-based Kalman filtering for attitude estimation

8 Deep RL for trajectory tracking
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In this presentation…

Deep RL for trajectory 
tracking (Case Study #8)
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Trade-offs
Learning approaches

Literature Review 1 Techniques 2 Trade-off 3

AI/ML 
Toolboxes & 

Libraries

Deep 
Learning 
Libraries

MATLAB Deep 
Learning 
Toolbox

PyTorch TensorFlow

RL Libraries

MATLAB RL 
Toolbox

Keras RL RL Coach TFAgents TensorForce

• Several algorithms available

• Well documented

• Open Source
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Case Study #8
Overview

GOAL: Implementation of a Reinforcement Learning technique to address the G&C      
problem for the landing phase of a RLV

• On-board solution

• Address non linearities of the RLV dynamics

• Map sensors measurements to action commands 

Implementation:

• RL Coach toolbox

• Agent: DDPG (Actor – Critic)

• Environment: RETALT landing simulator

Approach:

• Incremental 1D       2D       3D

Observation state Control commands
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Case Study #8
1 DoF scenario, simple case

Reward 1 :− 𝑣𝑥 − 𝑣𝑡 − 1𝑒−10 ∙ 𝑇ℎ𝑟𝑢𝑠𝑡 + 30 ∙ 𝑥 < 0.1 && 𝑣𝑥 < 2 + 80 ∙ 𝑥 < 0.1 && 𝑣𝑥 < 0.5 − 1000 ∙ 𝑥 > 𝑥0 − 50 ∙ 𝑣𝑥 > 3

Boolean conditions on landing conditions 
for positive reward

Penalization on 
target velocity

Penalization on 
thrust

1D vertical landing problem
Action = [Thrust]

Observation = [altitude, velocity]

vt = 𝑣0 1 − 𝑒−𝑡𝑔𝑜/𝜀

𝑡𝑔𝑜 = 𝑥/𝑣𝑥
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Case Study #8
2 DoF vertical scenario

2D vertical landing problem

• Hyperparameters setting

Heat-up steps Training steps Steps btw 
evaluations

Actor/Critic 
Learning rate

Actor/Critic 
Batch size

ʏ τ/Cw

5000 120000 10 0.0005/0.005 68/68 0.9 0.1/1000

Reward :− 𝑣𝑥 − 𝑣𝑡 − 1𝑒−7 ∙ 𝑇ℎ𝑟𝑢𝑠𝑡 + 100 ∙ 𝑥 < 0.1 && 𝑣𝑥 < 2 + 200 ∙ 𝑥 < 0.1 && 𝑣𝑥 < 0.5 − 100 ∙ 𝑥 > 𝑥0 − 100 ∙ 𝑦𝑎𝑤 >
𝜋

2
− 𝑔𝑖𝑚𝑏𝑎𝑙𝑑𝑒𝑔

Penalization on 
target velocity

Penalization on 
thrust

Boolean conditions for positive reward Boolean conditions for negative reward 

Action = [Thrust, gimbal angle]

Observation = [altitude, (v-vt)vert, 

(v-vt)horiz, yaw, omegayaw]
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Case Study #8
Application of the Techniques – 2D with rate limiters

• Control the action rates instead of the action 
values

• The rates are integrated and feedback as input of 
the NN

• Initial conditions, upper and lower bounds for the 
integrators

• Penalization when the rate leads to violation of the 
action bounds

𝑅 = − 𝑣 − 𝑣𝑡 − 0.1 ∙ 𝑇𝑐 + ∆𝑡 ∙ ∆𝑇 > 𝑇𝑚𝑎𝑥 𝑜𝑟 𝑇𝑐 + ∆𝑡 ∙ ∆𝑇 < 0 …
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Case Study #8
Application of the Techniques – 3D with rate limiters



DEG-CMS-SUPSC03-PRE-12-E © Copyright DEIMOS 40

Case Study #8
Animation comparison

Performance animation when considering the SCVX guidance:
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Case Study #8
Animation comparison

Performance animation for the initial NN obtained:
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Case Study #8
Animation comparison

Performance animation for the final NN obtained:
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Case Study #8
Verification results

• 97 % success rate (970 out of 1000)

• All the failed runs are related to the horizontal 

velocity

• Error always below 1.5 m/s
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Case Study #8
MC Comparison Analysis

MC Simulation Quantity Mean
Standard 
Deviation

Neural Network

Fuel consumption [kg] 10304.019 158.48

Position accuracy [m] 3.957 1.4181

Velocity accuracy [m/s] 2.89694 0.44976

SCVX, 5s

Fuel consumption [kg] 9763.39 69.13

Position accuracy [m] 8.7947 0.40740

Velocity accuracy [m/s] 1.54723 0.36812

• NN yields better position accuracy

• SCVX guidance re-computed each 5 

sec better velocity accuracy

This indicates we are reaching a 

Pareto optimal set, with Deep-RL 

being a remarkable solution to the 

problem
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Verification of the NN
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Case Study #8
Neural Network V&V with nn_robustness_analysis

• NN trained for the 1D scenario

• Original NN presented: 𝑥. 𝑣 − 𝑣𝑡 𝑇ℎ𝑟𝑢𝑠𝑡

• NN trained to learn the observation state

• NN trained to learn tanh activation fun.

• Discrete time dynamics implemented

• 𝑠 𝑡 + 1 = 𝑨 𝑠 𝑡 + 𝑩 𝑢 𝑡 + 𝑪

• Greedy Simulator Guided partitioner

• CROWN propagator

Concatenated NN
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Case Study #8
Neural Network V&V: Preliminary Results

• Blue dots: Dynamic propagation

• Boxes: Reachable set

• 200 propagator calls
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Case Study #8
Neural Network V&V: Final Results

Layer 

Name
Layer Type

Activation 

Function
Input size Output Size

Input Layer Linear ReLU 2 16

Hidden 

Layer

Linear ReLU 16 32

Output 

Layer

Linear None 32 1

• Smaller NN trained through supervised learning 
with the previous concatenated NN 
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Alternative to Deep RL:

Supervised Learning
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Case Study #8
Supervised Learning Approach

6-DoF Descent Guidance
(Nonlinear Optimization 

Solver)

Neural 
Network

State
𝑥

Control
𝑢

Imitation

• Description: Supervised Learning approach to train a NN with demonstrations of the 
optimal guidance

• 3 hidden layers of 50 neurons each
• Hyperbolic tangent sigmoid activation
• 10 thousand expert demonstrations
• 1 million datapoints
• Training with DAgger algorithm

Plant 
Model

horizon

State profile

Control 
profile

Initial condition
𝑥0

State
𝑥

Control
𝑢
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Case Study #8
Supervised Learning Approach - Results

Comparison between expert guidance and NN output:
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Way Forward
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Way Forward  - Maturation Plan & Roadmap
Deep Reinforcement Learning G&C

Points to improve How to improve

Robustness to Wind
• Include a sensor to estimate wind to provide measurements 

to the NN

Robustness to initial conditions • Increase the dispersion considered during RL training 

Fuel Consumption
• Modify the reward such that the consumption is reduced 

maintaining a good landing accuracy

RL hyperparameters fine tuning
• Manual fine tuning
• Optimization problem to optimize the hyperparameters

Extension of the convergence analysis 
to the 3D scenario

• Adapt the implementation of the robustness tool to handle 
the 3D scenario

• Application scenarios

• In-Orbit Servicing (IOS)

• Active Debris Removal (ADR)

• Entry, Descent and Precision Landing (EDL):

• Reusable Launch Vehicle (RLV); Re-entry vehicles 

with Inflatable Heat-Shields (IHS)

• Potential indicator: HIGH

• Remarkable results of the Monte-Carlo campaign

• The NN training can be repeated whenever the dynamics change

• Non-iterative algorithm with guaranteed computational time

• NN validation approaches exist
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Way Forward  - Maturation Plan & Roadmap
ML-based Guidance Optimization Surrogates

Points to improve How to improve

Training performance
• Test other optimizers in Keras
• Test other open-source libraries and tools

Expert guidance optimizer
• Consider a different sub-problem solver, such as ECOS
• Consider other external and open-source tools (SCP by Danylo 

Malyuta et al.)

Assess performance in 
simulation

• After training, test the NN in the high-fidelity simulator;
• Iterative design process may be necessary for tuning the expert 

guidance 

Validation
• The validation tools used in other case studies may be used to 

validate the resulting NN

• Application scenarios

• In-Orbit Servicing (IOS)

• Active Debris Removal (ADR)

• Entry, Descent and Precision Landing (EDL):

• Reusable Launch Vehicle (RLV); Re-entry vehicles 

with Inflatable Heat-Shields (IHS)

• Potential indicator: HIGH

• Good results in the approximation of an online optimization algorithm

• The training process is typically easier than the Deep RL method, although 

it requires a very high number of expert demonstration

• NN validation approaches exist
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Conclusions
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Conclusions

• Very promising results in the use of AI/ML/RL for complex
GNC problems

• AI4GNC addresses 8 Case Studies considering an overall 
realistic RETALT RLV dynamics benchmark

• ESA-i4GNC framework developed in MATLAB/Simulink 
using an OOP approach and exploiting libraries in AI 
community

• The framework SW will be published soon in GitHub

Stay tuned!!
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