

Deep Reinforcement Learning-based Integrated Guidance & Control for a Launcher Landing Problem

Seminar in Mathematics, Physics & Machine Learning

April 27, 2023 Paulo Rosa (paulo.rosa@deimos.com.pt)

Trademarks "Elecnor Deimos", "Deimos" and the logo of Deimos (Elecnor Group) encompass Elecnor Group's companies of Aerospace, Technology and Information Systems: Deimos Space S.L.U. (Tres Cantos, Madrid, Spain), Deimos Engineering and Systems S.L.U. (Puertollano, Ciudad Real, Spain), Deimos Engenharia S.A. (Lisbon, Portugal), Deimos Space UK Ltd. (Harwell, Oxford, United Kingdom), Deimos Space S.R.L. (Bucharest, Romania).

Introduction Challenges Addressed

 How can we cope with the level of uncertainty in a reusable launch mission?

• Can we really trust AI for that task?

EXPANDING FRONTIERS

@ElecnorDeimos

www.elecnor-deimos.com

deimos

TECHNOLOGY COMPANY OF THE ELECNOR GROUP

SPACE

Capabilities to lead a complete space mission

SPACE AREAS

SPACE SCIENCE & EXPLORATION SATELLITE NAVIGATION

EARTH OBSERVATION SPACE SITUATIONAL AWARENESS LAUNCHERS

USER

Expertise across the entire value chain in satellite systems Deimos technology is present in more than 60 satellites

PHASE A

PHASE 0

PHASE B

PHASE C/D

PHASE E

DEFINITION DESIGN DEVELOPMENT LAUNCH APPLICATIONS

deimos

SATELLITE SYSTEMS

DEIMOS-1

First Spanish Earth Observation Satellite Copernicus contributing mission

Operated by Deimos Imaging

CHARACTERISTICS	Optical Resolution: 22 m Coverage: 600 km
APPLICATIONS	Crop yield prediction Emergency response Maritime surveillance
LAUNCH	July 2009

DEIMOS-2

Integrated and tested at Deimos Satellite Systems premises

Operated by Deimos Imaging

	CHARACTERISTICS	Optical Multispectral Resolution: 75 cm Coverage: 12 km			
No. of Street, or Stre	APPLICATIONS	Intelligence Emergency response Urban planning			
	LAUNCH	June 2014			

Example Projects

ADRIOS/ClearSpace-1 DEIMOS is the GNC SS Responsible

GNC Subsystem and Mission Analysis responsibility

Includes all the phases of the mission, i.e. orbital, rendezvous & capture, and de-orbiting

Orbex Prime Launcher GNC

DEIMOS Flight Systems responsible for

- Mission Analysis
- Guidance, Navigation, and Control for all flight phases
 - Ascent phase (up to 80 km)
 - Orbital phase (including circularization burn maneuvers, safe modes implementation, etc.)
- GNC Failure, Detection, Isolation, and Recovery (FDIR)

- How can we cope with the level of uncertainty in a reusable launch mission?
- Can we really trust AI for that task?

AI4GNC: Artificial intelligence techniques for GNC design, implementation, and verification

AI4GNC Consortium

- Overall project coordination
- ESA-i4GNC framework development
- Application to the DRL case study
- Overall software implementation of the tool

• INESC-ID

- Literature review, trade-off analysis and AI-based GNC design support
- Contribution for topics such as adaptive control and reinforcement learning control

• TASC

- Responsible for the robust+ML modelling and V&V techniques, inc. the study cases consolidation and test plan
- Support the selection of the study cases, as well as the implementation of the algorithms

• LUND

 Contribute with state-of-the-art knowledge on analytic robustness and convergence guarantees (e.g. Integral Quadratic Constraints (IQCs)), especially in the presence on nonlinearities, e.g. NNs

DEIMOS Engineering Systems

 ML/AI techniques development for embedded GNC systems, inc. the learning and simulation approach and associated simulator

AI4GNC Scope and Goals of the Activity

Goal 1: Implement ESA-iGNC, an AI-based GNC E2E design & analysis framework for layered architectures

- Cover the GNC system modeling, design and V&V process as per the SoW
- Supported by efficient optimization algorithms and formal mathematical techniques
- Ensuring robustness, performance, convergence, and explainable results

Goal 2: Exploit recent advances in control and AI

- Revisit the theory and techniques developed in the last two decades, including, but not limited to, fields such as IQCs, robust control, adaptive control, safe and robust reinforcement learning, and system identification
- Increase autonomy through onboard intelligence

Goal 3: Perform Trade-off analyses

- Different concepts to be considered, including full dedicated design architectures and augmentation strategies for already-existing control architectures
- Trade-off the offline design effort with the online real-time implementation requirements

Goal 4: Evaluate the proposed AI-based GNC design and V&V tool in a representative benchmark

- Define the criteria to sleect the benchmark
- · Derive study cases and apply the tool to those
- Apply the tool to the benchmark

ESA-i4GNC (Enhanced Safe AI for GNC) Framework

Framework definition

ESA-i4GNC tool

- Implement the architecture in a systematic and structured manner
- Allow the implementation of diverse algorithms: model-based & data-driven
- Requirements satisfaction
- Support and manage models with different levels of fidelity/complexity
- Object-Oriented Programming (OOP)

Framework definition

Framework definition

Libraries and additional functionalities

Additional functionalities:

- **esai4gnc_install**: installs the tool by adding the necessary files to the MATLAB path
- esai4gnc_clean: cleans the tool by removing all the unnecessary files generated while running the tool (cache, slprj,...)
- autoDoc_ESAi4GNC: automatically documents the tool using the M2HTML tool, generating HTML files
- **Profiler**: provides the profile execution time when initializing tool and running any simulation

Libraries:

- · CVX
- MPT 3.0
- S-TaLiRo Runtime Verification
- M2HTML
- RL Coach
- Other Python libraries, e.g.
 juliacall

Examples

Function Name	<u>Calls</u>	<u>Total Tin</u>	ne <u>Self Tim</u>	e* Total Time Plot (dark band = self time)					
Framework.Framework>Framework.runSim	1	18.705 s	5.424 s						
run	3	9.01.9 -	0 ບປລອ ຄ						
Plant>Plant.plot	1			IC_CaseStudy2 (C		me:	1.053 s	5)	
Plots	1	8.02 scri	ipt in file <u>D:\</u>	un-2022 17:05:42 using performar Jsers\jobb\Al4GNC_jobb\ESA-i4G		4GNC_g	it\Tutorial\E	SAi4GNC	CaseStudy
saveas	16	5.78: Cor	oy to new wir	ndow for comparing multiple runs					
general\private\saveasfig	16	5.//	Refresh						
savefig	16	5.77	Show parer				functions		
sf_sfun (MEX-file)	340	2.22] Show Code	Analyzer results 🔽 Show file c	overage 🗹 Sh	ow funct	ion listing		
sfprivate	663		Parents (calling functions)						
FigFile.write	16	1.00		e most time was spent					
cgxeprivate	62	1.68 Lir	ne Number	Code		Calls -	Total Time	% Time	Time Plot
<u>sf</u> (MEX-file)	7564	1.62 41		frm.runCompDesign(1,2,[]); %	1 (0.281 s	26.7%	
staow\private\error_check_current_dir	5	1.61 33		frm.addComponent('Gui r	efTraj'	1 (0.030 s	2.9%	
staw\private\set_autoinheritance_info	4	1.60 34		frm.addComponent('Ctrl	Alt RLY	1 (0.011 s	1.0%	-
\compilerman>compute_compiler_info	1	1.58: 36		frm.componentList();	_	1 (0.002 s	0.2%	
stateflow\private\compilerman	27	1.57 29		frm.plantList();		1 (0.002 s	0.1%	
:gxe\private\compilerman	37	1.57: All	other lines			().727 s	69.0%	
erman>get_selected_compiler_config	1	1.56 ¹ To	tals				1.053 s	100%	
\generate_code_for_charts_and_machine	1	1.10							
coder\private\construct_module	2	1.05: Chi	ildren (calleo	d functions)					
stateflow\private\targetman	1	1.05	inction Name		Function Type	Calls	Total Time	% Time	Time Plot
itateflow\private\infomatman	4	1.05		mework>Framework.Framework	class method	1	0.726 s	69.0%	
ESAi4GNC_CaseStudy2	1	1.05.		Framework.runCompDesign	class method	1	0.281 s	26.7%	
:tateflow\private\targetman>code_method	1	1.05:	k.Framework	>Framework.addComponent	class method	2	0.040 s	3.8%	•
:tateflow\private\infomatman>save_method	1	1.04	Framework>	Framework.componentList	class method	1	0.002 s	0.2%	
oder\private\compute_chart_information	6	1.03: Er	amework.Fra	mework>Framework.plantList	class method	1	0.001 s	0.1%	
ta te\targetman>method nag wrapper	2	1 03. En	amework.Fra	mework>Framework.runSim	class method	1	0 s	0%	
		Se	elf time (built-	ins, overhead, etc.)			0.002 s	0.2%	

Auto-documentation

Matlab Index × +				
→ C 🍇 🙀 Location: file:///D:/Users/jobb/Al4GNC_jobb/E	ESA-i4GNC tool/ESA-i4GNC v8/AutoDoc ESAi4GNC/index.html			
		lav		
	Matlab Inc	lex		
latlab Directories				
SA-i4GNC v8\ESA-i4GNC\+ESAi4GNC				
ESA-i4GNC_v8/ESA-i4GNC/+ESA-i4GNC	+AI			
ESA-i4GNC v8\ESA-i4GNC\+Implementations\-				
♦ ESA-i4GNC v8\ESA-i4GNC\+Implementations\-				
ESA-i4GNC_v8\ESA-i4GNC\+Implementations\				
ESA-i4GNC_v8\ESA-i4GNC\+Implementations\-	+Modelling			
ESA-i4GNC_v8\ESA-i4GNC\@Framework				
ESA-i4GNC_v8\ESA-i4GNC\Lib				
 ESA-i4GNC_v8\ESA-i4GNC\Lib\NN ESA-i4GNC v8\ESA-i4GNC\Lib\RLCoach 				
 ESA-i4GNC_voiESA-i4GNC/Lib/REcodecii ESA-i4GNC v8/ESA-i4GNC/Models/Guidance/ 	Gui SuccCovy			
ESA-i4GNC v8/ESA-i4GNC\Models\Plants\RLV				
ESA-i4GNC v8\ESA-i4GNC\Models\Plants\RLV				
ESA-i4GNC_v8\Tutorial				
ESA-i4GNC_v8\install				
Matlab Files found in these Directories				
AI	ESAi4GNC runPlantBCtrl main	NonLDynUEN	esai4anc install	
™ AeroR	ESAI4GNC runRCSPlant main	NonLDynUENR	euler2guat	
Analysis	FM FT	Opt6dofLanding	flexible modes	
lasicCtrl	FM FTR	Plant	flexible_modesR	
CLauidance	Framework	Plots	getCkptDir	
Component	Gui SuccCovx	Plots	installMatlabEngine	
ComputeFaR	Gui refTraj	PlotsMC	installMatlabEngine CS3	
ControlNav	Guidance	PlotsMC	install mp3	
Ctrl PID	InstallRLCoach	RLCoach	quat2angle	
Ctrl_RCS	Jacobian6Dof Tin Complete scaling1	Thrust Body	quat2angleR	
Ctrl shunt	LinearModel	Thrust BodyR	saveRun	
SAi4GNC_Gui_example1_main	MVM	WGust	setParameters	
SAi4GNC Gui example2 main	MVM phase	WGustR	setParameters	
SAi4GNC Gui example3 main	MVM staliro	autoDoc ESAi4GNC	setParameters Gui	
SAI4GING GUI examples main		-		
ESAI4GINC_GUI_examples_main	Modelling	checkComponent		

Benchmark

Benchmark Reusable Launch Vehicle

Reusable Launch Vehicle

- Phases of interest:
 - First stage entry
 - Descent and precision landing
- Focus was given to the demonstration of the techniques and the ESA-i4GNC tool
- Parameters from Falcon 9 and RETALT RLV, although the techniques are <u>applied to RETALT</u> <u>RLV</u>:
 - > Wind model
 - > Aerodynamic model

Benchmark Selected Benchmark

- 6 DOF Landing Burn Scenario of a Reusable Launcher Vehicle (RETALT)
 - Realistic Aerodynamics DB
 - Actuator (TVC) model
 - Wind model
 - Flexible modes
- Baseline GNC:
 - SCVX guidance
 - Ideal navigation
 - PID controller

		Initial Conditions		
Mass [kg]	Position [m]	Velocity [m/s]	Attitude [q]	Angular vel. [rad/s]
80334	[2874,-1288, - 82.2]	[-189.9, 151.3, 9.6]	[0.943, 0.006, 0.018, -0.329]	[0, 0, 0]

1 st Stage features	Value
Height [m]	71.2
Diameter [m]	6
Dry mass [kg]	59300
Propellant mass (incl. descent propellant) [kg]	621500
Specific Impulse SL [s]	401.6
Thrust SL [kN]	11453

LANDING BURN

Benchmark Proposed GNC Architecture

RLVs Challenges

To Support the Case Studies Definition

Case Studies

Case Studies Definition of Baseline Case Studies

Case Study #	Description	
1	RL-based adaptive control to regulate the attitude in response to disturbances	
2	RL-based adaptive control to regulate the trajectory in the aerodynamic phase with respect to the reference trajectory	inesc id
3	NN approximation of the QUEST algorithm for three axis attitude estimation from vector observation data	ļ
4	Sparse regression, compressed sensing, compressed learning and potential connections with LFT modelling	ASC
5	Learning-based model predictive control (LBMPC) for attitude control	
6	IQC formalism for NN-based attitude control verification	
7	Learning-based Kalman filtering for attitude estimation	
8	Deep RL for trajectory tracking	deimos elecnor group

In this presentation...

Deep RL for trajectory tracking (Case Study #8)

<u>GOAL</u>: Implementation of a **Reinforcement Learning** technique to address the **G&C** problem for the landing phase of a **RLV**

- On-board solution
- Address non linearities of the RLV dynamics
- Map sensors measurements to action commands

Implementation:

- RL Coach toolbox
- Agent: DDPG (Actor Critic)
- Environment: RETALT landing simulator

Approach:

• Incremental $1D \rightarrow 2D \rightarrow 3D$

1D vertical landing problem \rightarrow

Action = [Thrust] Observation = [altitude, velocity]

Case Study #8 2 DoF vertical scenario

2D vertica	l landing prob	olem 🔶	ction = [Thru oservation =				
Hyperpai	rameters sett	· · · · · · · · · · · · · · · · · · ·	/-Vt)horiz, yaw,	omega _{yaw}]			
Heat-up steps	Training steps	Steps btw evaluations	Actor/Critic Learning rate	Actor/Critic Batch size	Y	т/Cw	
5000	120000	10	0.0005/0.005	68/68	0.9	0.1/1000	
Penaliza target vo		L	Soolean conditions for p	ositive reward	20	an conditions for negativ	ve reward
2.5 2 (m) 1.5 1.5 1		North (21 10 25 5 5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	-		-20 40 (s) E paed -80	www.www.www.k	
ŭ .		1500			-100		

Case Study #8 Application of the Techniques – 2D with **rate limiters**

- Control the action rates instead of the action values
- The rates are integrated and feedback as input of the NN
- Initial conditions, upper and lower bounds for the integrators
- Penalization when the rate leads to violation of the action bounds

 $R = -|v - v_t| - 0.1 \cdot \left((T_c + \Delta t \cdot \Delta T) > T_{max} \text{ or } (T_c + \Delta t \cdot \Delta T) < 0 \right) \dots$

Case Study #8 Application of the Techniques – 3D with **rate limiters**

DEG-CMS-SUPSC03-PRE-12-E

Performance animation when considering the SCVX guidance:

Performance animation for the initial NN obtained:

Case Study #8 Animation comparison

Performance animation for the final NN obtained:

-1.5

Case Study #8 Verification results

- **97** % success rate (970 out of 1000)
- All the failed runs are related to the horizontal velocity
- Error always below 1.5 m/s

DEG-CMS-SUPSC03-PRE-12-E

etal Mass [kg]

6.8

0

- NN yields better **position accuracy**
- SCVX guidance re-computed each 5 sec better velocity accuracy

This indicates we are reaching a Pareto optimal set, with Deep-RL being a remarkable solution to the problem

MC Simulation	Quantity	Mean	Standard Deviation
	Fuel consumption [kg]	10304.019	158.48
Neural Network	Position accuracy [m]	3.957	1.4181
	Velocity accuracy [m/s]	2.89694	0.44976
	Fuel consumption [kg]	9763.39	69.13
SCVX, 5s	Position accuracy [m]	8.7947	0.40740
	Velocity accuracy [m/s]	1.54723	0.36812

Verification of the NN

Case Study #8 Neural Network V&V with nn_robustness_analysis

- NN trained for the 1D scenario
- Original NN presented: $[x.v v_t] \longrightarrow [Thrust]$
 - NN trained to learn the observation state
 - NN trained to learn *tanh* activation fun.
- Discrete time dynamics implemented
 - s(t+1) = A s(t) + B u(t) + C
- Greedy Simulator Guided partitioner
- CROWN propagator

Concatenated NN

Case Study #8 Neural Network V&V: Preliminary Results

- Blue dots: Dynamic propagation •
- Boxes: Reachable set
- 200 propagator calls

25

25

30

30

35

35

RCS1: negative rotation

RCS2: positive rotation

Case Study #8 Neural Network V&V: Final Results

• Smaller NN trained through supervised learning with the previous concatenated NN

Layer Name	Layer Type	Activation Function	Input size	Output Size
Input Layer	Linear	ReLU	2	16
Hidden Layer	Linear	ReLU	16	32
Output Layer	Linear	None	32	1

Alternative to Deep RL: Supervised Learning

•

٠

٠

٠

٠

•

optimal guidance

State

X

horizon

Description: Supervised Learning approach to train a NN with demonstrations of the

Model

Case Study #8 Supervised Learning Approach

3 hidden layers of 50 neurons each

deimos

Neural

Network

Imitation

Case Study #8 Supervised Learning Approach - Results

40

Sample

60

80

_⊖__ roll

→ pitch

 $\rightarrow - NN$

80

60

Sample

yaw

100

100

Comparison between expert guidance and NN output:

© Copyright DEIMOS

Way Forward

Way Forward - Maturation Plan & Roadmap

Deep Reinforcement Learning G&C

Points to improve	How to improve
Robustness to Wind	Include a sensor to estimate wind to provide measurements to the NN
Robustness to initial conditions	Increase the dispersion considered during RL training
Fuel Consumption	Modify the reward such that the consumption is reduced maintaining a good landing accuracy
RL hyperparameters fine tuning	Manual fine tuningOptimization problem to optimize the hyperparameters
Extension of the convergence analysis to the 3D scenario	Adapt the implementation of the robustness tool to handle the 3D scenario

• Application scenarios

- <u>In-Orbit Servicing</u> (IOS)
- <u>Active Debris Removal</u> (ADR)
- Entry, Descent and Precision Landing (EDL):
 - <u>Reusable Launch Vehicle</u> (RLV); Re-entry vehicles with <u>Inflatable Heat-Shields</u> (IHS)

Potential indicator: HIGH

- Remarkable results of the Monte-Carlo campaign
- The NN training can be repeated whenever the dynamics change
- Non-iterative algorithm with guaranteed computational time
- NN validation approaches exist

•

Way Forward - Maturation Plan & Roadmap

ML-based Guidance Optimization Surrogates

Points to improve	How to improve
Training performance	Test other optimizers in KerasTest other open-source libraries and tools
Expert guidance optimizer	 Consider a different sub-problem solver, such as ECOS Consider other external and open-source tools (SCP by Danylo Malyuta et al.)
Assess performance in simulation	 After training, test the NN in the high-fidelity simulator; Iterative design process may be necessary for tuning the expert guidance
Validation	 The validation tools used in other case studies may be used to validate the resulting NN

• Application scenarios

- <u>In-Orbit Servicing</u> (IOS)
- <u>Active Debris Removal</u> (ADR)
- Entry, Descent and Precision Landing (EDL):
 - <u>Reusable Launch Vehicle</u> (RLV); Re-entry vehicles with <u>Inflatable Heat-Shields</u> (IHS)

Potential indicator: HIGH

- Good results in the approximation of an online optimization algorithm
- The training process is typically easier than the Deep RL method, although it requires a very high number of expert demonstration
- NN validation approaches exist

٠

Conclusions

- **Very promising results** in the use of AI/ML/RL for complex GNC problems
- AI4GNC addresses 8 Case Studies considering an overall realistic RETALT RLV dynamics benchmark
- **ESA-i4GNC framework** developed in MATLAB/Simulink using an OOP approach and exploiting libraries in AI community
 - The framework SW will be published soon in GitHub

Stay tuned!!

Acknowledgements

The results presented have been achieved under funding by the ESA TDE programme with ESA contract No. 4000134108/21/NL/CRS. The view expressed in this presentation can in no way be taken to reflect the official opinion of ESA.

ESA Contact Point: joris.belhadj@esa.int DEIMOS Contact Point: paulo.rosa@deimos.com.pt

Trademarks "Elecnor Deimos", "Deimos" and the logo of Deimos (Elecnor Group) encompass Elecnor Group's companies of Aerospace, Technology and Information Systems: Deimos Space S.L.U. (Tres Cantos, Madrid, Spain), Deimos Space S.L.U. (Puertollano, Ciudad Real, Spain), Deimos Engenharia S.A. (Lisbon, Portugal), Deimos Space UK Ltd. (Harwell, Oxford, United Kinqdom), Deimos Space S.R.L. (Bucharest, Romania).