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Outline

1. All data points sampled on or near a d-dimensional unknown manifold

embedded in R™. How effective can DNNs learn the manifold structure?
(with Schonsheck@RPI, Chen@IBM, A. Hvarilla & W. Liao@Gatech, H. Liu@HKBU)

2. Each data point is a 2-dimensional manifold: Design spatially
convolutional operation on manifolds and conduct deep learning tasks
including surface registration, geometric information disentanglement,

point clouds classification and segmentation. (with Schonsheck@RPI, Tatro@RPI,
Jin@PKU, Dong@PKU)
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Deep Neural Networks

Al Breakthrough in Biology

Hldden layers
A feedforward network:

Fo(z)= fyooo fy—1-- 00 fi(z)

(
’0@1\,0

where each f;(x) = W;x + b; and o nonlinear activation, e.g. max{x,0} - 4" NN (
KN
v‘" e
N
Given {(x;,y;)}" ., Train:  min h(Fo(x i
ven { (3, y:) Fis @{Wl’b}n; o(Tk) k) '
For example, h can be squared norm for regression, or cross entropy for

classification.

Error backpropagation
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Curse of dimensionality

Deep networks have been very successtul in many applications.
f: X —-R
F: X =)

X is often high dimension, or even a functional space.

Approx. functions:

Approx. maps (operators):

- Deep neural networks preform reasonably well. For instance, in the ImageNet
challenge, the ambient space dimension m = 224*224*3.

. uniformly sampled in [0, 1] The expected distance to any &

: 1/m
E{min; || — x;||} > 2(m+1)( )

, sample size needs n 2> 1/e™

- Consider {z;}7

To achieve accuracy €

n=100 n=1000 n = 10,000 | n=100,000
m=1 | 25 x1073 | 25 x10~% | 25 x10~> | 2.5 x10~°
m=20 0.37 0.34 0.30 0.26
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Low dimensional models

Data points sit in a low-dime coherent structure in R™  pope et al
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Rank in neighborhoods

It is commonly believed that DNNs can automatically learn the low-dimension structure

I R

N Consider a data set {x;}"_, sampled on or near an unknown d-dimensional manifold
o/ M c R™. How effective and robust can DNNs learn M?
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Some literature

- Convectional manifold learning methods (not DNN based methods)

A series of works on manifold learning have been effective on linear dimension reduction of data, including
IsoMap (Tenenbaum et al., 2000), Locally Linear Embedding (Roweis and Saul, 2000; Zhang and Wang,
2006), Laplacian Eigenmap (Belkin and Niyogi, 2003), Diffusion map (Coifman et al., 2005), t-SNE (Van der
Maaten and Hinton, 2008), Geometric Multi-Resolution Analysis (Allard et al., 2012; Liao and Maggioni,
2019) and many others (Aamari and Levrard, 2019). As extensions, the noisy manifold setting has been
studied in (Maggioni et al., 2016; Genovese et al., 2012b,a; Puchkin and Spokoiny, 2022)

- DNN-based methods. Approximating functions or mapping on R? or a known manifold

In order to justify the performance of deep neural networks, many mathematical theories have been
established on function approximation (Hornik et al., 1989; Yarotsky, 2017; Shaham et al., 2018; Schmidt-
Hieber, 2019; Shen et al., 2019; Chen et al., 2019a; Cloninger and Klock, 2021; Montanelli and Yang, 2020;
Liu et al., 2022a,c), regression (Chui and Mhaskar, 2018; Chen et al., 2019b; Nakada and Imaizumi, 2020),
classification (Liu et al., 2021), operator learning (Liu et al., 2022b) and causal inference on a low-dimensional
manifold (Chen et al., 2020).

R. Lai@ RPI



Dimension reduction and deep generative models

- Principle component analysis

Consider a data set {x1, -+ ,x,} C R™ sampled from a given distribution
¢. Compute d principle components uq,--- ,ug € R™. Given x ~ £, PCA x2
tells us

d
E X, U.k.
k=1

Encoding: E:R™ — R< E(x) = ((x,u1), - ,(x,uq)) N
Decoding D :R¢ —» R™, D(z1,-+,2q) = Zzzl Z Uk

< AUtO'enCOdeI‘S [Bourlard & Kamp’98, Hinton & Zemel ’94, Liou et al’14], Variational al,ItO-enCOderS [Kingma & Welling’13]
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Latent space structure v.s. Data manifold structure

Given a data set sampled on a double torus, performance of AE and VAE using a flat latent space
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Latent space structure v.s. Data manifold structure

Data manifold Latent space Encoder
Observations:
| 10,2m) (cos(2), sin(2)) o2
1. A flat domain as the latent space can -—Xa
not cover data manifold well; 0 ) P
1 chart

2. A higher dimension latent space

generates undesired data; ‘ (CoS(2), SIN@))(csrss),
-5, Tt+d
: : : (-c0s(2), -sin(2)) (-5,n+s)
3. Representation with topology breaking

may introduce big metric distortion.

(-6, 1+d) U
(-6,TT+6)
Structured latent space is needed. 2 charts
Spherical latent space: Xu-Durrett’18, Davidson et al.’18, Rey et al’'19
Closed path: Connor-Rozell’19, |
Lie groups (e.g SO(3)): Falorsi et al’18, ot
Diffusion geometry: Li-Lindenbaum-Cheng-Cloninger’19 -~

NMAZTENR
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Our objectives

Consider {x;}_, sampled on a compact d-dimensional manifold M C R™ with possible noise

Empirical Risk (ER) minimization: (K, D) = arg mln " Z lx; — D o E(x;)|I”

Approximation Error:  The smallest possible error ||x — D o E(x)|| for all test data x € M

Generalization Error:  Given a minimizer (E, D) from ER, consider ||x — D o E(x)|| for all test data x € M

\ - Existence of such an network (network structure) for a data manifold?
l& - Error/network complexity depends on the intrinsic dimension d? Target

B{ - Computational tractable models? Approx. Error

Generalization Error

- Robustness to noise? )
Best model

ER minimizer

Optimization Error

Initial guess

Learned model

"* * Optimization

The space of
neural networks

R. Lai@ RPI 10



Topology requirement under faithful representation

Definition 1 (Faithful Representation). An auto-encoder (Z;E,D) is called a
faithful representation of M if x = D o E(x),Vx € M. An auto-encoder is called
an e-faithful representation of M if sup |[x — D o E(x)|| < €.

Encoding'

Decoding
T(M) = inf gllx —yll.

xeM,ye

Medial axis G = {y eER"|[dp#geMstlly—pll=Iy-qll= xiéljallx = yll}
Not necessarily

A manifold with a small reach can “bend” faster than the one with a large reach. For
example, a plane has a reach equal to infinity. A hyper-sphere with radius r has a reach r.

Theorem 1. (Schonsheck-Chen-Lai) Let M be a d-dimensional compact manifold. If
an auto-encoder (Z;E,D) of M is an e-faithful representation with € < t(M), then
Z and D(Z) must be homeomorphic to M. Particularly, a d-dimensional compact
manifold with non-contractible topology can not be e-faithfully represented by a plain
auto-encoder with a latent space Z being a d-dimensional simply connected domain
in R

R. Lai@ RPI 11



Differential manifold point of view

A manifold is a topological space locally homeomorphic to a Euclidean domain.

o Charts {(Mg, ¢a)}a satisfying M =J_, Ma
e Coordinate map: ¢, : M, — Z,

e Transition functions:

Dap : Pa(Ma N Mg) = dp(Ma N Mpg)

Machine learning:

e M: data manifold

= -1
Z; Ppo:= PaPp Z.
e Z,: Latent space - .
e ¢,: Encoders F, approximated by DNNs [Partition of Unity]
1. Only a finite number of the functions in {pg }xex are nonzero near x
e ¢_1: Decoder D, approximated by DNNs and Yex pi(x) = 1.

2. Assemble from local chart: f(x) =, i pr(x)f(x)

R. Lai@ RPI 12



Universal Manifold Approximation

Theorem 1 (Schosheck-Chen-Lai). Consider a d-dimensional compact data manifold
M C R™ with reach t. Let X = {x}_, be a training data set drawn uniformly randomly
on M. Forany 0 < € < 7/2, if |X| ~ O(—de ?log €) then there exists a Chart Auto-
encoder (E,D) = argming p f(0; X) = % S lxi = D o E(x)||* e-faithfully representing
M, namely

sup [|[x —D o E(x)|| < €.
xeM

Moreover, the encoder E and the decoder D has at most O(Lmde‘d‘dz/ 2(— 10g1+d/ 2 €))
parameters and O(—d* log, €/2) layers.

Step 1. X = {x;}’_, forms €/2-dense (e < 7/2) sampling if |X| >= 0(—d€_d log e). [Niyogi-

i

Smale-Weinberger’08]

Step 2. Representing simplicial maps locally. Consider a geodesic neighborhood
M (p) = {x e M |d(p,x) < r} around p € M. For any 0 < € < (M),
if X = {x;}_, is an €/2-dense sample drawn uniformly randomly on M,(p), then
there exists an auto-encoder (Z,E,D) = argmin E,D Y ||x;—DoE(x;)||? satisfying
SUP e, () X — D o E(X)|| < €.

Step 3. Gluing local results through partition of unity.

R. Lai@ RPI 13




Nonparametric analysis and Generalization bound under noisy input (with H. Liu, A. Havrilla, W. Liao)

Consider a training data set S = {(x;,Vv;)}/~; where the v;’s are i.i.d.
samples from a probability measure on M, and

X; = V; T+ W;

are perturbed from the v;’s with independent random normal noise w; &€
Ty- M (the normal space of M at v;) satisfying ||w;||2 < ¢ < 7. We denote
the distribution of all x; by .

Our goal is to learn an encoder E : M(q) — RO and the corresponding
decoder D : RO — RD by minimizing the empirical mean squared loss

PN 1 —

(D,E) = argmin —Z v — Do E(x;)|3,

DeFRv-EeFgy ' i=1

for some network function classes Fa and Fipy given by properly designed
network architectures.

R. Lai@ RPI
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Extension: Generalization bound under noisy input (with H. Liu, A. Havrilla, W. Liao)

Theorem (Informal). Suppose the encoder & : RP? — RO and decoder 2 : R4 — RP network

architectures are properly set. Let & and 2 be the global minimizer of the empirical risk. We have
ESEXNWH.@ 0 &(x) — m(x)||2 < CD?log? Dn~#2 log* n

where C is a constant independent of n and D, and number of layers O(log2 n+log D), width O(Dnd;b)
and number parameters O(Dnd;:lr2 log®n + D log D)

o Given accuracy e, data size n ~ e~ (4+2)/2 npetwork parameters O(e~%/?)

e Robustness noise on normal directions

e For noise with tangential components with 2nd moment bounded by ¢?. We can have

EsEx||D o E(x) — v|2 < C(D?log® D)n~ 72 log* n + Cy0?

EsExry [HD E(x) — 7(x)|3]

1 ~ ~ ~ o~
=2Es |~ Z; ID o E(x;) — 7(x)||%| +EsExr [HD o E(x) — m(x)|| ] — 2Fg Z ID o E(x;) — 7(x:)|3] -
T, T,
Bound Approximation error Bound Variance through the covering number

R. Lai@ RPI 15



Network Architecture: A unsupervised method

Chart Predictor P

|

& O
3 3 m
O e 3 3
E = % ®
S S s o Output
Input S 8"'_" & O =: Dart)a
(<] 0 = o} >
Data = 3'-!.] u:JE 8_9; o «Q y
X o] S o ~ w)
o EO - g
9 e = o
L o w) o
® 0O @
0 =
C o
S 3
@

e Chart prediction {p,} is approximated by a DNN

e Write y, = DoD,oE,oE(z), define e, = ||z—y.||* and an internal label £, = softmax(—e,).
Then the Chart-Prediction Loss is given by:

N
,CCP(ZC, @) = (moin ea) — Zeﬂ log(pg)
B=1

R. Lai@ RPI 16



Regularization and pre-training

Lipschitz regularization Denoting the weights of the k' layer of E, as WF, we
propose the following regularization on the decoder functions for a K-layer network:

7szp — maXH HWkHQ T = Z H HWBHQ

k=1 51k1

Pre-training

e Applying furthest point sampling (FPS) scheme to select N data points. Then we
assign each of these data points to a decoder and train each one to reconstruct.

e Train the encoder such that x, is at the center of the chart space U,,.

e We further define the chart prediction probability as the categorical distribution
and use it to pre-train the chart predictor.

N
Linit(2s) = |25 — Dg 0 B o E(ag)|? + |Eg 0 B(zg) — [5)]2 + 3 das log(pa).

a=1

R. Lai@ RPI 17



lllustrative example: Effects of Lipschitz Regularization

With Lipshitz Regularization

100 100, n |
SQ' 0. 04
0. v :
( y :.r"" -. - p /
, 104 '
50 » %0 , 100
0 ~ 50 0 ,
50 05.3 =50 0

=100

Zod

=100 "'w{ a

Latent space -50 ]

=

.1

>, |
» 100
100 100 | 100
0 0 . 0
100 400

=100 -100

100 -10

No Regularization
1040

Figure 1: Left: Chart latent space. Top: Model with Lipschitz regularization. Bottom: Model
without Lipschitz regularization.

R. Lai@ RPI
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lllustrative example: Learning charts

. Ch.art 1

0.5 0.5 Chart2 0.5 Chart3 0.5 — Chart4 0.5 All Together
0 } 0 0 0 0
05— 05— Q5 05— 0.5 @ -
-04-02 0 0204 -04-02 0 0204 -04-0.2 0 0204 -04-02 0 0204 -04-02 0 0204
Partition of Unity
1 i I | I i | I I I |
——Chart 1
Chart 2
0.5 Chart 3
——Chart 4
0 ' : : ' —— ]
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Figure 1: Top: The first four are individual charts and the last one 1s a concatenation

of them by taking the max of chart probabilities p,. Bottom: Variation of p, for each
training point on the manifold.

R. Lai@ RPI
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lllustrative example: Automatic Chart Removal

Initial Prediction

00V

Trained et

. Q . N

Figure 1: Top: Pre-trained charts. Bottom: Final charts after training.

R. Lai@ RPI
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lllustrative example: VAEs do not generalize for double torus

1 chart
Data Manifold 2D latent space

g K

-ﬁ :"m.ll‘- -;"
I-"‘ R
;}l y "'.'

- .ﬁ’. ,‘
;'-llll--E ’
-: o #

- L

1 chart 4 charts
3D latent space 2D latent space

Figure 1: Left: Data on a double torus. Middle two: Data auto-encoded to a flat latent space. Right:

Data auto-encoded to a 4-chart latent space.

Sampled * Chartt

Chart2
® Chart3
Chart4
Charts
Chart6
Chart7
Chart8
® Chart9
Chart10

Patch Prediction

Figure 1: Left: Points sampled from high probability regions. Right: Charts after taking max.

R. Lai@ RPI
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Robust to noise on normal directions

Normal Noise

3.0
® Squared Test Errors
~ Fit Line, Slope: -0.528
25 1 === Min Error: 0.872
3]
v
i
2
]
— |
ul
0.5 Ll Ll Ll L Ll Ll L
450 475 500 525 550 575 600 625 650
log(n) Samples
Pyramid

(d) Genus-3 pyramid (e) Genus-3 with normal noise (f) 8-chart reconstruction

ES]Exer:@ 0 &(x) — m(x)||2 < CD?log? Dn~ 7 loghn
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Human Motion Data

Ground Truth

o
-—

o
o
o

i

Step size in Latent Space

0.1 Eroximity‘ of Latnet Representations

—— Auto-Encoder
—VAE

CAE

MML

\mw mw mr'f TR Y

0

100

Frames

(a)

300

400

Charted Auto-E #, {=| {" () © 1}

Feature Value

1
w

1
f =N

Standard Auto-Encoder Variational Auto-Encoder
--&‘L . -
o T —

Single Feature Value

= Auto-Encoder
=\ AE

CAE
—— Ground Truth

100

200
Frame

(b)

300 400

-

gseconstruction Error in Gait Sequence

FN
o

L2 Error

i

0 100 200 300 400
Frames

(c)

Figure 1: Auto-encoding human motion sequence. (a): Distance between consecutive frames
in the latent space. (b): Value of a single feature. (c): Reconstruction error for all features.
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Comparisons

Reconstruction Error &0, = % 2uxeDy,, [1X — yII%.
Unfaithfulness Let {z;}"_, € Z. The unfaithfulness is Sunfaimfu = + Yieq Milyen,,, [IX — D).

Coverage Let{" =|{x"|x" = argmin,ep, . |lx— D(z)|I*}|. Then, we define the coverage Scoverage = /L.

Table 1: Reconstruction error and other metrics on MNIST and fashion MNIST.

y 60 '\ g 69 7009 4000 Model | Charts | Latent Dim Param. Recon. Error | Unfaithfulness | Coverage

2228322222232 22 MNIST
PP YAIN T rveds v 1 4 803,028 | 0.0614 =.002 | 0.083 +.021 | 0.83 « .01
R SR A VAE 1 64 938,088 | 0.0512+.002 | 0.070 +.011 | 0.94 + .01
¥17171179812%777 1 8 2,535,028 | 0.0564 +.001 | 0.085+.008 | 0.91 +.00
7999439934049 4499 1 64 2,625,088 | 0.0391 +.002 | 0.081 +.011 | 0.96 + .01
4 4 601,452 | 0.0516 £.001 | 0.069 =.019 | 0.92 + .01
CAE 4 16 635,196 | 0.0409 +.001 | 0.065+.018 | 0.94 + .01
32 16 2,610,120 | 0.0290 +.001 | 0.043 +.012 | 0.98 + .01
32 32 2,924,808 | 0.0289 +.002 | 0.045 +.011 | 0.98 = .01

FMINST
1 8 893,028 | 0.0575+.001 | 0.016+.021 [ 0.80 + .01
VAR 1 64 938,088 | 0.0568 +.003 | 0.029 +.034 | 0.95 + .01
1 8 2,535,028 | 0.0474 +.001 | 0.014 +.008 | 0.92 + .00
1 64 2,625,088 | 0.0291 +.006 | 0.021 +.011 | 0.92 + .01
: : | 4 4 601,452 | 0.0409 +.001 | 0.010 =.001 | 0.90 + .01
‘ g : : { ; ' ; : : CAE 4 16 635,196 | 0.0301 +.001 | 0.010 +.001 | 0.90 + .01
32 16 2,610,120 | 0.0190 +.001 | 0.016 £.001 | 0.97 =.02
FMNIST 32 64 3,554,184 | 0.0177 +.002 | 0.007 =.021 | 0.97 + .02
24




Ongoing/future applications

- Learning manifolds and functions simultaneously (submitted )

Can successfully differentiate nearby but disjoint manifolds and intersecting manifolds with
only a small amount of supervision.

- Operator Learning and Nonlinear Model Reduction (submitted )

Theoretical analysis and practical algorithms for operator learning in the latent space.
- Adversarial training (submitted)

Enhance the robustness of DNNs by combining with learning data manifold structure

R. Lai@ RPI
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Manifold-structured data in 3D

3D modeling
Image Processing w i e 1,\ 7Y w
Medical Imaging ' |

77E )
» z
) )y Data from XYZT Lab

| TOSCA Data

R. Lai@ RPI Non-isometric Shape Matching 26



Convolutional Neural Networks

- Shift invariance is crucial

(f *k)(x) := fR k(x —y) f(y)dy Fo(z) = fi(fa1 - fr(z;wi);ws) - ;wy)

C3: f. maps 16@10x10

Inputimage Convolution Feature map iNPUT Clfsstonmane $4:1. maps 16@5x5
Kemel " iy
~1 =1 =1
-1 8 -1
-_ 1 o 1 o 1_ ] Full oonAection ’ Gaussian connections

Convolutions Subsampling Convolutions Subsampling Full connection

LeNets [LeCun et al.]
Image from https:/timdettmers.com/2015/03/26/convolution-deep-learning/

- Aim at conducting CNN on general manifolds.

Challenge: a general manifold is not shift invariant

Method Filter Type | Support | Directional | Transferable | Deformable
Spectral [5] Spectral Global v X X
TFG [11] Spectral Global v X X
WET [40] Spectral Local v X X

O GCNN [31] Patch Local X v v
ACNN 3] Patch Local v v X
PTC Geodesic Local v v v

TABLE 1

Comparison on different generalizations of convolutional operator on general manifolds.

© Group-action based on homogeneous space. G/Gp [Chakraborty et.al, Tohen et. al. Kondor et. al.]

R. Lai@ RPI 27


https://timdettmers.com/2015/03/26/convolution-deep-learning/

Rethink Convolution
=00 = [ K= fordy

k(M\

—
~~~ XO —_— y
QXQ ~~~~
~~~/'V
k(x, y)

dv _ RENEEEN
ds 0 o

o (fxh)x):= fo kCxy)fG)dy
o (fxh)x0):= Jo k(xo,)f()dy

e The correspondence of k(x,y) on Q, to k(xp,y) on €, 1s provided from the
translation map between €, and Q.

R. Lai@ RPI
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Our method: Convolution on manifold via a parallel transportation [schonsheck-Dong-Lai]

M

Exponential Map
A unique geodesic curve 7y satisfying y(0) = x and v’ (0) = v.

expx(v) = y(1)

Parallel Transport
A tangent vector v at T,, M can be transported through:

( dxF () N dy'

Tk = =1....
7 dtx i 0, k n,

\ Dy x(0)e; = v

where Ff.‘j are the Christoffel symbols of the connection.

R. Lai@ RPI 29



Numerical realization using vector fields from distance functions [schonsheck-Dong-Lai]

Given smooth vector fields {ii', #i?}, we construct linear trans-
formation among tangent planes L(y); : TysyM — T,pM
satisfying:

1. L(y) is smoothly dependent on vy.

2. L(y)s = 1d.

3. L), o L)Y = L)L :
Parallel transport: V5V = limy_ +(L)E(Vy0) = Vy0))

The Eikonal equation |V f| = 1 for local frames

R. Lai@ RPI 30



Our method: Convolution on manifold via a parallel transportation

A compactly supported kernel function k(xy, -) : My, s — R can be extended on M: O

k(x,)) : Mys = R,y k(x(), expy, o PT o exp; 1(y))

Then, we define convolution as

£ k() = fM Ky )y = fM k(xor expay © P, 0 expr () dy

Original Translation Dilation Rotation Mixed

R. Lai@ RPI 31




Manifold registration using PTCNN

AARASAT ¥ RN

Tralnlng group, 70 surfaces Valldatlon Test

Surface registration

2 PTC with 16 kernels — &1

f j i j » >, —ReLu 2 PTC with 16 kernels — &2
Jiso ; > > ReLu

2 PTC with 16 kernels —— 816

Geodesic Error

o
©
T

ot
(]
T

o
N

o
o

PTCNet
ACNN
GCNN

A siamese neural network [Bromley94, Hadsell06, Mascil3]

Percent of Correct Correspondences
o
[3,]

0.4r g:-IMOT
1 € 0.3
E©) =5 )| 2L IFo(fh) — Folfi D + AZ max{0, - [Fo({f{}) - Fo({f} }>||M}2]
k=1 i 0.1
where ¢ is the number of training data set, Fg({ fl.k’+}) is the feature set on shapes similar to o 005 o o o2
the k" shape and Fg({ fl.k’_}) is the feature set on shape dissimilar to the k”* shape. Error

R. Lai@ RPI



Unsupervised geometric disentanglement for Surfaces via CFAN-VAE (Tatro-schonsheck-Lai’20)

Guass-Cordazzi equations

4
e We aim at design an unsupervised method to disentangle causs equations
o d extrinsic inf " EK = (I,5), = (02), + DT + DT = T Th, — (05)?
intrinsic and extrinsic information. \ﬁ FK = (T8). — (T8). + T T Ts
FK = (1), = (F), + Ty Dy = T T
GK = (Ty), = (Th), + Doyl + T = (Th)” — T T

alent, we characterize surface using its conformal factor
(I1st fundamental form) and normal feature (2nd funda-
mental form) as:

Codazzi equations

e Motivated by all genus-0 surfaces are conformally equiv- 3 ?

Ev — My = ZFulz) + m(Fuvv - Fuzft) _nruvu

my —ny = LT +m(T), — ) —nl,).

Intrinsic info. 1st fund. form

AI’@&(T ) ZTET;iET Area(T)n‘r
c; :=log Z — |, n;:=
” ZTET;iET Area(T)nT”

Tel';ier >
Extrinsic info. 2nd fund. form
] !5 io E !! !H 5 !” 9 !E§
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Geometric disentanglement and disentangled evolution paths

CFAN Conformal, Identity

Canonical Variable 2
o

-2 A
-2 -1

0 1 2

Canonical Variable 1

CFAN Normal, Identity

Canonical Variable 2

Canonical Variable 1

Canonical Variable 2

Canonical Variable 2

CFAN Conformal, Pose

Canonical Variable 1

CFAN Normal, Pose

Canonical Variable 1

This video dis

Source Target

iS ) Plays the power of disentang}ed interpolation in CFAN-VAE. Stills from
this interpolation can be seen in Figure 1. The top row displays the two meshes to interpolate
between. The second row shows the interpolated mesh from three different angles.

The color denotes the pointwise normalized conformal factor.Notice that the cycle is

Metric A/Pose A -> Metric B/Pose A -> Metric B/Pose B -> Metric A/Pose B -> Metric A/Pose A.

DFAUST: Evolution paths of fixing
pose and metric, respectively
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Geometric disentanglement and disentangled evolution paths

Source Target

This video displays the power of disentangled interpolation in CFAN-VAE. Stills from

this interpolation can be seen in Figure 1. The top row displays the two meshes to interpolate
between. The second row shows the interpolated mesh from three different angles.

The color denotes the pointwise normalized conformal factor Notice that the cycle is

Metric A/Pose A -> Metric B/Pose A -> Metric B/Pose B -> Metric A/Pose B -> Metric A/Pose A.

SMAL: Evolution paths of fixing
pose and metric, respectively
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Narrowband PTC on point clouds [Jin-Lai-Lai-Dong’22]

3

2.5
2
:
RS gt ST 05
(a) narrow-band (b) cross section (c) Distance function p

Figure 2: Illustration of a point cloud P sampled from the unit sphere. (a) shows the narrow-band
approximation (blue boxes) of part of P (in red). (b) 1s a cross section of (a). (c¢), (d) show the
distance function p and vector field {u.} ({Vpp(z)}) on the point cloud. We can see that distance
propagates from the bottom center to the top center reflecting the geometry of the sphere.
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Classification and Segmentation [Narrowband PTC, Jin-Lai-Lai-Dong]

Table 1: Comparisons of overall accuracy (OA) and mean per-class accuracy (mA) on ModelNet40
as well as comparisons in instance average IoU (mloU) and class average IoU (mcloU) on ShapeNet
Part. Models ranking first is colored in red and second in blue.

Modelnet40 ShapeNet part

Method OA(%) mA(%) mloU mcloU
kd-net|Klokov & Lempitsky| (2017) 91.8 88.5 82.3 77.4
pointnet Q1 et al. 7a) 89.2 86.2 83.7 80.4
SO-Net|L1 et al. a 90.9 87.3 84.9 81.0
pointnet++ Q1 et al. /b 90.7 - 85.1 81.9
SpecGCN Wang et al. a 92.1 - 85.4 -
SpiderCNN [ Xu et al. 92.4 - 85.3 81.7
pointcnn L1 et al. (20 92.2 88.1 86.1 84.6
DGCNN Wang et al. C 92.2 90.2 85.1 82.3
Ours 92.7 90.2 85.8 83.3
b
b e
vl b
i
/1 %
L 3 o
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Robustness test [Narrowband PTC, Jin-Lai-Lai-Dong]

Table 2: Comparisons of overall accuracy (OA) and mean per-class IoU (mloU) on S3DIS. Models
ranking first is colored in red and second in blue.

Convolution Type Method OA(%) mloU(%)
no convolution 78.8 41.3
- 48.9
3-d convolution 69.3 51.8
- 58.3
. . 82.5 52.8
geometric convolution OUrs 23 7 54.0

S3DIS covers 6 large-scale indoor areas from 3 different buildings for a total of 273 million points
annotated with 13 classes. This 1s a real-word scanned dataset without normal and with noise.
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Summary

- Inspired by differential geometry, we consider a multi-chart latent space to understand
the geometric structure of latent space in generative models. we theoretically show
structured latent space is necessary and provide approximation and generalization
bound on training data size and network size. We also show CAE is robust to noise.

- We proposed a spatial way of defining convolution on manifolds using parallel transport
which naturally incorporates geometry. This time domain definition enjoy flexibility to
handle isotropic/anisotropic diffusion. We demonstrate its applications in shape
matching, geometric disentanglement, point clouds classification and segmentation

Thanks for your attention!
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Some details

2.2 Neural networks

In this paper, we consider feedforward neural networks (FNN) with the rectified linear unit ReLU(a) =
max{a,0}. An FNN with L layers is defined as

f(x) = W -ReLLU (WL—l <o ReLU(Wlx + b1) R bL—l) + bg, (5)

where the W;’s are weight matrices, the b;’s are bias vectors, and ReLU is applied element-wisely. We define
a class of neural networks with inputs in R? and outputs in R? as

F(D,d;L.p,K,k,R) ={f : RP — R? | f has the form of (5) with L layers and width bounded by p,

L
1flleo < B, D IWillo + IIbilo < K,

=1
Al o e

where ||H|, , = max;; [H;;| for a matrix H and || - |lo denotes the number of non-zero elements of its

argument.

Theorem 3. Consider Setting 2. Let & : 9 be a global minimizer of (8) with the network classes Fy =
F(D,Cm(d + 1);Le,pe, Ke, ke, Re) and Fy = F(Cm(d + 1),D;L9,po, Ko, ko, Rg) where Cpy

O((dlogd)(4/7)%),
Le = O(log2n + log D), pe = O(Dn7%2), Kg = O((Dlog D)n¥2 log? n),
ke = O0(nT), Rg =O0(7), (19)
Ly = O(log®>n +log D), pgy = O(Dna¥2), K = O(Dna¥z log? n + Dlog D),
kg = O(n®7), Ry = B. (20)
We have
]ES]EXN,yH@ o &(x) — v|2 < C(D?log? D)n_a% log* n + Cy0? (21)

for some constant C' depending on d, 7, q, B, M,C and the volume of M, and 'y depending on 7,q. The
constant hidden in O depends on d, 7, q, B, M, Cy, and the volume of M.
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