Goals & Motivation	Frobenius Objects	Main results	Ongoing work

Frobenius objects in the category of spans and the symplectic category

Ivan Contreras

Amherst College

TQFT Seminar, IST Lisbon April 12th, 2023

Goals & Motivation ●000	Frobenius Objects	Main results 0000000	Ongoing work
Goals			

Based on joint work with Rajan Mehta and Molly Keller (*Rev. in Math. Phys (34) 10 (2022)*), Mehta, Adele Long and Sophia Marx (https://arxiv.org/abs/2208.14716 to appear in *Contemp. Math.* (2023)), and ongoing work with Mehta and Walker Stern.

Objectives of the Talk

- Frobenius algebras: 2D TQFT and symplectic geometry
- A toy (simplicial) model of the Wehrheim-Woodward construction
- Ongoing: The role of the symplectic groupoid in field theory: the Poisson sigma model
- 2-Segal (higher categorical) picture

Goals & Motivation	Frobenius Objects	Main results	Ongoing work
0000	000	000000	00

Motivation

- Correspondence between 2D TQFT and commutative Frobenius algebras
- 2 An intermediate step in quantization:

Goals & Motivation	Frobenius Objects	Main results	Ongoing work
0000	000	000000	00

The symplectic category

Definition

Wehrheim-Woodward's Construction '07

• Objects: Symplectic Manipolds

 Morphisms: (Formal) sequences of Lagrangian relation, strong transv. composition

- Idea: Span is a good set-theoretic model for Symp.
- Question: Can we study TQFTs with values in Span?

Goals & Motivation	Frobenius Objects	Main results	Ongoing work
0000	•00	000000	00

Frobenius Objects in C

Let $\ensuremath{\mathcal{C}}$ be a monoidal category.

Definition

A Frobenius object in C is an object $X \in Ob(C)$ and the following morphisms:

Goals & Motivation	Frobenius Objects	Main results	Ongoing work
	○●○	0000000	00
Frobenius Objects			

Some results about Frobenius objects

- β is unique: $\mathbb{P} := \bigcirc$ • (comultiplication):
- The natural co-unitality/co-associativity follows.

Goals & Motivation	Frobenius Objects	Main results	Ongoing work
0000	000	000000	00

Classification of Frobenius objects

Theorem (Dijkgraaf '89–Abrams '96)

Commutative Frobenius objects in $\mathcal{C} \longleftrightarrow \mathcal{C}$ -valued 2D TQFTs where

C-valued 2D TQFTs=symmetric monoidal functors 2Cob $\longrightarrow C$

Theorem (Cattaneo,C-,Heunen '13)

Special Frobenius objects in Rel—> Groupoid objects in Set

Here, Rel is considered as a dagger symmetric monoidal category. Also, one can recover topological invariants of surfaces via $Hom_{\mathcal{C}}(\mathbb{1},\mathbb{1})$ \diamond ρ \uparrow

Goals & Motivation	Frobenius Objects	Main results ●000000	Ongoing work
M/hat hannang	when C-Span?		

What happens when C=Span?

• Monoidal unit: $\{e\}$

Theorem (C-, Keller, Mehta '21)

Frobenius objects in Span $\leftrightarrow \rightarrow$ simplicial sets X_{\bullet} with conditions

Goals & Motivation	Frobenius Objects	Main results o●ooooo	Ongoing work

Conditions on the simplicial sets I

• (Unitality):

Lemma (C-, Keller, Mehta '21)

Let X_{\bullet} be a 2-truncated simplicial set. The unit axiom holds if and only if for all $\zeta \in X_2$

(1) If
$$d_2^2 \zeta \in im(s_0^0)$$
, then $\zeta \in im(s_0^1)$

(2) If
$$d_0^2\zeta\in im(s_0^0)$$
, then $\zeta\in im(s_1^1)$

Goals & Motivation	Frobenius Objects	Main results 00●0000	Ongoing work
Conditions on t			

• (Associativity): We introduced the notion of (i, j) - taco:

$$\mathcal{T}_{ij}\mathcal{X} = \{(\zeta,\zeta') \in X_2 \times X_2 | d_{j-1}^2 \zeta = d_i^2 \zeta'\}.$$

Goals & Motivation	Frobenius Objects	Main results 000●000	Ongoing work 00

Conditions on the simplicial sets III

Let
$$S\mathcal{X} = \{(x_{01}, x_{12}, x_{23}, x_{03}) \in (X_1)^4 \text{ such that}$$

 $d_0^1 x_{01} = d_1^1 x_{12}, \qquad d_0^1 x_{12} = d_1^1 x_{23}, \\ d_0^1 x_{23} = d_0^1 x_{03}, \qquad d_1^1 x_{03} = d_1^1 x_{01}\}.$

Lemma (C-, Keller, Mehta '21)

Associativity holds if and only if there is a bijection $T_{02}\mathcal{X} \cong T_{13}\mathcal{X}$ that commutes with the boundary maps to $S\mathcal{X}$.

The boundary maps $\partial_{02}: T_{02}\mathcal{X} \to S\mathcal{X}$ and $\partial_{13}: T_{13}\mathcal{X} \to S\mathcal{X}$ are defined by

$$\partial_{02}(\zeta,\zeta') = (d_2^2\zeta', d_2^2\zeta, d_0^2\zeta, d_1^2\zeta'), \ \partial_{13}(\zeta,\zeta') = (d_2^2\zeta', d_0^2\zeta', d_0^2\zeta, d_1^2\zeta).$$

Goals & Motivation	Frobenius Objects 000	Main results 0000●00	Ongoing work
Diagrammatics			
Frobenius	Simplified sets		
n: 1.3-> ×	K E So		
$\mu: \star \star \star \longrightarrow \chi$	$(d_{\tau}^{2}, d_{\tau}^{2})/\sqrt{M}$		
E : X fog	XXX X E for som 2.3 X X X E.3 (Nakageima automaph)	
Theorem (C-, Kelle	er, Mehta '21)		
These maps come	from a (truncated) simp	olicial set structu	re
M	X		

These condition are related to the axioms of 2-Segal sets in [Dyckerhoff-Kapranov] and [Galvez-Carrillo-Kock-Tonks]. Stay tuned...

Uar

Goals & Motivation	Frobenius Objects 000	Main results 00000●0	Ongoing work

Idea of the proof

Diagram chasing: Unitality

Final output: Simplicial set M

Goals & Motivation	Frobenius Objects 000	Main results 000000●	Ongoing work 00
Example			
		Ri.R.m E	
Group $G \longrightarrow $ nerve	of G:	6×6-, 6-, {·}	
(Twisted) co-units:	8.3		
	Ŵ		
	G {•}	5	

Theorem (C-, Keller, Mehta '22)

If G is finite and abelian, Σ_g is a closed surface with genus g:

$$Z(\Sigma_g) = \begin{cases} |G|^g & \text{if } \omega^g = \omega \\ 0 & \text{otherwise} \end{cases}$$

Goals & Motivation	Frobenius Objects	Main results	Ongoing work
	000	0000000	●○
Work in progress			

(with Rajan Mehta and Walker Stern)

- Symplectic groupoids as Frobenius objects in Symp. There is a 2D TFT (Poisson sigma model) that produces a symplectic groupoid via reduced phase space.
- Higher dimensions: 3D TFT (Chern-Simons).

Goals & Motivation	Frobenius Objects	Main results	Ongoing work
	000	0000000	○●

Thank you!