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Goals & Motivation
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Goals

Based on joint work with Rajan Mehta and Molly Keller (Rev. in
Math. Phys (34) 10 (2022)), Mehta, Adele Long and Sophia Marx
(https://arxiv.org/abs/2208.14716 to appear in Contemp. Math.
(2023)), and ongoing work with Mehta and Walker Stern.

Objectives of the Talk

© Frobenius algebras: 2D TQFT and symplectic geometry

@ A toy (simplicial) model of the Wehrheim-Woodward
construction

© Ongoing: The role of the symplectic groupoid in field theory:
the Poisson sigma model

© 2-Segal (higher categorical) picture
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Motivation
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@ Correspondence between 2D TQFT and commutative
Frobenius algebras

@ An intermediate step in quantization:

Cob —= Symp —— Hilb




Goals & Motivation

ooeo

The symplectic category
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What happens in Set?
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Theorem (Li-Bland, Weinstein '14)

WW ((Rel) = Span

@ ldea: Span is a good set-theoretic model for Symp.

@ Question: Can we study TQFTs with values in Span?
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Frobenius Objects in C

Let C be a monoidal category.

A Frobenius object in C is an object X € Ob(C) and the following
morphisms: o L l—> X (wit) (7))

./(: X oX — X (mul%;plicogkor\) (Y)
v X —> 1 (wuait) (b)
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Frobenius Objects |

A Frobenius object is special if

(l

Some results about Frobenius objects

@ [ is unique: ﬁf L=

N
o (comultiplication): W < ‘/\(\ :)\

@ The natural co-unitality/co-associativity follows.
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Classification of Frobenius objects

Theorem (Dijkgraaf '89—Abrams '96)

Commutative Frobenius objects in C <+— C-valued 2D TQFTs
where

C-valued 2D TQF Ts=symmetric monoidal functors 2Cob — C

Theorem (Cattaneo,C-,Heunen '13)

Special Frobenius objects in Rel— Groupoid objects in Set

Here, Rel is considered as a dagger symmetric monoidal category.
Also, one can recover topological invariants of surfaces via

Homc(IL, ]l) I <§ /T\
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What happens when C=Span?

Cm +¢Siaﬂ ®(OC‘UJQ‘]’

@ Monoidal structure:

@ Monoidal unit: %'k

o Homc({e},{e}) = {iso-classes of sets}={cardinalities }

Theorem (C-, Keller, Mehta '21)

Frobenius objects in Span +— simplicial sets X, with conditions
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Conditions on the simplicial sets |

o (Unitality):
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Lemma (C-, Keller, Mehta '21)

Let X, be a 2-truncated simplicial set. The unit axiom holds if and
only if for all { € X5

(1) Ifd3¢ € im(sy), then ¢ € im(s))
(2) Ifdg¢ € im(sy), then ¢ € im(st)
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Conditions on the simplicial sets |

@ (Associativity): We introduced the notion of (i, )— taco:

TiX = {(¢,¢) € Xa x Xo|d? (¢ = d?('}.

A (12)-+oco.
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Conditions on the simplicial sets ||

Let SX = {(X01,X12,X23,X03) - (X1)4 such that

Lemma (C-, Keller, Mehta '21)

Associativity holds if and only if there is a bijection Togo X = T13X
that commutes with the boundary maps to SX.

The boundary maps Opg : TooX — SX and 03 : T13X — SAX are defined by

602(C, C,) o (d§C,> d%c’ dg(:, d%cl)’
313(C, C’) o (d%C,, d(z)cl’ d(z)c’ d%C)
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Diagrammatics
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Theorem (C-, Keller, Mehta 21)

These maps come from a (truncated ) simplicial set structure

—2
M =
C/th 4

These condition are related to the axioms of 2-Segal sets in

[Dyckerhoff-Kapranov] and [Galvez-Carrillo-Kock-Tonks]. Stay
tuned...
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ldea of the proof
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Example

Group G — nerve of G: X6

(Twisted) co-units:

Theorem (C-, Keller, Mehta '22)

It G is finite and abelian, >4 is a closed surface with genus g:

[ G| ifwE=w
2(xg) = { 0 otherwise
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Work in progress |

(with Rajan Mehta and Walker Stern)

@ Symplectic groupoids as Frobenius objects in Symp.
There is a 2D TFT (Poisson sigma model) that produces a
symplectic groupoid via reduced phase space.

@ Higher dimensions: 3D TFT (Chern-Simons).
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Thank youl
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