

Piotr A. Sokół's doctoral dissertation research

ll Memming Park (박일;朴逸)

Group Leader @ Champalimaud Centre for the Unknown Associate Professor @ Stony Brook University Computational And Theoretical Neural Information Processing (CATNIP) = Neural Dynamics Lab https://catniplab.github.io/

Previous contributions to ML theory

Sokol, P., & Park, I. M. Information geometry of orthogonal initializations and training. ICLR 2020

On asymptotic learning signals in recurrent networks

 $s_{max}(J_{\mathbf{x}_0}^{\mathbf{x}'})$

Jordan, I. D., Sokół, P. A., & Park, I. M. (2021). Gated Recurrent Units Viewed Through the Lens of Continuous Time Dynamical Systems. Frontiers in Comp. Neurosci.

Arbitrarily long-range temporal dependency in supervised, unsupervised, reinforcement learning

No fundamental limit to the maximum temporal separation between the

On asymptotic learning signals in recurrent networks

- Interval reproduction
- Delayed discrimination
- Evidence accumulation
- Copy-memory task
- k-bit flip-flop task
- permuted MNIST

presentation of relevant information to the production of the desired behavior.

What kinds of neural dynamics support long-range temporal dependence learning?

On asymptotic learning signals in recurrent networks

Is a good memory structure enough?

On asymptotic learning signals in recurrent networks

nonlinear dynamics

Reservoir computing

Attractor dynamics

Chaos

edge-of-chaos

Neural manifolds

Oscillations

. . .

Meta-stable dynamics

Outline

- **Decouple** good memory and good learning signals
- Characterization of asymptotic behavior of learning signals
- **Necessary condition** on the dynamics for good learning signal
- **Initialization scheme** for artificial recurrent neural networks
- Implications for biological neural networks

On asymptotic learning signals in recurrent networks

neuro-Al o'clock

Learning to minimize error statistical learning theory

Two kinds of strategies:

- Jump between potential solutions to find one with small error.
 - Evolutionary algorithms, logical reasoning
- Use directional learning signal derived from the error to make incremental changes.
 - Gradient descent!

On asymptotic learning signals in recurrent networks

Rosenblatt's Perceptron (1957)

Widrow & Hoff's LMS (1960)

Gradient descent

Adjustable knob

Loss function

On asymptotic learning signals in recurrent networks

Gradient = learning signal

$$\frac{\partial L}{\partial W_i} = \lim_{\Delta \to 0} \frac{L(w_i + \Delta) - L(w_i)}{\Delta}$$

Limits on gradient representation Dynamic range matters

- Mathematically, as long as the information processing is differentiable, we can use gradient descent to learn.
- However, gradients must be represented biophysically or digitally.
 - Due to noise, small gradients are indistinguishable from zero. Due to saturation, large gradients are treated equally.
 - Due to finite precision in floating points, similar numerical issues arise in ANNs.
- Practically, if the gradients are too small or large in magnitude, gradient descent fails.

On asymptotic learning signals in recurrent networks

EVGP Exploding and Vanishing Gradient Problem

- Unfortunately, gradient signals often diverge or vanish in magnitude in deep neural architectures and recurrent networks as the chain of derivatives gets longer.
- EVGP in machine learning is tackled with various heuristics (next slide).
- EVGP in neuroscience has been discussed in the context of liquid state machines and chaos. [e.g. Mikhaeil et al. 2022; Laje & Buonomano 2013; Maass et al. 2002]
- Theoretical investigations have gaps. [Glorot & Bengio 2010; Bengio et al. 1994]

On asymptotic learning signals in recurrent networks

Approaches to resolve the EVGP

On asymptotic learning signals in recurrent networks

I. Memming Park & Piotr A. Sokół

11

Dynamical systems view Recurrent dynamics as an ODE

On asymptotic learning signals in recurrent networks

- parameter vector

Memory Q: What does X(t) say about X(t.) Sensitivity Q: How will X(t) change if X(t.) we perturbed?

Sensitivity: directional information _____ (infinitesimal)

On asymptotic learning signals in recurrent networks

Memory & Sensitivity

$$\frac{dx}{dt} = f(x(t), u(t), w)$$

$$x(t, x(t_0) + \Delta) - x(t, x(t_0))$$

$$\uparrow$$
difference between two different stimut to be stored in memory (not infinitesimal)

$$\delta(t) = \frac{\partial x(t)}{\partial x(t_0)} = \lim_{\Delta \to 0} \frac{x(t, x(t_0) + \Delta) - x(t, x(t_0))}{\Delta}$$

(adjoint=sensitivity) connects gradient over time

Robust memory comes with vanishing gradient

IEEE TRANSACTIONS ON NEURAL NETWORKS, VOL. 5, NO. 2, MARCH 1994

Learning Long-Term Dependencies with Gradient Descent is Difficult

Yoshua Bengio, Patrice Simard, and Paolo Frasconi, Student Member, IEEE

- 1. Infinitely long memory
- 2. Robust memory content
- 3. Non-vanishing/exploding gradient

- Existence of non-fading states
- Attractor dynamics

incompatible

Lyapunov exponents exponential time constant of perturbed variation

On asymptotic learning signals in recurrent networks

Characterizes asymptotic behavior of the gradients and sensitivity dynamics

Lyapunov exponents per attractor

- Within a basin of attraction, all states share the same fate and LE spectrum^{*}. (* under certain assumptions)
- Positive LE: asymptotically exploding gradient
- Negative LE: asymptotically vanishing gradient
- Zero LE: asymptotically marginally stable

What are the systems with many zero LEs?

On asymptotic learning signals in recurrent networks

Continuous attractor dynamics

- Persistent neural activity while memory content is held.

1D line attractor during memory period

On asymptotic learning signals in recurrent networks

• No flow within a low-dimensional manifold, attractive flow to the manifold.

Continuous attractor dynamics

- which resembles the familiar continuous Euclidean space.
- Issue: fine tuning problem

$$\tau \frac{\mathrm{d}x_i}{\mathrm{d}t} = -x_i(t) + \sum_i \left[\frac{1}{2} \right]_i$$

On asymptotic learning signals in recurrent networks

• In general, continuous attractor networks have an attracting manifold with constant (typically zero) flow. The "continuity" refers to the manifold structure

 $\frac{W_{i,j}}{f} x_j(t) + I_i(t)$

recurrent excitation has to counter the decay precisely

Stable limit cycle dynamics

sensitivity remains for infinite time

On asymptotic learning signals in recurrent networks

- infinitesimal and finite perturbations of the *phase* are not forgotten.
 - good sensitivity
- Inearized dynamics (thus the sensitivity and adjoint) are asymptotically periodic.
- 1-dimension non-vanishing/nonexploding gradient (1 zero LE)

[Sokół et al., Asilomar 2019]

Stable limit cycle dynamics

• adjoint / learning signal is periodic

 x_2

 x_1

sensitivity remains for infinite time

On asymptotic learning signals in recurrent networks

Quasi-periodic attractor dynamics

- Multiple independent nonlinear oscillators (with different frequencies)
- Does not suffer from the fine tuning problem (structurally stable)

On asymptotic learning signals in recurrent networks

Only two types dynamical structures Or their mixture

- Continuous attractors
 - D-dimensional **arbitrary manifold** = D zero-LE
- Periodic / quasi-periodic attractors
 - D-dimensional **torus** = D zero-LE
 - periodic / quasi-periodic learning signals
 - robust to perturbation of parameters

On asymptotic learning signals in recurrent networks

Conjecture

quasi-periodic toroidal attractor.

On asymptotic learning signals in recurrent networks

Application: initialization scheme for RNNs

- Next steps
 - find parameters for RNNs that exhibit stable limit cycle lacksquare
 - initialize RNNs in this regime and train on difficult tasks
 - ?
 - profit!
- Let's consider the tanh-RNN and GRU (gated recurrent unit) RNNs

On asymptotic learning signals in recurrent networks

[Jordan et al., 2018]

On asymptotic learning signals in recurrent networks

I. Memming Park & Piotr A. Sokół

numerically estimated Lyapunov/Floquet exponents

$$\tanh \left(\alpha \begin{bmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{bmatrix} \mathbf{x}_t \right)$$
$$= \begin{cases} \dot{\mathbf{x}} \\ \mathbf{x}(t+1) - \mathbf{x}(t) \end{cases}$$

- A region of parameter space corresponds to stable limit cycle.
- Discrete time system has more interesting features emerging from the failure of Euler integration connection...

On asymptotic learning signals in recurrent networks

continuous time

discrete time

Block diagonal initialization A collection of 2D uncoupled oscillators with random parameters

On asymptotic learning signals in recurrent networks

I. Memming Park & Piotr A. Sokół

30

Results:

Numerical experiments in discrete time

- Copy Memory task: remember a sequence of symbols during delay and spit them out later.
- Stable limit cycle initializations converges quickly and solves the task with no tricks.

On asymptotic learning signals in recurrent networks

Results:

Numerical experiments in discrete time

- Random-delay version: GRU with stable limit cycle init reliably found a solution.
- Final GRU solution shows no sign of oscillations!

On asymptotic learning signals in recurrent networks

Results: Numerical experiments in discrete time

TANH () top accuracy 96.99 vs coRNN's ("State-of-the-art") 94.68

On asymptotic learning signals in recurrent networks

Biological implications (we don't know how it could be implemented yet!)

- Oscillations at rest, multiple frequencies, not fully synchronous.
- Persistent form of eligibility trace is quasi-periodic.
 - In the absence of oscillations, long temporal relations should be hard to learn.
 - Resetting oscillations should disrupt learning.
- Input should have lasting desynchronization effect.
- Spiking neurons with baseline quasi-periodic firing pattern may learn temporal dependence better.
- Current issue:
 - Adjoint (back-propagating gradient) is not physically causal.

On asymptotic learning signals in recurrent networks

• (Biological implementation of forward sensitivity calculation may be implemented with a reference oscillation?)

34

Summary

- Only topology of dynamics matters for EVGP.
- Non-vanishing/non-exploding gradients can be achieved for non-trivial systems. Robust solution may only be achieved with stable limit cycles.
- Stable limit cycle initialization is effective in solving long temporal memory tasks with RNNs.

sensitivity remains for infinite time

On asymptotic learning signals in recurrent networks

<u>Piotr Sokol</u>

<u>Ian Jordan</u> Ayesha Vermani Matthew Dowling Tushar Arora Ábel Ságodi André Mendonça Yuan Zhao (NIH/NIMH) Josue Nassar Logan Becker (UTAustin) David Hocker (NYU) Diego Arribas <u>Eben Kadile (IGI TU Graz)</u> Kathleen Esfanany (MIT)

https://catniplab.github.io/

Special thanks to <u>Dongsung Ben Huh</u>, Rainer Engelken, Braden Brinkman, Giancarlo LaCamera, Yifan Sun

36