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When n = 4, Einstein metrics satisfy a remarkable
conformally-invariant condition.
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only depends on the conformal class

lg] = {u29 | u: M QRJF}.

Measures deviation [¢g| from conformal flatness.
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Restriction of 7, to Kahler metrics?

On Kahler metrics,

[ 1w - / iy

so any critical point of restriction must be
extremal in sense of Calabi.

Lemma. If g 1s a Kahler metric on a complex
surface (M 4 ), the following are equivalent:

e g 15 an extremal Kahler metric,

e B=DB(JJ);

o) = B(J-,-) is a closed (1,1)-form;

o g = g+ tB is Kahler metric for smallt.
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J-compatible conformally Kahler, FEinstein
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Uniqueness: Bando-Mabuchi 87, L. "12.
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Theorem (CLW '08). Suppose that M is a smooth
compact oriented 4-manifold which carries some
symplectic form w. Then M admits an (unre-
lated) Finstein metric h with A > 0

CPy#kCPy, 0<k <38,
— M~ or
S2 % G2

Diffeotypes: exactly the Del Pezzo surfaces.

For known h, can take w harmonic self-dual 2-form.

But this is not needed in above result.
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& (M) = {Einstein h}/(Diffeos x RT)

Known to be connected for certain 4-manifolds:
M = T K3,  HYD, CHyT.

Berger, Hitchin, Besson-Courtois-Gallot, L.
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Is Einstein moduli space connected?

Progress to date:
Nice characterizations of known Einstein metrics.

Exactly one connected component of moduli space!
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Theorem (L '15). On any del Pezzo M*, the
conformally Kahler, Einstein metrics are exactly
characterized by the property that

W (w,w) >0

everywhere on M, for w an arbitrary non-trivial
global self-dual harmonic 2-form.

Corollary. These known Einstein metrics on any
del Pezzo M* sweep out exactly one connected
component of the Einstein moduli space & (M ).
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Involves global harmonic 2-form w.

Peng Wu proposed an alternate characterization
using only a purely local condition on W ™.

Kahler = AT = Rw @ ReA2V
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Reasonably satistying result.
But W™ (w,w) > 0 is not purely local condition!

Involves global harmonic 2-form w.

Peng Wu proposed an alternate characterization
using only a purely local condition on W ™.

Wu's criterion:

det(W ) > 0.
Wu (2021): terse, opaque proof that <.
I (2021a): completely different proof.

L. (2021b): related classification result.
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Theorem B. Let (M, h) be a simply-connected
compact oriented Einstein 4-manifold, and sup-
pose that its self-dual Weyl curvature

W AT — AT
satisfies
det(W™") > 0
at every point of M. Then h 1s conformal to an

orientation-compatible Bach-flat extremal Kahler
metric g with scalar curvature s >0 on M.
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Let aw > 3 > ~ be eigenvalues of W™

0

Wr=1| g8

~

a+f+v7=0
a>0 <0, HW"#£0
det(W™T) = aBy

det(W") >0 = o has multiplicity 1.

Get almost-complex structure .J on M or M by
w=h(J").
Claim: (M, h) compact Einstein = .J integrable.
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satisfies
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metric g with scalar curvature s >0 on M.

Corollary. Every simply-connected compact ori-
ented Einstein (M*,h) with det(W1) > 0 is dif-
feomorphic to a del Pezzo surface. Conversely,
every del Pezzo M?* carries Finstein h with
det(W1) > 0, and these sweep out exactly one
connected component of moduli space & (M ).
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Theorem B. Let (M, h) be a simply-connected
compact oriented Einstein 4-manifold, and sup-
pose that its self-dual Weyl curvature

WT AT = AT
satisfies
det(W™") > 0
at every point of M. Then h 1s conformal to an

orientation-compatible Bach-flat extremal Kahler
metric g with scalar curvature s >0 on M.

Simply connected hypothesis <= b4 (M) # 0.

Excludes 5 types with my = Zg and b4 (M) = 0.
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One key idea underlying the proof:

By second Bianchi identity;,

h Einstein = W™ = (6IW)" = 0.

|
(OW)pea = =VaWhea = =Vierap + o Vas

Our strategy:

study weaker equation

SWT =0

as proxy for Einstein equation.
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Theorem C. Let (M, h) be a compact oriented
Riemannian 4-manifold with W™+ = 0. If

5v/2
T 2121
everywhere on M, then actually det(TV ") > 0.
In particular, of (M,h) is a simply-connected
Einstein manifold, then h s conformally Kahler,
and M 1s a Del Pezzo surface.

WH4£0 and det(W ') > W3

Key to all this:

Correctly understand equation W™ = 0.
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Equation 6™ = 0 implies Weitzenbock formula

0=V*VIVT + §W+ —6W T oW 4 oW AT

for W € End(A™), with respect to h.
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If h = f2¢ satisfies
SWT =0

then ¢ instead satisfies

S(fIWT) =0

which in turn implies the Weitzenbock formula

0= V*V(fWT) + ng+ 6 Wt oWt £ 2f WA

for fIVF € End(AT).
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We'll choose selt-dual 2-form w adapted to problem,

take L? inner product of the Weitzenbock formula

0= V*V(fIWH) + gfvw BT o W 4 2f[W AT

with w ® w, and integrate by parts. This yields:

0= / (0, V7V ()2 (w0, 0) =6+ () P21 PLf?] £ dp
o )
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Example. If 3 harmonic w with W™ (w,w) > 0,
then w = 0 everywhere. Choose g = f~2h so that

wlg = V2.

This ¢ is almost-Kahler. Above identity becomes
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v 2

This identity has many applications.

Example. If 3 harmonic w with W™ (w,w) > 0,
then w = 0 everywhere. Choose g = f~2h so that

wlg = V2.

This ¢ is almost-Kahler. Above identity becomes

0= / (812 — s (w,0) + 4 ()2
M

and this eventually turns out to imply

0> [ WHw.w)IVulf du
M
thus showing that ¢ must actually be Kahler.
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To analyze Wu'’s criterion:

Let o > 3 > ~ be eigenvalues of W™

@
Wt = 5
y

a+pf+v=0

a>0 <0, HW"#£0

det(W ™) = aBy

det(W") >0 = o has multiplicity 1.

So v = avj, : M — RT a smooth function. Set

f=a,73 g=fh=0,2h
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Eigenvalues of W™ carry a conformal weight:

For g = f—2h,

o 2o

So our choice of f = o~ 1/3 implies

0= al/s = 1

— af =1
Now choose w € AT so that
W) =aw, |uly=v2

after at worst passing to double cover M — M.
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wlp =2 = (Vew) Lw

det(WH) >0 —
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M

Because

(d+d*)? = Vv — oW +§

on AT,



1
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1
oz—/ \Vw\QdquS/ ldwl|? dpu
2JMm M

So Vw = 0, and ¢ is Kahler!
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Proof can also be made to work just assuming

1
This implies

W (Vew, Véw) < B|Vw|? < =a|Vwl|?

=] =

and is enough to force dw = 0.
Produces harmonic w with W™ (w,w) > 0.

Now use my earlier result!
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Riemannian 4-manifold with W™+ = 0. If
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In particular, of (M,h) is a simply-connected
Einstein manifold, then h s conformally Kahler,
and M 1s a Del Pezzo surface.
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