Einstein Manifolds,

Self-Dual Weyl Curvature, &

Conformally Kähler Geometry

Claude LeBrun Stony Brook University

Seminário Geometria em Lisboa Instituto Superior Técnico, March 16, 2023

Definition. A Riemannian metric h

$$r = \lambda h$$

for some constant $\lambda \in \mathbb{R}$.

$$r = \lambda h$$

for some constant $\lambda \in \mathbb{R}$.

"...the greatest blunder of my life!"

— A. Einstein, to G. Gamow

 $r = \lambda h$

for some constant $\lambda \in \mathbb{R}$.

$$r = \lambda h$$

for some constant $\lambda \in \mathbb{R}$.

As punishment ...

$$r = \lambda h$$

for some constant $\lambda \in \mathbb{R}$.

Mathematicians call λ the Einstein constant.

$$r = \lambda h$$

for some constant $\lambda \in \mathbb{R}$.

Mathematicians call λ the Einstein constant.

Has same sign as the *scalar curvature*

$$s = r_j^j = \mathcal{R}^{ij}{}_{ij}.$$

When n=4, Einstein metrics satisfy a remarkable conformally-invariant condition.

On Riemannian *n*-manifold (M, g), $n \geq 3$,

$$\mathcal{R}^{ab}{}_{cd} = W^{ab}{}_{cd} + \frac{4}{n-2} \mathring{r}^{[a}{}_{[c} \delta^{b]}_{d]} + \frac{2}{n(n-1)} s \delta^{a}{}_{[c} \delta^{b]}_{d]}$$

$$\mathcal{R}^{ab}{}_{cd} = W^{ab}{}_{cd} + \frac{4}{n-2} \mathring{r}^{[a}{}_{[c}\delta^{b]}_{d]} + \frac{2}{n(n-1)} \mathbf{s} \delta^a_{[c}\delta^b_{d]}$$
 where

s = scalar curvature

 \mathring{r} = trace-free Ricci curvature

W =Weyl curvature

$$\mathcal{R}^{ab}{}_{cd} = W^{ab}{}_{cd} + \frac{4}{n-2} \mathring{r}^{[a}{}_{[c}\delta^{b]}_{d]} + \frac{2}{n(n-1)} \mathbf{s} \delta^{a}{}_{[c}\delta^{b]}_{d]}$$
 where

s = scalar curvature

 \dot{r} = trace-free Ricci curvature

W = Weyl curvature (conformally invariant)

$$\mathcal{R}^{ab}{}_{cd} = W^{ab}{}_{cd} + \frac{4}{n-2} \mathring{r}^{[a}{}_{[c}\delta^{b]}_{d]} + \frac{2}{n(n-1)} s \delta^a_{[c}\delta^b_{d]}$$
 where

s = scalar curvature

 \mathring{r} = trace-free Ricci curvature

W = Weyl curvature (conformally invariant)

 W^a_{bcd} unchanged if $g \rightsquigarrow \hat{g} = u^2 g$.

$$\mathcal{R}^{ab}{}_{cd} = W^{ab}{}_{cd} + \frac{4}{n-2} \mathring{r}^{[a}{}_{[c}\delta^{b]}_{d]} + \frac{2}{n(n-1)} s \delta^a_{[c}\delta^b_{d]}$$
 where

s = scalar curvature

 \mathring{r} = trace-free Ricci curvature

W = Weyl curvature (conformally invariant)

Proposition. Assume $n \ge 4$. Then (M^n, g) locally conformally flat $\iff W \equiv 0$.

$$\mathcal{R}^{ab}{}_{cd} = W^{ab}{}_{cd} + \frac{4}{n-2} \mathring{r}^{[a}{}_{[c}\delta^{b]}_{d]} + \frac{2}{n(n-1)} \mathbf{s} \delta^{a}{}_{[c}\delta^{b]}_{d]}$$
 where

s = scalar curvature

 \mathring{r} = trace-free Ricci curvature

W = Weyl curvature (conformally invariant)

For metrics on fixed M^n ,

 $\mathscr{W}:\mathcal{G}_M\longrightarrow\mathbb{R}$

$$\mathcal{W}(g) = \int_{M} |W_g|^{n/2} d\mu_g$$

$$\mathscr{W}(g) = \int_{M} |W_g|^{n/2} d\mu_g$$

only depends on the conformal class

$$W([g]) = \int_{M} |W_g|^{n/2} d\mu_g$$

only depends on the conformal class

$$[g] = \{u^2g \mid u : M \xrightarrow{C^{\infty}} \mathbb{R}^+\}.$$

$$W([g]) = \int_{M} |W_g|^{n/2} d\mu_g$$

only depends on the conformal class

$$[g] = \{u^2g \mid u : M \xrightarrow{C^{\infty}} \mathbb{R}^+\}.$$

$$\mathscr{W}: \mathcal{G}_M/(C^{\infty})^+ \longrightarrow \mathbb{R}$$

$$\mathscr{W}([g]) = \int_{M} |W_g|^{n/2} d\mu_g$$

only depends on the conformal class

$$[g] = \{u^2g \mid u : M \xrightarrow{C^{\infty}} \mathbb{R}^+\}.$$

Measures deviation [g] from conformal flatness.

For M^4 ,

For M^4 ,

$$\mathscr{W}([g]) = \int_{M} |W_g|^2 d\mu_g$$

For M^4 ,

$$\mathscr{W}([g]) = \int_{M} |W_g|^2 d\mu_g$$

Euler-Lagrange equations B = 0 elliptic mod gauge.

For M^4 ,

$$\mathscr{W}([g]) = \int_{M} |W_g|^2 d\mu_g$$

Euler-Lagrange equations B = 0 elliptic mod gauge.

Here

$$B_{ab} := (\nabla^c \nabla^d + \frac{1}{2} \mathring{r}^{cd}) W_{acbd}$$

For M^4 ,

$$\mathscr{W}([g]) = \int_{M} |W_g|^2 d\mu_g$$

Euler-Lagrange equations B = 0 elliptic mod gauge.

Here

$$B_{ab} := (\nabla^c \nabla^d + \frac{1}{2} \mathring{\mathbf{r}}^{cd}) W_{acbd}$$

called Bach tensor.

For M^4 ,

$$\mathscr{W}([g]) = \int_{M} |W_g|^2 d\mu_g$$

Euler-Lagrange equations B = 0 elliptic mod gauge.

Here

$$B_{ab} := (\nabla^c \nabla^d + \frac{1}{2} \mathring{\mathbf{r}}^{cd}) W_{acbd}$$

called Bach tensor.

Solutions called Bach-flat metrics.

For M^4 ,

$$\mathscr{W}([g]) = \int_{M} |W_g|^2 d\mu_g$$

Euler-Lagrange equations B = 0 elliptic mod gauge.

Here

$$B_{ab} := (\nabla^c \nabla^d + \frac{1}{2} \mathring{\mathbf{r}}^{cd}) W_{acbd}$$

called Bach tensor.

Solutions called Bach-flat metrics.

Bianchi \Longrightarrow Any Einstein (M^4, h) is Bach-flat.

For M^4 ,

$$\mathscr{W}([g]) = \int_{M} |W_g|^2 d\mu_g$$

Euler-Lagrange equations B = 0 elliptic mod gauge.

Here

$$B_{ab} := (\nabla^c \nabla^d + \frac{1}{2} \mathring{\mathbf{r}}^{cd}) W_{acbd}$$

called Bach tensor.

Solutions called Bach-flat metrics.

Bianchi \Longrightarrow Any Einstein (M^4, h) is Bach-flat.

Of course, conformally Einstein good enough!

For M^4 ,

$$\mathscr{W}([g]) = \int_{M} |W_g|^2 d\mu_g$$

Euler-Lagrange equations B = 0 elliptic mod gauge.

Here

$$B_{ab} := (\nabla^c \nabla^d + \frac{1}{2} \mathring{\mathbf{r}}^{cd}) W_{acbd}$$

called Bach tensor.

Solutions called Bach-flat metrics.

Bianchi \Longrightarrow Any Einstein (M^4, h) is Bach-flat.

But when $n \neq 4$, Einstein \Rightarrow critical point of \mathscr{W} !

Dimension Four is Exceptional

For M^4 ,

$$\mathscr{W}([g]) = \int_{M} |W_g|^2 d\mu_g$$

Euler-Lagrange equations B = 0 elliptic mod gauge.

Here

$$B_{ab} := (\nabla^c \nabla^d + \frac{1}{2} \mathring{\mathbf{r}}^{cd}) W_{acbd}$$

called Bach tensor.

Solutions called Bach-flat metrics.

Bianchi \Longrightarrow Any Einstein (M^4, h) is Bach-flat.

When n=4, conf. Einstein \Rightarrow critical for \mathcal{W} .

For (M^4, g) compact oriented Riemannian,

For (M^4, g) compact oriented Riemannian,

Gauss-Bonnet formula for Euler characteristic

For (M^4, g) compact oriented Riemannian,

Gauss-Bonnet formula for Euler characteristic

$$\chi(\mathbf{M}) = \frac{1}{8\pi^2} \int_{\mathbf{M}} \left(\frac{s^2}{24} - \frac{|\mathring{\mathbf{r}}|^2}{2} + |W|^2 \right) d\mu$$

For (M^4, g) compact oriented Riemannian,

Gauss-Bonnet formula for Euler characteristic

$$\chi(\mathbf{M}) = \frac{1}{8\pi^2} \int_{\mathbf{M}} \left(\frac{s^2}{24} - \frac{|\mathring{\mathbf{r}}|^2}{2} + |W|^2 \right) d\mu$$

 \implies Einstein metrics are critical points of \mathscr{W} !

For (M^4, g) compact oriented Riemannian,

Gauss-Bonnet formula for Euler characteristic

$$\chi(\mathbf{M}) = \frac{1}{8\pi^2} \int_{\mathbf{M}} \left(\frac{s^2}{24} - \frac{|\mathring{\mathbf{r}}|^2}{2} + |W|^2 \right) d\mu$$

 \implies Einstein metrics are critical points of \mathscr{W} !

$$W = W_+ + W_-$$

For (M^4, g) compact oriented Riemannian,

Gauss-Bonnet formula for Euler characteristic

$$\chi(\mathbf{M}) = \frac{1}{8\pi^2} \int_{\mathbf{M}} \left(\frac{s^2}{24} - \frac{|\mathring{\mathbf{r}}|^2}{2} + |W|^2 \right) d\mu$$

 \implies Einstein metrics are critical points of \mathscr{W} !

$$W = W_+ + W_-$$

$$\Lambda^2 = \Lambda^+ \oplus \Lambda^-$$

For (M^4, g) compact oriented Riemannian,

Gauss-Bonnet formula for Euler characteristic

$$\chi(\mathbf{M}) = \frac{1}{8\pi^2} \int_{\mathbf{M}} \left(\frac{s^2}{24} - \frac{|\mathring{\mathbf{r}}|^2}{2} + |W|^2 \right) d\mu$$

 \implies Einstein metrics are critical points of \mathscr{W} !

$$\mathcal{R} = \begin{pmatrix} W_{+} + \frac{s}{12} & \mathring{r} \\ & & \\ \mathring{r} & W_{-} + \frac{s}{12} \end{pmatrix}$$

For (M^4, g) compact oriented Riemannian,

Gauss-Bonnet formula for Euler characteristic

$$\chi(\mathbf{M}) = \frac{1}{8\pi^2} \int_{\mathbf{M}} \left(\frac{s^2}{24} - \frac{|\mathring{\mathbf{r}}|^2}{2} + |W|^2 \right) d\mu$$

 \implies Einstein metrics are critical points of \mathscr{W} !

$$\Lambda^{+*} \qquad \Lambda^{-*}$$

$$\Lambda^{+} \qquad W_{+} + \frac{s}{12} \qquad \mathring{r}$$

$$\Lambda^{-} \qquad \mathring{r} \qquad W_{-} + \frac{s}{12}$$

For (M^4, g) compact oriented Riemannian,

Gauss-Bonnet formula for Euler characteristic

$$\chi(\mathbf{M}) = \frac{1}{8\pi^2} \int_{\mathbf{M}} \left(\frac{s^2}{24} - \frac{|\mathring{\mathbf{r}}|^2}{2} + |W|^2 \right) d\mu$$

 \implies Einstein metrics are critical points of \mathscr{W} !

$$W = W_+ + W_-$$

Euler characteristic

$$\chi(\mathbf{M}) = \frac{1}{8\pi^2} \int_{\mathbf{M}} \left(\frac{\mathbf{s}^2}{24} + |W_+|^2 + |W_-|^2 - \frac{|\mathring{\mathbf{r}}|^2}{2} \right) d\mu$$

Euler characteristic

$$\chi(\mathbf{M}) = \frac{1}{8\pi^2} \int_{\mathbf{M}} \left(\frac{\mathbf{s}^2}{24} + |W_+|^2 + |W_-|^2 - \frac{|\mathring{\mathbf{r}}|^2}{2} \right) d\mu$$

$$\tau(\mathbf{M}) = \frac{1}{12\pi^2} \int_{\mathbf{M}} \left(|W_+|^2 - |W_-|^2 \right) d\mu$$

Euler characteristic

$$\chi(\mathbf{M}) = \frac{1}{8\pi^2} \int_{\mathbf{M}} \left(\frac{\mathbf{s}^2}{24} + |W_+|^2 + |W_-|^2 - \frac{|\mathring{\mathbf{r}}|^2}{2} \right) d\mu$$

Signature

$$\tau(\mathbf{M}) = \frac{1}{12\pi^2} \int_{\mathbf{M}} \left(|W_+|^2 - |W_-|^2 \right) d\mu$$

Hence

$$\mathscr{W}([g]) = -12\pi^2 \tau(M) + 2 \int_M |W_+|^2 d\mu_g$$

Euler characteristic

$$\chi(\mathbf{M}) = \frac{1}{8\pi^2} \int_{\mathbf{M}} \left(\frac{\mathbf{s}^2}{24} + |W_+|^2 + |W_-|^2 - \frac{|\mathring{\mathbf{r}}|^2}{2} \right) d\mu$$

$$\tau(\mathbf{M}) = \frac{1}{12\pi^2} \int_{\mathbf{M}} \left(|W_+|^2 - |W_-|^2 \right) d\mu$$

$$\mathcal{W}([g]) = -12\pi^2 \tau(M) + 2\int_M |W_+|^2 d\mu_g$$

Euler characteristic

$$\chi(\mathbf{M}) = \frac{1}{8\pi^2} \int_{\mathbf{M}} \left(\frac{\mathbf{s}^2}{24} + |W_+|^2 + |W_-|^2 - \frac{|\mathring{\mathbf{r}}|^2}{2} \right) d\mu$$

$$\tau(\mathbf{M}) = \frac{1}{12\pi^2} \int_{\mathbf{M}} \left(|W_+|^2 - |W_-|^2 \right) d\mu$$

$$W([g]) = -12\pi^2 \tau(M) + 2\int_M |W_+|^2 d\mu_g$$

$$B_{ab} := 2(\nabla^c \nabla^d + \frac{1}{2} \mathring{r}^{cd})(W_+)_{acbd}$$

Euler characteristic

$$\chi(\mathbf{M}) = \frac{1}{8\pi^2} \int_{\mathbf{M}} \left(\frac{\mathbf{s}^2}{24} + |W_+|^2 + |W_-|^2 - \frac{|\mathring{\mathbf{r}}|^2}{2} \right) d\mu$$

$$\tau(\mathbf{M}) = \frac{1}{12\pi^2} \int_{\mathbf{M}} \left(|W_+|^2 - |W_-|^2 \right) d\mu$$

$$\mathcal{W}([g]) = -12\pi^2 \tau(M) + 2\mathcal{W}_{+}([g])$$

$$B_{ab} := 2(\nabla^c \nabla^d + \frac{1}{2} \mathring{\mathbf{r}}^{cd})(W_+)_{acbd}$$

A case of special interest:

A case of special interest:

 (M^4, g, J) Kähler.

$$\Lambda^{1,1} = \mathbb{R}\omega \oplus \Lambda^-$$

$$\Lambda^{1,1} = \mathbb{R}\omega \oplus \Lambda^{-}$$

$$\Lambda^+ = \Re e(\Lambda^{2,0}) \oplus \mathbb{R}\omega$$

$$\Lambda^{1,1} = \mathbb{R}\omega \oplus \Lambda^{-}$$

$$\Lambda^+ = \Re e(\Lambda^{2,0}) \oplus \mathbb{R}\omega$$

$$\nabla J = 0 \Longrightarrow \mathcal{R} \in \operatorname{End}(\Lambda^{1,1})$$

$$\Lambda^{1,1} = \mathbb{R}\omega \oplus \Lambda^{-}$$

$$\Lambda^{+} = \Re e(\Lambda^{2,0}) \oplus \mathbb{R}\omega$$

$$\nabla J = 0 \Longrightarrow \mathcal{R} \in \operatorname{End}(\Lambda^{1,1}) \Longrightarrow$$

$$W_{+} + \frac{s}{12} = \begin{pmatrix} 0 \\ 0 \\ * \end{pmatrix}$$

$$\Lambda^{1,1} = \mathbb{R}\omega \oplus \Lambda^{-}$$

$$\Lambda^+ = \Re e(\Lambda^{2,0}) \oplus \mathbb{R}\omega$$

$$\nabla J = 0 \Longrightarrow \mathcal{R} \in \operatorname{End}(\Lambda^{1,1}) \Longrightarrow$$

$$W_{+} + \frac{s}{12} = \begin{pmatrix} 0 \\ 0 \\ \frac{s}{4} \end{pmatrix}$$

$$\Lambda^{1,1} = \mathbb{R}\omega \oplus \Lambda^-$$

$$\Lambda^+ = \Re e(\Lambda^{2,0}) \oplus \mathbb{R}\omega$$

$$\nabla J = 0 \Longrightarrow \mathcal{R} \in \operatorname{End}(\Lambda^{1,1}) \Longrightarrow$$

$$W_{+} = \begin{pmatrix} -\frac{s}{12} \\ -\frac{s}{12} \\ \frac{s}{6} \end{pmatrix}$$

$$\Lambda^{1,1} = \mathbb{R}\omega \oplus \Lambda^{-}$$

$$\Lambda^{+} = \Re e(\Lambda^{2,0}) \oplus \mathbb{R}\omega$$

$$\nabla J = 0 \Longrightarrow \mathcal{R} \in \operatorname{End}(\Lambda^{1,1}) \Longrightarrow$$

$$|W_+|^2 = \frac{s^2}{24}$$

On Kähler metrics,

$$\int |W_{+}|^{2} d\mu = \int \frac{s^{2}}{24} d\mu$$

so any critical point of restriction must be extremal in sense of Calabi.

On Kähler metrics,

$$\int |W_+|^2 d\mu = \int \frac{s^2}{24} d\mu$$

so any critical point of restriction must be extremal in sense of Calabi.

That is, must be critical point of

$$\mathscr{C}(g) = \int_{M} s_g^2 d\mu_g$$

On Kähler metrics,

$$\int |W_+|^2 d\mu = \int \frac{s^2}{24} d\mu$$

so any critical point of restriction must be extremal in sense of Calabi.

That is, must be critical point of

$$\mathscr{C}(g) = \int_{M} s_g^2 d\mu_g$$

Euler-Lagrange
$$\iff \bar{\partial}\nabla^{1,0}s = 0$$

On Kähler metrics,

$$\int |W_+|^2 d\mu = \int \frac{s^2}{24} d\mu$$

so any critical point of restriction must be extremal in sense of Calabi.

That is, must be critical point of

$$\mathscr{C}(g) = \int_{M} s_g^2 d\mu_g$$

Euler-Lagrange
$$\iff \bar{\partial}\nabla^{1,0}s = 0$$

$$\iff$$
 $J(\nabla s)$ Killing

On Kähler metrics,

$$\int |W_+|^2 d\mu = \int \frac{s^2}{24} d\mu$$

so any critical point of restriction must be extremal in sense of Calabi.

That is, must be critical point of

$$\mathscr{C}(g) = \int_{M} s_g^2 d\mu_g$$

Euler-Lagrange
$$\iff \bar{\partial} \nabla^{1,0} s = 0$$

$$\iff J(\nabla s) \text{ Killing}$$

$$\iff J^* \text{Hess}(s) = \text{Hess}(s)$$

On Kähler metrics,

$$\int |W_{+}|^{2} d\mu = \int \frac{s^{2}}{24} d\mu$$

so any critical point of restriction must be extremal in sense of Calabi.

On Kähler metrics,

$$\int |W_+|^2 d\mu = \int \frac{s^2}{24} d\mu$$

so any critical point of restriction must be extremal in sense of Calabi.

$$B_{ab} := 2(\nabla^c \nabla^d + \frac{1}{2} \mathring{r}^{cd})(W_+)_{acbd}$$

On Kähler metrics,

$$\int |W_+|^2 d\mu = \int \frac{s^2}{24} d\mu$$

so any critical point of restriction must be extremal in sense of Calabi.

Andrzej Derdziński: For Kähler metrics g,

$$B = \frac{1}{12} \left[2s\mathring{r} + \text{Hess}_0(s) + 3J^* \text{Hess}_0(s) \right]$$

On Kähler metrics,

$$\int |W_+|^2 d\mu = \int \frac{s^2}{24} d\mu$$

so any critical point of restriction must be extremal in sense of Calabi.

Lemma. If g is a Kähler metric on a complex surface (M^4, J) , the following are equivalent:

On Kähler metrics,

$$\int |W_+|^2 d\mu = \int \frac{s^2}{24} d\mu$$

so any critical point of restriction must be extremal in sense of Calabi.

Lemma. If g is a Kähler metric on a complex surface (M^4, J) , the following are equivalent:

• g is an extremal Kähler metric;

On Kähler metrics,

$$\int |W_+|^2 d\mu = \int \frac{s^2}{24} d\mu$$

so any critical point of restriction must be extremal in sense of Calabi.

Lemma. If g is a Kähler metric on a complex surface (M^4, J) , the following are equivalent:

- g is an extremal Kähler metric;
- $B = B(J \cdot, J \cdot);$

On Kähler metrics,

$$\int |W_+|^2 d\mu = \int \frac{s^2}{24} d\mu$$

so any critical point of restriction must be extremal in sense of Calabi.

Lemma. If g is a Kähler metric on a complex surface (M^4, J) , the following are equivalent:

- g is an extremal Kähler metric;
- $\bullet B = B(J \cdot, J \cdot);$
- $\psi = B(J \cdot, \cdot)$ is a closed (1, 1)-form;

On Kähler metrics,

$$\int |W_+|^2 d\mu = \int \frac{s^2}{24} d\mu$$

so any critical point of restriction must be extremal in sense of Calabi.

Lemma. If g is a Kähler metric on a complex surface (M^4, J) , the following are equivalent:

- g is an extremal Kähler metric;
- $\bullet B = B(J \cdot, J \cdot);$
- $\psi = B(J \cdot, \cdot)$ is a closed (1, 1)-form;
- $g_t = g + tB$ is Kähler metric for small t.

For any extremal Kähler (M^4, g, J) ,

For any extremal Kähler (M^4, g, J) ,

$$\frac{1}{32\pi^2} \int s^2 d\mu_g = \frac{(c_1 \cdot [\omega])^2}{[\omega]^2} + \frac{1}{32\pi^2} \|\mathcal{F}_{[\omega]}\|^2$$
$$=: \mathcal{A}([\omega])$$

where \mathcal{F} is Futaki invariant.

For any extremal Kähler (M^4, g, J) ,

$$\frac{1}{32\pi^2} \int s^2 d\mu_g = \frac{(c_1 \cdot [\omega])^2}{[\omega]^2} + \frac{1}{32\pi^2} \|\mathcal{F}_{[\omega]}\|^2$$
$$=: \mathcal{A}([\omega])$$

where \mathcal{F} is Futaki invariant.

 \mathcal{A} is function on Kähler cone $\mathcal{K} \subset H^2(M,\mathbb{R})$.

$$\mathcal{K} \subset H^{1,1}(M,\mathbb{R}) \subset H^2(M,\mathbb{R})$$

$$\mathcal{K} \subset H^{1,1}(M,\mathbb{R}) \subset H^2(M,\mathbb{R})$$

For any extremal Kähler (M^4, g, J) ,

$$\frac{1}{32\pi^2} \int s^2 d\mu_g = \frac{(c_1 \cdot [\omega])^2}{[\omega]^2} + \frac{1}{32\pi^2} \|\mathcal{F}_{[\omega]}\|^2$$
$$=: \mathcal{A}([\omega])$$

where \mathcal{F} is Futaki invariant.

 \mathcal{A} is function on Kähler cone $\mathcal{K} \subset H^2(M,\mathbb{R})$.

Most important cases are toric, and the action \mathcal{A} can be directly computed from moment polygon.

Most important cases are toric, and the action \mathcal{A} can be directly computed from moment polygon. Formula involves barycenters, moments of inertia.

$$\mathcal{A}([\boldsymbol{\omega}]) = \frac{|\partial P|^2}{2} \left(\frac{1}{|P|} + \vec{\mathfrak{D}} \cdot \Pi^{-1} \vec{\mathfrak{D}} \right)$$

For any extremal Kähler (M^4, g, J) ,

$$\frac{1}{32\pi^2} \int s^2 d\mu_g = \frac{(c_1 \cdot [\omega])^2}{[\omega]^2} + \frac{1}{32\pi^2} \|\mathcal{F}_{[\omega]}\|^2$$
$$=: \mathcal{A}([\omega])$$

where \mathcal{F} is Futaki invariant.

 \mathcal{A} is function on Kähler cone $\mathcal{K} \subset H^2(M,\mathbb{R})$.

For any extremal Kähler (M^4, g, J) ,

$$\frac{1}{32\pi^2} \int s^2 d\mu_g = \frac{(c_1 \cdot [\omega])^2}{[\omega]^2} + \frac{1}{32\pi^2} \|\mathcal{F}_{[\omega]}\|^2$$
$$=: \mathcal{A}([\omega])$$

where \mathcal{F} is Futaki invariant.

 \mathcal{A} is function on Kähler cone $\mathcal{K} \subset H^2(M,\mathbb{R})$.

Proposition. If g is a Kähler metric on a compact complex surface (M^4, J) ,

For any extremal Kähler (M^4, g, J) ,

$$\frac{1}{32\pi^2} \int s^2 d\mu_g = \frac{(c_1 \cdot [\omega])^2}{[\omega]^2} + \frac{1}{32\pi^2} ||\mathcal{F}_{[\omega]}||^2$$
$$=: \mathcal{A}([\omega])$$

where \mathcal{F} is Futaki invariant.

 \mathcal{A} is function on Kähler cone $\mathcal{K} \subset H^2(M,\mathbb{R})$.

Proposition. If g is a Kähler metric on a compact complex surface (M^4, J) , with Kähler class $[\omega]$,

For any extremal Kähler (M^4, g, J) ,

$$\frac{1}{32\pi^2} \int s^2 d\mu_g = \frac{(c_1 \cdot [\omega])^2}{[\omega]^2} + \frac{1}{32\pi^2} ||\mathcal{F}_{[\omega]}||^2$$
$$=: \mathcal{A}([\omega])$$

where \mathcal{F} is Futaki invariant.

 \mathcal{A} is function on Kähler cone $\mathcal{K} \subset H^2(M,\mathbb{R})$.

Proposition. If g is a Kähler metric on a compact complex surface (M^4, J) , with Kähler class $[\omega]$, then g satisfies $B = 0 \iff$

For any extremal Kähler (M^4, g, J) ,

$$\frac{1}{32\pi^2} \int s^2 d\mu_g = \frac{(c_1 \cdot [\omega])^2}{[\omega]^2} + \frac{1}{32\pi^2} ||\mathcal{F}_{[\omega]}||^2$$
$$=: \mathcal{A}([\omega])$$

where \mathcal{F} is Futaki invariant.

 \mathcal{A} is function on Kähler cone $\mathcal{K} \subset H^2(M,\mathbb{R})$.

Proposition. If g is a Kähler metric on a compact complex surface (M^4, J) , with Kähler class $[\omega]$, then g satisfies $B = 0 \iff$

• g is an extremal Kähler metric; and

For any extremal Kähler (M^4, g, J) ,

$$\frac{1}{32\pi^2} \int s^2 d\mu_g = \frac{(c_1 \cdot [\omega])^2}{[\omega]^2} + \frac{1}{32\pi^2} ||\mathcal{F}_{[\omega]}||^2$$
$$=: \mathcal{A}([\omega])$$

where \mathcal{F} is Futaki invariant.

 \mathcal{A} is function on Kähler cone $\mathcal{K} \subset H^2(M,\mathbb{R})$.

Proposition. If g is a Kähler metric on a compact complex surface (M^4, J) , with Kähler class $[\omega]$, then g satisfies $B = 0 \iff$

- g is an extremal Kähler metric; and
- $[\omega]$ is a critical point of $\mathcal{A}: \mathcal{K} \to \mathbb{R}$.

$$\mathcal{K} \subset H^{1,1}(M,\mathbb{R}) \subset H^2(M,\mathbb{R})$$

On Kähler metrics,

$$\int |W_+|^2 d\mu = \int \frac{s^2}{24} d\mu$$

so any critical point of restriction must be extremal in sense of Calabi.

Andrzej Derdziński: For Kähler metrics g,

$$B = \frac{1}{12} \left[2s\mathring{r} + \text{Hess}_0(s) + 3J^* \text{Hess}_0(s) \right]$$

On Kähler metrics,

$$\int |W_+|^2 d\mu = \int \frac{s^2}{24} d\mu$$

so any critical point of restriction must be extremal in sense of Calabi.

So Bach-flat Kähler $\Longrightarrow g$ extremal and

$$0 = s\mathring{r} + 2 \text{Hess}_0(s).$$

On Kähler metrics,

$$\int |W_+|^2 d\mu = \int \frac{s^2}{24} d\mu$$

so any critical point of restriction must be extremal in sense of Calabi.

So Bach-flat Kähler $\Longrightarrow g$ extremal and

$$0 = s\mathring{r} + 2\mathrm{Hess}_0(s).$$

 \therefore On set where $s \neq 0$, the metric $s^{-2}g$ is Einstein.

On Kähler metrics,

$$\int |W_+|^2 d\mu = \int \frac{s^2}{24} d\mu$$

so any critical point of restriction must be extremal in sense of Calabi.

So Bach-flat Kähler $\Longrightarrow g$ extremal and

$$0 = s\mathring{r} + 2\mathrm{Hess}_0(s).$$

 \therefore On set where $s \neq 0$, the metric $s^{-2}g$ is Einstein.

Global implications?

Theorem A. Let (M^4, g, J) be compact connected Bach-flat Kähler surface.

I. $\min s > 0$. Then

- I. $\min s > 0$. Then
 - (a) (M, g, J) Kähler-Einstein, $\lambda > 0$; or else

- I. $\min s > 0$. Then
 - (a) (M, g, J) Kähler-Einstein, $\lambda > 0$; or else
 - (b) $(M, s^{-2}g)$ *Einstein*, $\lambda > 0$, Hol = SO(4).

- I. $\min s > 0$. Then
 - (a) (M, g, J) Kähler-Einstein, $\lambda > 0$; or else
 - (b) $(M, s^{-2}g)$ *Einstein*, $\lambda > 0$, Hol = SO(4).
- II. $s \equiv 0$. Then

- I. $\min s > 0$. Then
 - (a) (M, g, J) Kähler-Einstein, $\lambda > 0$; or else
 - (b) $(M, s^{-2}g)$ *Einstein*, $\lambda > 0$, Hol = SO(4).
- II. $s \equiv 0$. Then
 - (a) (M, g, J) Kähler-Einstein, $\lambda = 0$; or else

- I. $\min s > 0$. Then
 - (a) (M, g, J) Kähler-Einstein, $\lambda > 0$; or else
 - (b) $(M, s^{-2}g)$ *Einstein*, $\lambda > 0$, Hol = SO(4).
- II. $s \equiv 0$. Then
 - (a) (M, g, J) Kähler-Einstein, $\lambda = 0$; or else
 - (b) (M, g, J) anti-self-dual, but not Einstein.

- I. $\min s > 0$. Then
 - (a) (M, g, J) Kähler-Einstein, $\lambda > 0$; or else
 - (b) $(M, s^{-2}g)$ *Einstein*, $\lambda > 0$, Hol = SO(4).
- II. $s \equiv 0$. Then
 - (a) (M, g, J) Kähler-Einstein, $\lambda = 0$; or else
 - (b) (M, g, J) anti-self-dual, but not Einstein.

$$W_{+} \equiv 0$$

- I. $\min s > 0$. Then
 - (a) (M, g, J) Kähler-Einstein, $\lambda > 0$; or else
 - (b) $(M, s^{-2}g)$ *Einstein*, $\lambda > 0$, Hol = SO(4).
- II. $s \equiv 0$. Then
 - (a) (M, g, J) Kähler-Einstein, $\lambda = 0$; or else
 - (b) (M, g, J) anti-self-dual, but not Einstein.

```
I. \min s > 0. Then
```

- (a) (M, g, J) Kähler-Einstein, $\lambda > 0$; or else
- (b) $(M, s^{-2}g)$ *Einstein*, $\lambda > 0$, Hol = SO(4).
- II. $s \equiv 0$. Then
 - (a) (M, g, J) Kähler-Einstein, $\lambda = 0$; or else
 - (b) (M, g, J) anti-self-dual, but not Einstein.
- III. $\min s < 0$. Then

- I. $\min s > 0$. Then
 - (a) (M, g, J) Kähler-Einstein, $\lambda > 0$; or else
 - (b) $(M, s^{-2}g)$ *Einstein*, $\lambda > 0$, Hol = SO(4).
- II. $s \equiv 0$. Then
 - (a) (M, g, J) Kähler-Einstein, $\lambda = 0$; or else
 - (b) (M, g, J) anti-self-dual, but not Einstein.
- III. $\min s < 0$. Then
 - (a) (M, g, J) Kähler-Einstein, $\lambda < 0$; or else

- I. $\min s > 0$. Then
 - (a) (M, g, J) Kähler-Einstein, $\lambda > 0$; or else
 - (b) $(M, s^{-2}g)$ *Einstein*, $\lambda > 0$, Hol = SO(4).
- II. $s \equiv 0$. Then
 - (a) (M, g, J) Kähler-Einstein, $\lambda = 0$; or else
 - (b) (M, g, J) anti-self-dual, but not Einstein.
- III. $\min s < 0$. Then
 - (a) (M, g, J) Kähler-Einstein, $\lambda < 0$; or else
 - (b) $(M, s^{-2}g)$ double Poincaré-Einstein.

Theorem A. Let (M^4, g, J) be compact connected Bach-flat Kähler surface. Then exactly one holds:

- I. $\min s > 0$. Then
 - (a) (M, g, J) Kähler-Einstein, $\lambda > 0$; or else
 - (b) $(M, s^{-2}g)$ *Einstein*, $\lambda > 0$, Hol = SO(4).
- II. $s \equiv 0$. Then
 - (a) (M, g, J) Kähler-Einstein, $\lambda = 0$; or else
 - (b) (M, g, J) anti-self-dual, but not Einstein.
- III. $\min s < 0$. Then
 - (a) (M, g, J) Kähler-Einstein, $\lambda < 0$; or else
 - (b) $(M, s^{-2}g)$ double Poincaré-Einstein. Here, s = 0 defines smooth connected \mathbb{Z}^3 ,

Theorem A. Let (M^4, g, J) be compact connected Bach-flat Kähler surface. Then exactly one holds:

- I. $\min s > 0$. Then
 - (a) (M, g, J) Kähler-Einstein, $\lambda > 0$; or else
 - (b) $(M, s^{-2}g)$ *Einstein*, $\lambda > 0$, Hol = SO(4).
- II. $s \equiv 0$. Then
 - (a) (M, g, J) Kähler-Einstein, $\lambda = 0$; or else
 - (b) (M, g, J) anti-self-dual, but not Einstein.
- III. $\min s < 0$. Then
 - (a) (M, g, J) Kähler-Einstein, $\lambda < 0$; or else
 - (b) $(M, s^{-2}g)$ double Poincaré-Einstein. Here, s = 0 defines smooth connected \mathcal{Z}^3 , and $M \mathcal{Z}$ has exactly two components.

Theorem A. Let (M^4, g, J) be compact connected Bach-flat Kähler surface. Then exactly one holds:

- I. $\min s > 0$. Then
 - (a) (M, g, J) Kähler-Einstein, $\lambda > 0$; or else
 - (b) $(M, s^{-2}g)$ *Einstein*, $\lambda > 0$, Hol = SO(4).
- II. $s \equiv 0$. Then
 - (a) (M, g, J) Kähler-Einstein, $\lambda = 0$; or else
 - (b) (M, g, J) anti-self-dual, but not Einstein.
- III. $\min s < 0$. Then
 - (a) (M, g, J) Kähler-Einstein, $\lambda < 0$; or else
 - (b) $(M, s^{-2}g)$ double Poincaré-Einstein. Here, s = 0 defines smooth connected \mathcal{Z}^3 , and $M \mathcal{Z}$ has exactly two components.

Moreover, each case actually occurs.

- I. $\min s > 0$. Then
 - (a) (M, g, J) Kähler-Einstein, $\lambda > 0$; or else
 - (b) $(M, s^{-2}g)$ *Einstein*, $\lambda > 0$, Hol = SO(4).
- II. $s \equiv 0$. Then
 - (a) (M, g, J) Kähler-Einstein, $\lambda = 0$; or else
 - (b) (M, g, J) anti-self-dual, but not Einstein.
- III. $\min s < 0$. Then
 - (a) (M, g, J) Kähler-Einstein, $\lambda < 0$; or else
 - (b) $(M, s^{-2}g)$ double Poincaré-Einstein. Here, s = 0 defines smooth connected \mathbb{Z}^3 , and $M \mathbb{Z}$ has exactly two components.

- L s > 0 everywhere. Then
 - (a) (M, g, J) Kähler-Einstein, $\lambda > 0$; or else
 - (b) $(M, s^{-2}g)$ *Einstein*, $\lambda > 0$, Hol = SO(4).
- II. $s \equiv 0$. Then
 - (a) (M, g, J) Kähler-Einstein, $\lambda = 0$; or else
 - (b) (M, g, J) anti-self-dual, but not Einstein.
- III. s < 0 somewhere. Then
 - (a) (M, g, J) Kähler-Einstein, $\lambda < 0$; or else
 - (b) $(M, s^{-2}g)$ double Poincaré-Einstein. Here, s = 0 defines smooth connected \mathbb{Z}^3 , and $M \mathbb{Z}$ has exactly two components.

If **not** Kähler-Einstein:

I. s is positive. Then

$$(M, s^{-2}g)$$
 Einstein, $\lambda > 0$, $Hol = SO(4)$.

- II. s is zero. Then (M, g, J) SFK, but not Ricci-flat.
- III. s changes sign. Then

 $(M, s^{-2}g)$ double Poincaré-Einstein. Here, s = 0 defines smooth connected \mathbb{Z}^3 , and $M - \mathbb{Z}$ has exactly two components.

- I. $\min s > 0$. Then
 - (a) (M, g, J) Kähler-Einstein, $\lambda > 0$; or else
 - (b) $(M, s^{-2}g)$ *Einstein*, $\lambda > 0$, Hol = SO(4).
- II. $s \equiv 0$. Then
 - (a) (M, g, J) Kähler-Einstein, $\lambda = 0$; or else
 - (b) (M, g, J) anti-self-dual, but not Einstein.
- III. $\min s < 0$. Then
 - (a) (M, g, J) Kähler-Einstein, $\lambda < 0$; or else
 - (b) $(M, s^{-2}g)$ double Poincaré-Einstein. Here, s = 0 defines smooth connected \mathbb{Z}^3 , and $M \mathbb{Z}$ has exactly two components.

Main interest today:

I. $\min s > 0$. Then

- (a) (M, g, J) Kähler-Einstein, $\lambda > 0$; or else
- (b) $(M, s^{-2}g)$ *Einstein*, $\lambda > 0$, Hol = SO(4).

I. $\min s > 0$. Then

(a) (M, g, J) Kähler-Einstein, $\lambda > 0$; or else

(b) $(M, s^{-2}g)$ Einstein, $\lambda > 0$, Hol = SO(4).

This happens \iff $c_1 > 0$.

I. $\min s > 0$. Then

(a) (M, g, J) Kähler-Einstein, $\lambda > 0$; or else

(b) $(M, s^{-2}g)$ *Einstein*, $\lambda > 0$, Hol = SO(4).

This happens \iff $c_1 > 0$.

 \iff (M^4, J) is a Del Pezzo surface.

 (M^4, J) for which c_1 is a Kähler class $[\omega]$.

 (M^4, J) for which c_1 is a Kähler class $[\omega]$. Shorthand: " $c_1 > 0$."

 (M^4, J) for which c_1 is a Kähler class $[\omega]$. Shorthand: " $c_1 > 0$."

Blow-up of \mathbb{CP}_2 at k distinct points, in general position,

 (M^4, J) for which c_1 is a Kähler class $[\omega]$. Shorthand: " $c_1 > 0$."

Blow-up of \mathbb{CP}_2 at k distinct points, $0 \le k \le 8$, in general position,

 (M^4, J) for which c_1 is a Kähler class $[\omega]$. Shorthand: " $c_1 > 0$."

Blow-up of \mathbb{CP}_2 at k distinct points, $0 \le k \le 8$, in general position, or $\mathbb{CP}_1 \times \mathbb{CP}_1$.

 (M^4, J) for which c_1 is a Kähler class $[\omega]$. Shorthand: " $c_1 > 0$."

Blow-up of \mathbb{CP}_2 at k distinct points, $0 \le k \le 8$, in general position, or $\mathbb{CP}_1 \times \mathbb{CP}_1$.

If N is a complex surface,

If N is a complex surface, may replace $p \in N$

If N is a complex surface, may replace $p \in N$ with \mathbb{CP}_1

If N is a complex surface, may replace $p \in N$ with \mathbb{CP}_1 to obtain blow-up

$$M \approx N \# \overline{\mathbb{CP}}_2$$

 $\overline{\mathbb{CP}}_2$ = reverse oriented \mathbb{CP}_2 .

 $\overline{\mathbb{CP}}_2$ = reverse oriented \mathbb{CP}_2 .

 $\overline{\mathbb{CP}}_2$ = reverse oriented \mathbb{CP}_2 .

 $\overline{\mathbb{CP}}_2$ = reverse oriented \mathbb{CP}_2 .

 $\overline{\mathbb{CP}}_2$ = reverse oriented \mathbb{CP}_2 .

 $\overline{\mathbb{CP}}_2$ = reverse oriented \mathbb{CP}_2 .

 $\overline{\mathbb{CP}}_2$ = reverse oriented \mathbb{CP}_2 .

 $\overline{\mathbb{CP}}_2$ = reverse oriented \mathbb{CP}_2 .

If N is a complex surface, may replace $p \in N$ with \mathbb{CP}_1 to obtain blow-up

$$M \approx N \# \overline{\mathbb{CP}}_2$$

If N is a complex surface, may replace $p \in N$ with \mathbb{CP}_1 to obtain blow-up

$$M \approx N \# \overline{\mathbb{CP}}_2$$

in which added \mathbb{CP}_1 has normal bundle $\mathcal{O}(-1)$.

If N is a complex surface, may replace $p \in N$ with \mathbb{CP}_1 to obtain blow-up

$$M \approx N \# \overline{\mathbb{CP}}_2$$

in which added \mathbb{CP}_1 has normal bundle $\mathcal{O}(-1)$.

If N is a complex surface, may replace $p \in N$ with \mathbb{CP}_1 to obtain blow-up

$$M \approx N \# \overline{\mathbb{CP}}_2$$

in which added \mathbb{CP}_1 has normal bundle $\mathcal{O}(-1)$.

Blowing up:

If N is a complex surface, may replace $p \in N$ with \mathbb{CP}_1 to obtain blow-up

$$M \approx N \# \overline{\mathbb{CP}}_2$$

in which added \mathbb{CP}_1 has normal bundle $\mathcal{O}(-1)$.

 (M^4, J) for which c_1 is a Kähler class $[\omega]$. Shorthand: " $c_1 > 0$."

Blow-up of \mathbb{CP}_2 at k distinct points, $0 \le k \le 8$, in general position, or $\mathbb{CP}_1 \times \mathbb{CP}_1$.

 (M^4, J) for which c_1 is a Kähler class $[\omega]$. Shorthand: " $c_1 > 0$."

Blow-up of \mathbb{CP}_2 at k distinct points, $0 \le k \le 8$, in general position, or $\mathbb{CP}_1 \times \mathbb{CP}_1$.

No 3 on a line,

 (M^4, J) for which c_1 is a Kähler class $[\omega]$. Shorthand: " $c_1 > 0$."

Blow-up of \mathbb{CP}_2 at k distinct points, $0 \le k \le 8$, in general position, or $\mathbb{CP}_1 \times \mathbb{CP}_1$.

No 3 on a line, no 6 on conic,

 (M^4, J) for which c_1 is a Kähler class $[\omega]$. Shorthand: " $c_1 > 0$."

Blow-up of \mathbb{CP}_2 at k distinct points, $0 \le k \le 8$, in general position, or $\mathbb{CP}_1 \times \mathbb{CP}_1$.

No 3 on a line, no 6 on conic, no 8 on nodal cubic.

 (M^4, J) for which c_1 is a Kähler class $[\omega]$. Shorthand: " $c_1 > 0$."

Blow-up of \mathbb{CP}_2 at k distinct points, $0 \le k \le 8$, in general position, or $\mathbb{CP}_1 \times \mathbb{CP}_1$.

 (M^4, J) for which c_1 is a Kähler class $[\omega]$. Shorthand: " $c_1 > 0$."

Blow-up of \mathbb{CP}_2 at k distinct points, $0 \le k \le 8$, in general position, or $\mathbb{CP}_1 \times \mathbb{CP}_1$.

Theorem.

 (M^4, J) for which c_1 is a Kähler class $[\omega]$. Shorthand: " $c_1 > 0$."

Blow-up of \mathbb{CP}_2 at k distinct points, $0 \le k \le 8$, in general position, or $\mathbb{CP}_1 \times \mathbb{CP}_1$.

Theorem. Each del Pezzo (M^4, J) admits a J-compatible

 (M^4, J) for which c_1 is a Kähler class $[\omega]$. Shorthand: " $c_1 > 0$."

Blow-up of \mathbb{CP}_2 at k distinct points, $0 \le k \le 8$, in general position, or $\mathbb{CP}_1 \times \mathbb{CP}_1$.

Theorem. Each del Pezzo (M^4, J) admits a J-compatible conformally $K\ddot{a}hler$,

 (M^4, J) for which c_1 is a Kähler class $[\omega]$. Shorthand: " $c_1 > 0$."

Blow-up of \mathbb{CP}_2 at k distinct points, $0 \le k \le 8$, in general position, or $\mathbb{CP}_1 \times \mathbb{CP}_1$.

Theorem. Each del Pezzo (M^4, J) admits a J-compatible conformally Kähler, Einstein metric,

 (M^4, J) for which c_1 is a Kähler class $[\omega]$. Shorthand: " $c_1 > 0$."

Blow-up of \mathbb{CP}_2 at k distinct points, $0 \le k \le 8$, in general position, or $\mathbb{CP}_1 \times \mathbb{CP}_1$.

Theorem. Each del Pezzo (M^4, J) admits a J-compatible conformally Kähler, Einstein metric, and this metric is unique

 (M^4, J) for which c_1 is a Kähler class $[\omega]$. Shorthand: " $c_1 > 0$."

Blow-up of \mathbb{CP}_2 at k distinct points, $0 \le k \le 8$, in general position, or $\mathbb{CP}_1 \times \mathbb{CP}_1$.

Theorem. Each del Pezzo (M^4, J) admits a J-compatible conformally Kähler, Einstein metric, and this metric is unique up to complex automorphisms and constant rescalings.

 (M^4, J) for which c_1 is a Kähler class $[\omega]$. Shorthand: " $c_1 > 0$."

Blow-up of \mathbb{CP}_2 at k distinct points, $0 \le k \le 8$, in general position, or $\mathbb{CP}_1 \times \mathbb{CP}_1$.

Theorem. Each del Pezzo (M^4, J) admits a J-compatible conformally Kähler, Einstein metric, and this metric is geometrically unique.

 (M^4, J) for which c_1 is a Kähler class $[\omega]$. Shorthand: " $c_1 > 0$."

Blow-up of \mathbb{CP}_2 at k distinct points, $0 \le k \le 8$, in general position, or $\mathbb{CP}_1 \times \mathbb{CP}_1$.

Theorem. Each del Pezzo (M^4, J) admits a J-compatible conformally Kähler, Einstein metric, and this metric is geometrically unique.

Existence: Page

 (M^4, J) for which c_1 is a Kähler class $[\omega]$. Shorthand: " $c_1 > 0$."

Blow-up of \mathbb{CP}_2 at k distinct points, $0 \le k \le 8$, in general position, or $\mathbb{CP}_1 \times \mathbb{CP}_1$.

Theorem. Each del Pezzo (M^4, J) admits a J-compatible conformally Kähler, Einstein metric, and this metric is geometrically unique.

Existence: Page-Derdziński,

 (M^4, J) for which c_1 is a Kähler class $[\omega]$. Shorthand: " $c_1 > 0$."

Blow-up of \mathbb{CP}_2 at k distinct points, $0 \le k \le 8$, in general position, or $\mathbb{CP}_1 \times \mathbb{CP}_1$.

Theorem. Each del Pezzo (M^4, J) admits a J-compatible conformally Kähler, Einstein metric, and this metric is geometrically unique.

Existence: Page-Derdziński, Siu,

 (M^4, J) for which c_1 is a Kähler class $[\omega]$. Shorthand: " $c_1 > 0$."

Blow-up of \mathbb{CP}_2 at k distinct points, $0 \le k \le 8$, in general position, or $\mathbb{CP}_1 \times \mathbb{CP}_1$.

Theorem. Each del Pezzo (M^4, J) admits a J-compatible conformally Kähler, Einstein metric, and this metric is geometrically unique.

Existence: Page-Derdziński, Siu, Tian-Yau,

 (M^4, J) for which c_1 is a Kähler class $[\omega]$. Shorthand: " $c_1 > 0$."

Blow-up of \mathbb{CP}_2 at k distinct points, $0 \le k \le 8$, in general position, or $\mathbb{CP}_1 \times \mathbb{CP}_1$.

Theorem. Each del Pezzo (M^4, J) admits a J-compatible conformally Kähler, Einstein metric, and this metric is geometrically unique.

Existence: Page-Derdziński, Siu, Tian-Yau, Tian,

 (M^4, J) for which c_1 is a Kähler class $[\omega]$. Shorthand: " $c_1 > 0$."

Blow-up of \mathbb{CP}_2 at k distinct points, $0 \le k \le 8$, in general position, or $\mathbb{CP}_1 \times \mathbb{CP}_1$.

Theorem. Each del Pezzo (M^4, J) admits a J-compatible conformally Kähler, Einstein metric, and this metric is geometrically unique.

Existence: Page-Derdziński, Siu, Tian-Yau, Tian, Odaka-Spotti-Sun,

 (M^4, J) for which c_1 is a Kähler class $[\omega]$. Shorthand: " $c_1 > 0$."

Blow-up of \mathbb{CP}_2 at k distinct points, $0 \le k \le 8$, in general position, or $\mathbb{CP}_1 \times \mathbb{CP}_1$.

Theorem. Each del Pezzo (M^4, J) admits a J-compatible conformally Kähler, Einstein metric, and this metric is geometrically unique.

Existence: Page-Derdziński, Siu, Tian-Yau, Tian, Odaka-Spotti-Sun, Chen-L-Weber.

 (M^4, J) for which c_1 is a Kähler class $[\omega]$. Shorthand: " $c_1 > 0$."

Blow-up of \mathbb{CP}_2 at k distinct points, $0 \le k \le 8$, in general position, or $\mathbb{CP}_1 \times \mathbb{CP}_1$.

Theorem. Each del Pezzo (M^4, J) admits a J-compatible conformally Kähler, Einstein metric, and this metric is geometrically unique.

Uniqueness: Bando-Mabuchi '87

 (M^4, J) for which c_1 is a Kähler class $[\omega]$. Shorthand: " $c_1 > 0$."

Blow-up of \mathbb{CP}_2 at k distinct points, $0 \le k \le 8$, in general position, or $\mathbb{CP}_1 \times \mathbb{CP}_1$.

Theorem. Each del Pezzo (M^4, J) admits a J-compatible conformally Kähler, Einstein metric, and this metric is geometrically unique.

Uniqueness: Bando-Mabuchi '87, L '12.

One reason this seems satisfying...

Theorem (CLW '08). Suppose that M is a smooth compact oriented 4-manifold which carries some symplectic form ω .

$$\iff M \approx \begin{cases} \mathbb{CP}_2 \# k \overline{\mathbb{CP}}_2, & 0 \le k \le 8, \\ or \\ S^2 \times S^2 \end{cases}$$

$$\iff M \approx \begin{cases} \mathbb{CP}_2 \# k \overline{\mathbb{CP}}_2, & 0 \le k \le 8, \\ or \\ S^2 \times S^2 \end{cases}$$

Diffeotypes: exactly the Del Pezzo surfaces.

$$\iff M \approx \begin{cases} \mathbb{CP}_2 \# k \overline{\mathbb{CP}}_2, & 0 \le k \le 8, \\ or \\ S^2 \times S^2 \end{cases}$$

Diffeotypes: exactly the Del Pezzo surfaces.

For known h, can take ω harmonic self-dual 2-form.

$$\iff M \approx \begin{cases} \mathbb{CP}_2 \# k \overline{\mathbb{CP}}_2, & 0 \le k \le 8, \\ or \\ S^2 \times S^2 \end{cases}$$

Diffeotypes: exactly the Del Pezzo surfaces.

For known h, can take ω harmonic self-dual 2-form.

But this is not needed in above result.

One fundamental open problem:

One fundamental open problem:

Understand all Einstein metrics on del Pezzos.

One fundamental open problem:

Understand all Einstein metrics on del Pezzos.

Is Einstein moduli space connected?

Moduli Spaces of Einstein metrics

Moduli Spaces of Einstein metrics

$$\mathscr{E}(M) = \{\text{Einstein } h\}/(\text{Diffeos} \times \mathbb{R}^+)$$

Moduli Spaces of Einstein metrics

$$\mathscr{E}(M) = \{ \text{Einstein } h \} / (\text{Diffeos} \times \mathbb{R}^+) \}$$

Completely understood for certain 4-manifolds:

$$\mathscr{E}(M) = \{ \text{Einstein } h \} / (\text{Diffeos} \times \mathbb{R}^+)$$

Known to be connected for certain 4-manifolds:

$$\mathscr{E}(M) = \{\text{Einstein } h\}/(\text{Diffeos} \times \mathbb{R}^+)$$

Known to be connected for certain 4-manifolds:

$$M =$$

$$\mathscr{E}(M) = \{\text{Einstein } h\}/(\text{Diffeos} \times \mathbb{R}^+)$$

Known to be connected for certain 4-manifolds:

$$M = T^4$$

Berger,

$$\mathscr{E}(M) = \{\text{Einstein } h\}/(\text{Diffeos} \times \mathbb{R}^+)$$

Known to be connected for certain 4-manifolds:

$$M = T^4, K3,$$

Berger, Hitchin,

$$\mathscr{E}(M) = \{ \text{Einstein } h \} / (\text{Diffeos} \times \mathbb{R}^+)$$

Known to be connected for certain 4-manifolds:

$$M = T^4, K_3,$$

Berger, Hitchin,

$$\mathscr{E}(M) = \{\text{Einstein } h\}/(\text{Diffeos} \times \mathbb{R}^+)$$

Known to be connected for certain 4-manifolds:

$$M = T^4, K3,$$

Berger, Hitchin,

$$\mathscr{E}(M) = \{ \text{Einstein } h \} / (\text{Diffeos} \times \mathbb{R}^+)$$

Known to be connected for certain 4-manifolds:

$$M = T^4, \quad K3, \quad \mathcal{H}^4/\Gamma,$$

Berger, Hitchin, Besson-Courtois-Gallot,

$$\mathscr{E}(M) = \{ \text{Einstein } h \} / (\text{Diffeos} \times \mathbb{R}^+)$$

Known to be connected for certain 4-manifolds:

$$M = T^4, \quad K3, \quad \mathcal{H}^4/\Gamma, \quad \mathbb{C}\mathcal{H}_2/\Gamma.$$

Berger, Hitchin, Besson-Courtois-Gallot, L.

One fundamental open problem:

Understand all Einstein metrics on del Pezzos.

Is Einstein moduli space connected?

One fundamental open problem:

Understand all Einstein metrics on del Pezzos.

Is Einstein moduli space connected?

Progress to date:

Nice characterizations of known Einstein metrics.

One fundamental open problem:

Understand all Einstein metrics on del Pezzos.

Is Einstein moduli space connected?

Progress to date:

Nice characterizations of known Einstein metrics.

Exactly one connected component of moduli space!

Theorem (L '15).

Theorem (L '15). On any del Pezzo M^4 ,

Theorem (L '15). On any del Pezzo M^4 , the conformally Kähler, Einstein metrics

$$W^+(\omega,\omega) > 0$$

$$W^+(\omega,\omega) > 0$$

everywhere on M,

$$W^+(\omega,\omega) > 0$$

everywhere on M, for ω an arbitrary non-trivial global self-dual harmonic 2-form.

$$W^+(\omega,\omega) > 0$$

everywhere on M, for ω an arbitrary non-trivial global self-dual harmonic 2-form.

Corollary. These known Einstein metrics on any del Pezzo M⁴

$$W^+(\omega,\omega) > 0$$

everywhere on M, for ω an arbitrary non-trivial global self-dual harmonic 2-form.

Corollary. These known Einstein metrics on any del Pezzo M^4 sweep out exactly one connected component

$$W^+(\omega,\omega) > 0$$

everywhere on M, for ω an arbitrary non-trivial global self-dual harmonic 2-form.

Corollary. These known Einstein metrics on any del Pezzo M^4 sweep out exactly one connected component of the Einstein moduli space $\mathcal{E}(M)$.

But $W^+(\omega, \omega) > 0$ is not purely local condition!

But $W^+(\omega,\omega) > 0$ is not purely local condition!

Involves global harmonic 2-form ω .

But $W^+(\omega,\omega) > 0$ is not purely local condition!

Involves global harmonic 2-form ω .

Peng Wu proposed an alternate characterization

But $W^+(\omega, \omega) > 0$ is not purely local condition!

Involves global harmonic 2-form ω .

Peng Wu proposed an alternate characterization using only a purely local condition on W^+ .

But $W^+(\omega,\omega) > 0$ is not purely local condition!

Involves global harmonic 2-form ω .

Peng Wu proposed an alternate characterization using only a purely local condition on W^+ .

Kähler
$$\Longrightarrow \Lambda^+ = \mathbb{R}\omega \oplus \Re e\Lambda^{2,0}$$

$$W^+ = \text{trace-free part of} \begin{bmatrix} 0 \\ 0 \\ \frac{s}{4} \end{bmatrix}$$

But $W^+(\omega,\omega) > 0$ is not purely local condition!

Involves global harmonic 2-form ω .

Peng Wu proposed an alternate characterization using only a purely local condition on W^+ .

Kähler
$$\Longrightarrow \Lambda^+ = \mathbb{R}\omega \oplus \Re e\Lambda^{2,0}$$

$$W^{+} = \begin{bmatrix} -\frac{s}{12} \\ -\frac{s}{12} \\ \frac{s}{6} \end{bmatrix}$$

But $W^+(\omega,\omega) > 0$ is not purely local condition!

Involves global harmonic 2-form ω .

Peng Wu proposed an alternate characterization using only a purely local condition on W^+ .

Kähler
$$\Longrightarrow \Lambda^+ = \mathbb{R}\omega \oplus \Re e\Lambda^{2,0}$$

$$\det(W^{+}) = \det \begin{bmatrix} -\frac{s}{12} \\ -\frac{s}{12} \\ \frac{s}{6} \end{bmatrix} = \frac{s^{3}}{864} > 0$$

for these metrics

But $W^+(\omega,\omega) > 0$ is not purely local condition!

Involves global harmonic 2-form ω .

Peng Wu proposed an alternate characterization using only a purely local condition on W^+ .

Kähler
$$\Longrightarrow \Lambda^+ = \mathbb{R}\omega \oplus \Re e\Lambda^{2,0}$$

$$\det(W^{+}) = \det \begin{bmatrix} -\frac{s}{12} \\ -\frac{s}{12} \\ \frac{s}{6} \end{bmatrix} = \frac{s^{3}}{864} > 0$$

for these metrics & conformal rescalings:

$$g \rightsquigarrow \mathbf{h} = f^2 g \implies \det(W^+) \rightsquigarrow f^{-6} \det(W^+).$$

But $W^+(\omega,\omega) > 0$ is not purely local condition!

Involves global harmonic 2-form ω .

Peng Wu proposed an alternate characterization using only a purely local condition on W^+ .

Wu's criterion:

$$\det(W^+) > 0.$$

But $W^+(\omega,\omega) > 0$ is not purely local condition!

Involves global harmonic 2-form ω .

Peng Wu proposed an alternate characterization using only a purely local condition on W^+ .

Wu's criterion:

$$\det(W^+) > 0.$$

Wu (2021): terse, opaque proof that \iff .

But $W^+(\omega,\omega) > 0$ is not purely local condition!

Involves global harmonic 2-form ω .

Peng Wu proposed an alternate characterization using only a purely local condition on W^+ .

Wu's criterion:

$$\det(W^+) > 0.$$

Wu (2021): terse, opaque proof that \iff .

L (2021a): completely different proof;

But $W^+(\omega,\omega) > 0$ is not purely local condition!

Involves global harmonic 2-form ω .

Peng Wu proposed an alternate characterization using only a purely local condition on W^+ .

Wu's criterion:

$$\det(W^+) > 0.$$

Wu (2021): terse, opaque proof that \iff .

L (2021a): completely different proof;

method also proves more general results.

But $W^+(\omega,\omega) > 0$ is not purely local condition!

Involves global harmonic 2-form ω .

Peng Wu proposed an alternate characterization using only a purely local condition on W^+ .

Wu's criterion:

$$\det(W^+) > 0.$$

Wu (2021): terse, opaque proof that \iff .

L (2021a): completely different proof.

L (2021b): related classification result.

Theorem B.

Theorem B. Let (M, h) be a compact oriented Einstein 4-manifold,

Theorem B. Let (M, h) be a simply-connected compact oriented Einstein 4-manifold,

 $W^+:\Lambda^+\to\Lambda^+$

$$W^+:\Lambda^+\to\Lambda^+$$

satisfies

$$\det(W^+) > 0$$

at every point of M.

$$W^+:\Lambda^+\to\Lambda^+$$

satisfies

$$\det(W^+) > 0$$

at every point of M. Then h is conformal

$$W^+:\Lambda^+\to\Lambda^+$$

satisfies

$$\det(W^+) > 0$$

at every point of M. Then h is conformal to an orientation-compatible Bach-flat extremal Kähler metric g

$$W^+:\Lambda^+\to\Lambda^+$$

satisfies

$$\det(W^+) > 0$$

at every point of M. Then h is conformal to an orientation-compatible Bach-flat extremal Kähler metric g with scalar curvature s > 0 on M.

$$W^{+} = \begin{bmatrix} \alpha \\ \beta \\ \gamma \end{bmatrix}$$

$$W^{+} = \begin{bmatrix} \alpha \\ \beta \\ \gamma \end{bmatrix}$$
$$\alpha + \beta + \gamma = 0$$

$$W^{+} = \begin{bmatrix} \alpha \\ \beta \\ \gamma \end{bmatrix}$$
$$\alpha + \beta + \gamma = 0$$

$$\alpha > 0, \quad \gamma < 0, \quad \text{if } W^+ \neq 0$$

$$W^{+} = \begin{bmatrix} \alpha \\ \beta \\ \gamma \end{bmatrix}$$

$$\alpha + \beta + \gamma = 0$$

$$\alpha > 0, \quad \gamma < 0, \quad \text{if } W^{+} \neq 0$$

$$\det(W^{+}) = \alpha\beta\gamma$$

$$W^{+} = \begin{bmatrix} \alpha \\ \beta \\ \gamma \end{bmatrix}$$

$$\alpha + \beta + \gamma = 0$$

$$\alpha > 0, \quad \gamma < 0, \quad \text{if } W^{+} \neq 0$$

$$\det(W^{+}) = \alpha\beta\gamma$$

necessarily has the same sign as $-\beta$.

$$W^{+} = \begin{bmatrix} \alpha \\ \beta \\ \gamma \end{bmatrix}$$

$$\alpha + \beta + \gamma = 0$$

$$\alpha > 0, \quad \gamma < 0, \quad \text{if } W^{+} \neq 0$$

$$\det(W^{+}) = \alpha\beta\gamma$$

$$\det(W^{+}) > 0 \iff \beta < 0$$

$$W^{+} = \begin{bmatrix} \alpha \\ \beta \\ \gamma \end{bmatrix}$$

$$\alpha + \beta + \gamma = 0$$

$$\alpha > 0, \quad \gamma < 0, \quad \text{if } W^{+} \neq 0$$

$$\det(W^{+}) = \alpha\beta\gamma$$

$$\det(W^{+}) > 0 \iff \beta < 0$$

$$W^{+} \sim \begin{bmatrix} + \\ - \end{bmatrix}$$

$$W^{+} = \begin{bmatrix} \alpha \\ \beta \\ \gamma \end{bmatrix}$$

$$\alpha + \beta + \gamma = 0$$

$$\alpha > 0, \quad \gamma < 0, \quad \text{if } W^{+} \neq 0$$

$$\det(W^{+}) = \alpha\beta\gamma$$

 $\det(W^+) > 0 \implies \alpha \text{ has multiplicity 1.}$

$$W^{+} = \begin{bmatrix} \alpha \\ \beta \\ \gamma \end{bmatrix}$$

$$\alpha + \beta + \gamma = 0$$

$$\alpha > 0, \quad \gamma < 0, \quad \text{if } W^{+} \neq 0$$

$$\det(W^{+}) = \alpha\beta\gamma$$

 $\det(W^+) > 0 \implies \alpha \text{ has multiplicity 1.}$

So $\alpha = \alpha_h : M \to \mathbb{R}^+$ a smooth function,

$$W^{+} = \begin{bmatrix} \alpha \\ \beta \\ \gamma \end{bmatrix}$$

$$\alpha + \beta + \gamma = 0$$

$$\alpha > 0, \quad \gamma < 0, \quad \text{if } W^{+} \neq 0$$

$$\det(W^{+}) = \alpha\beta\gamma$$

 $\det(W^+) > 0 \implies \alpha \text{ has multiplicity 1.}$

So $\alpha = \alpha_h : M \to \mathbb{R}^+$ a smooth function, and can choose ω with $W^+(\omega) = \alpha \omega$, $|\omega|_h \equiv \sqrt{2}$.

$$W^{+} = \begin{bmatrix} \alpha \\ \beta \\ \gamma \end{bmatrix}$$

$$\alpha + \beta + \gamma = 0$$

$$\alpha > 0, \quad \gamma < 0, \quad \text{if } W^{+} \neq 0$$

$$\det(W^{+}) = \alpha\beta\gamma$$

 $\det(W^+) > 0 \implies \alpha \text{ has multiplicity 1.}$

So $\alpha = \alpha_h : M \to \mathbb{R}^+$ a smooth function, and can choose ω with $W^+(\omega) = \alpha \omega$, $|\omega|_h \equiv \sqrt{2}$. either on M or double cover \widetilde{M} .

$$W^{+} = \begin{bmatrix} \alpha \\ \beta \\ \gamma \end{bmatrix}$$

$$\alpha + \beta + \gamma = 0$$

$$\alpha > 0, \quad \gamma < 0, \quad \text{if } W^{+} \neq 0$$

$$\det(W^{+}) = \alpha\beta\gamma$$

$$\det(W^+) > 0 \implies \alpha \text{ has multiplicity 1.}$$

Get almost-complex structure J on M or M by

$$W^{+} = \begin{bmatrix} \alpha \\ \beta \\ \gamma \end{bmatrix}$$

$$\alpha + \beta + \gamma = 0$$

$$\alpha > 0, \quad \gamma < 0, \quad \text{if } W^{+} \neq 0$$

$$\det(W^{+}) = \alpha\beta\gamma$$

 $\det(W^+) > 0 \implies \alpha \text{ has multiplicity 1.}$

Get almost-complex structure J on M or M by $\omega = h(J \cdot, \cdot)$.

$$W^{+} = \begin{bmatrix} \alpha \\ \beta \\ \gamma \end{bmatrix}$$

$$\alpha + \beta + \gamma = 0$$

$$\alpha > 0, \quad \gamma < 0, \quad \text{if } W^{+} \neq 0$$

$$\det(W^{+}) = \alpha\beta\gamma$$

 $\det(W^+) > 0 \implies \alpha \text{ has multiplicity 1.}$

Get almost-complex structure J on M or M by $\omega = h(J \cdot, \cdot)$.

Claim: (M, h) compact Einstein $\Longrightarrow J$ integrable.

$$W^+:\Lambda^+\to\Lambda^+$$

satisfies

$$\det(W^+) > 0$$

at every point of M. Then h is conformal to an orientation-compatible Bach-flat extremal Kähler metric g with scalar curvature s > 0 on M.

$$W^+:\Lambda^+\to\Lambda^+$$

satisfies

$$\det(W^+) > 0$$

at every point of M. Then h is conformal to an orientation-compatible Bach-flat extremal Kähler metric g with scalar curvature s > 0 on M.

Corollary. Every simply-connected compact oriented Einstein (M^4, h) with $det(W^+) > 0$ is diffeomorphic to a del Pezzo surface.

$$W^+:\Lambda^+\to\Lambda^+$$

satisfies

$$\det(W^+) > 0$$

at every point of M. Then h is conformal to an orientation-compatible Bach-flat extremal Kähler metric g with scalar curvature s > 0 on M.

Corollary. Every simply-connected compact oriented Einstein (M^4, h) with $\det(W^+) > 0$ is diffeomorphic to a del Pezzo surface. Conversely, every del Pezzo M^4 carries Einstein h with $\det(W^+) > 0$, and these sweep out exactly one connected component of moduli space $\mathcal{E}(M)$.

$$W^+:\Lambda^+\to\Lambda^+$$

satisfies

$$\det(W^+) > 0$$

at every point of M. Then h is conformal to an orientation-compatible Bach-flat extremal Kähler metric g with scalar curvature s > 0 on M.

$$W^+:\Lambda^+\to\Lambda^+$$

satisfies

$$\det(W^+) > 0$$

at every point of M. Then h is conformal to an orientation-compatible Bach-flat extremal Kähler metric g with scalar curvature s > 0 on M.

Simply connected hypothesis $\iff b_+(M) \neq 0$.

$$W^+:\Lambda^+\to\Lambda^+$$

satisfies

$$\det(W^+) > 0$$

at every point of M. Then h is conformal to an orientation-compatible Bach-flat extremal Kähler metric g with scalar curvature s > 0 on M.

Simply connected hypothesis $\iff b_+(M) \neq 0$.

Excludes 5 types with $\pi_1 = \mathbb{Z}_2$ and $b_+(M) = 0$.

By second Bianchi identity,

By second Bianchi identity,

$$h \text{ Einstein} \Longrightarrow \delta W^+ = (\delta W)^+ = 0.$$

By second Bianchi identity,

$$h \text{ Einstein} \Longrightarrow \delta W^+ = (\delta W)^+ = 0.$$

$$(\delta W)_{bcd} := -\nabla_a W^a{}_{bcd} = -\nabla_{[c} r_{d]b} + \frac{1}{6} h_{b[c} \nabla_{d]} s$$

By second Bianchi identity,

$$h \text{ Einstein} \Longrightarrow \delta W^+ = (\delta W)^+ = 0.$$

$$(\delta W)_{bcd} := -\nabla_a W^a_{bcd} = -\nabla_{[c} r_{d]b} + \frac{1}{6} h_{b[c} \nabla_{d]} s$$

Our strategy:

By second Bianchi identity,

$$h \text{ Einstein} \Longrightarrow \delta W^+ = (\delta W)^+ = 0.$$

$$(\delta W)_{bcd} := -\nabla_a W^a_{bcd} = -\nabla_{[c} r_{d]b} + \frac{1}{6} h_{b[c} \nabla_{d]} s$$

Our strategy:

study weaker equation

By second Bianchi identity,

$$h \text{ Einstein} \Longrightarrow \delta W^+ = (\delta W)^+ = 0.$$

$$(\delta W)_{bcd} := -\nabla_a W^a{}_{bcd} = -\nabla_{[c} \mathbf{r}_{d]b} + \frac{1}{6} h_{b[c} \nabla_{d]} s$$

Our strategy:

study weaker equation

$$\delta W^+ = 0$$

One key idea underlying the proof:

By second Bianchi identity,

$$h \text{ Einstein} \Longrightarrow \delta W^+ = (\delta W)^+ = 0.$$

$$(\delta W)_{bcd} := -\nabla_a W^a_{bcd} = -\nabla_{[c} r_{d]b} + \frac{1}{6} h_{b[c} \nabla_{d]} s$$

Our strategy:

study weaker equation

$$\delta W^+ = 0$$

as proxy for Einstein equation.

Theorem C.

Theorem C. Let (M, h) be a compact oriented Riemannian 4-manifold

$$W^+ \neq 0$$

$$W^+ \neq 0$$
 and $\det(W^+) \ge -\frac{5\sqrt{2}}{21\sqrt{21}}|W^+|^3$

$$W^+ \neq 0$$
 and $\det(W^+) \ge -\frac{5\sqrt{2}}{21\sqrt{21}}|W^+|^3$

everywhere on M,

$$W^+ \neq 0$$
 and $\det(W^+) \ge -\frac{5\sqrt{2}}{21\sqrt{21}}|W^+|^3$

everywhere on M, then actually $det(W^+) > 0$. In particular, if (M, h) is a simply-connected Einstein manifold,

$$W^+ \neq 0$$
 and $\det(W^+) \ge -\frac{5\sqrt{2}}{21\sqrt{21}}|W^+|^3$

everywhere on M, then actually $det(W^+) > 0$. In particular, if (M, h) is a simply-connected Einstein manifold, then h is conformally Kähler,

$$W^+ \neq 0$$
 and $\det(W^+) \ge -\frac{5\sqrt{2}}{21\sqrt{21}}|W^+|^3$

everywhere on M, then actually $det(W^+) > 0$. In particular, if (M, h) is a simply-connected Einstein manifold, then h is conformally Kähler, and M is a Del Pezzo surface.

$$W^+ \neq 0$$
 and $\det(W^+) \ge -\frac{5\sqrt{2}}{21\sqrt{21}}|W^+|^3$

everywhere on M, then actually $det(W^+) > 0$. In particular, if (M, h) is a simply-connected Einstein manifold, then h is conformally Kähler, and M is a Del Pezzo surface.

$$W^+ \neq 0$$
 and $\det(W^+) \ge -\frac{5\sqrt{2}}{21\sqrt{21}}|W^+|^3$

everywhere on M, then actually $det(W^+) > 0$. In particular, if (M, h) is a simply-connected Einstein manifold, then h is conformally Kähler, and M is a Del Pezzo surface.

Key to all this:

$$W^+ \neq 0$$
 and $\det(W^+) \ge -\frac{5\sqrt{2}}{21\sqrt{21}}|W^+|^3$

everywhere on M, then actually $det(W^+) > 0$. In particular, if (M, h) is a simply-connected Einstein manifold, then h is conformally Kähler, and M is a Del Pezzo surface.

Key to all this:

Correctly understand equation $\delta W^+ = 0$.

Equation $\delta W^+ = 0$

Equation $\delta W^+ = 0$ implies Weitzenböck formula

Equation $\delta W^+ = 0$ implies Weitzenböck formula

$$0 = \nabla^* \nabla W^+ + \frac{s}{2} W^+ - 6W^+ \circ W^+ + 2|W^+|^2 I$$

for $W^+ \in \operatorname{End}(\Lambda^+)$, with respect to h.

If $h = f^2g$ satisfies

If $h = f^2g$ satisfies

$$\delta W^+ = 0$$

If $h = f^2g$ satisfies

$$\delta W^+ = 0$$

then g instead satisfies

If $h = f^2g$ satisfies

$$\delta W^+ = 0$$

then g instead satisfies

$$\delta(fW^+) = 0$$

If $h = f^2g$ satisfies

$$\delta W^+ = 0$$

then g instead satisfies

$$\delta(fW^+) = 0$$

which in turn implies the Weitzenböck formula

If $h = f^2g$ satisfies

$$\delta W^+ = 0$$

then g instead satisfies

$$\delta(fW^+) = 0$$

which in turn implies the Weitzenböck formula

$$0 = \nabla^* \nabla (fW^+) + \frac{s}{2} fW^+ - 6fW^+ \circ W^+ + 2f|W^+|^2 I$$

If $h = f^2g$ satisfies

$$\delta W^+ = 0$$

then g instead satisfies

$$\delta(fW^+) = 0$$

which in turn implies the Weitzenböck formula

$$0 = \nabla^* \nabla (fW^+) + \frac{s}{2} fW^+ - 6fW^+ \circ W^+ + 2f|W^+|^2 I$$

for
$$fW^+ \in \operatorname{End}(\Lambda^+)$$
.

We'll choose $g = f^{-2}h$

We'll choose $g = f^{-2}h$

adapted to problem,

We'll choose $g = f^{-2}h$ and ω adapted to problem,

We'll choose self-dual 2-form ω adapted to problem,

$$0 = \nabla^* \nabla (fW^+) + \frac{s}{2} fW^+ - 6fW^+ \circ W^+ + 2f|W^+|^2 I$$

$$0 = \nabla^* \nabla (fW^+) + \frac{s}{2} fW^+ - 6fW^+ \circ W^+ + 2f|W^+|^2 I$$

with $\omega \otimes \omega$,

$$0 = \nabla^* \nabla (fW^+) + \frac{s}{2} fW^+ - 6fW^+ \circ W^+ + 2f|W^+|^2 I$$

with $\omega \otimes \omega$,

$$0 = \int_{M} \left[\langle \nabla^* \nabla (fW^+), \omega \otimes \omega \rangle + \cdots \right] d\mu$$

$$0 = \nabla^* \nabla (fW^+) + \frac{s}{2} fW^+ - 6fW^+ \circ W^+ + 2f|W^+|^2 I$$

with $\omega \otimes \omega$, and integrate by parts.

$$0 = \int_{M} \left[\langle \nabla^* \nabla (fW^+), \omega \otimes \omega \rangle + \cdots \right] d\mu$$

$$0 = \nabla^* \nabla (fW^+) + \frac{s}{2} fW^+ - 6fW^+ \circ W^+ + 2f|W^+|^2 I$$

with $\omega \otimes \omega$, and integrate by parts.

$$0 = \int_{M} \left[\langle fW^{+}, \nabla^{*}\nabla(\omega \otimes \omega) \rangle + \cdots \right] d\mu$$

$$0 = \nabla^* \nabla (fW^+) + \frac{s}{2} fW^+ - 6fW^+ \circ W^+ + 2f|W^+|^2 I$$

with $\omega \otimes \omega$, and integrate by parts.

$$0 = \int_{M} \left[\langle W^{+}, \nabla^{*} \nabla (\omega \otimes \omega) \rangle + \cdots \right] f \ d\mu$$

$$0 = \nabla^* \nabla (fW^+) + \frac{s}{2} fW^+ - 6fW^+ \circ W^+ + 2f|W^+|^2 I$$

with $\omega \otimes \omega$, and integrate by parts. This yields:

$$0 = \int_{M} \left[\langle W^{+}, \nabla^{*} \nabla (\omega \otimes \omega) \rangle + \frac{s}{2} W^{+}(\omega, \omega) - 6|W^{+}(\omega)|^{2} + 2|W^{+}|^{2}|\omega|^{2} \right] f d\mu$$

$$0 = \int_{M} \left[\langle W^{+}, \nabla^{*} \nabla (\omega \otimes \omega) \rangle + \frac{s}{2} W^{+}(\omega, \omega) - 6|W^{+}(\omega)|^{2} + 2|W^{+}|^{2}|\omega|^{2} \right] f d\mu$$

$$0 = \int_{M} \left[\langle W^{+}, \nabla^{*} \nabla (\omega \otimes \omega) \rangle + \frac{s}{2} W^{+}(\omega, \omega) - 6|W^{+}(\omega)|^{2} + 2|W^{+}|^{2}|\omega|^{2} \right] f d\mu$$

holds whenever $h = f^2 g$ satisfies $\delta W^+ = 0$.

$$0 = \int_{M} \left[\langle W^{+}, \nabla^{*} \nabla (\omega \otimes \omega) \rangle + \frac{s}{2} W^{+}(\omega, \omega) - 6|W^{+}(\omega)|^{2} + 2|W^{+}|^{2}|\omega|^{2} \right] f d\mu$$

$$0 = \int_{M} \left[\langle W^{+}, \nabla^{*} \nabla (\omega \otimes \omega) \rangle + \frac{s}{2} W^{+}(\omega, \omega) - 6|W^{+}(\omega)|^{2} + 2|W^{+}|^{2}|\omega|^{2} \right] f d\mu$$

$$0 = \int_{M} \left[\langle W^{+}, \nabla^{*} \nabla (\omega \otimes \omega) \rangle + \frac{s}{2} W^{+}(\omega, \omega) - 6|W^{+}(\omega)|^{2} + 2|W^{+}|^{2}|\omega|^{2} \right] f d\mu$$

Example. If \exists harmonic ω with $W^+(\omega, \omega) > 0$,

$$0 = \int_{M} \left[\langle W^{+}, \nabla^{*} \nabla (\omega \otimes \omega) \rangle + \frac{s}{2} W^{+}(\omega, \omega) - 6|W^{+}(\omega)|^{2} + 2|W^{+}|^{2}|\omega|^{2} \right] f d\mu$$

Example. If \exists harmonic ω with $W^+(\omega, \omega) > 0$, then $\omega \neq 0$ everywhere.

$$0 = \int_{M} \left[\langle W^{+}, \nabla^{*} \nabla (\omega \otimes \omega) \rangle + \frac{s}{2} W^{+}(\omega, \omega) - 6|W^{+}(\omega)|^{2} + 2|W^{+}|^{2}|\omega|^{2} \right] f d\mu$$

Example. If \exists harmonic ω with $W^+(\omega, \omega) > 0$, then $\omega \neq 0$ everywhere. Choose $g = f^{-2}h$ so that $|\omega|_g \equiv \sqrt{2}$.

$$0 = \int_{M} \left[\langle W^{+}, \nabla^{*} \nabla (\omega \otimes \omega) \rangle + \frac{s}{2} W^{+}(\omega, \omega) - 6|W^{+}(\omega)|^{2} + 2|W^{+}|^{2}|\omega|^{2} \right] f d\mu$$

Example. If \exists harmonic ω with $W^+(\omega, \omega) > 0$, then $\omega \neq 0$ everywhere. Choose $g = f^{-2}h$ so that $|\omega|_g \equiv \sqrt{2}$.

This g is almost-Kähler.

$$0 = \int_{M} \left[\langle W^{+}, \nabla^{*} \nabla (\omega \otimes \omega) \rangle + \frac{s}{2} W^{+}(\omega, \omega) - 6|W^{+}(\omega)|^{2} + 2|W^{+}|^{2}|\omega|^{2} \right] f d\mu$$

Example. If \exists harmonic ω with $W^+(\omega, \omega) > 0$, then $\omega \neq 0$ everywhere. Choose $g = f^{-2}h$ so that $|\omega|_g \equiv \sqrt{2}$.

This g is almost-Kähler. Above identity becomes

$$0 = \int_{M} \left(8|W^{+}|^{2} - sW^{+}(\omega, \omega) + 4|W^{+}(\omega)^{\perp}|^{2} \right) f d\mu,$$

$$0 = \int_{M} \left[\langle W^{+}, \nabla^{*} \nabla (\omega \otimes \omega) \rangle + \frac{s}{2} W^{+}(\omega, \omega) - 6|W^{+}(\omega)|^{2} + 2|W^{+}|^{2}|\omega|^{2} \right] f d\mu$$

Example. If \exists harmonic ω with $W^+(\omega, \omega) > 0$, then $\omega \neq 0$ everywhere. Choose $g = f^{-2}h$ so that $|\omega|_g \equiv \sqrt{2}$.

This g is almost-Kähler. Above identity becomes

$$0 = \int_{M} \left(8|W^{+}|^{2} - sW^{+}(\omega, \omega) + 4|W^{+}(\omega)^{\perp}|^{2} \right) f d\mu,$$

and this eventually turns out to imply

$$0 \ge \int_{M} W^{+}(\omega, \omega) |\nabla \omega|^{2} f \ d\mu,$$

$$0 = \int_{M} \left[\langle W^{+}, \nabla^{*} \nabla (\omega \otimes \omega) \rangle + \frac{s}{2} W^{+}(\omega, \omega) - 6|W^{+}(\omega)|^{2} + 2|W^{+}|^{2}|\omega|^{2} \right] f d\mu$$

Example. If \exists harmonic ω with $W^+(\omega, \omega) > 0$, then $\omega \neq 0$ everywhere. Choose $g = f^{-2}h$ so that $|\omega|_q \equiv \sqrt{2}$.

This g is almost-Kähler. Above identity becomes

$$0 = \int_{M} \left(8|W^{+}|^{2} - sW^{+}(\omega, \omega) + 4|W^{+}(\omega)^{\perp}|^{2} \right) f d\mu,$$

and this eventually turns out to imply

$$0 \ge \int_{M} W^{+}(\omega, \omega) |\nabla \omega|^{2} f \ d\mu,$$

thus showing that g must actually be Kähler.

$$0 = \int_{M} \left[\langle W^{+}, \nabla^{*} \nabla (\omega \otimes \omega) \rangle + \frac{s}{2} W^{+}(\omega, \omega) - 6|W^{+}(\omega)|^{2} + 2|W^{+}|^{2}|\omega|^{2} \right] f d\mu$$

$$W^{+} = \begin{bmatrix} \alpha \\ \beta \\ \gamma \end{bmatrix}$$

$$W^{+} = \begin{bmatrix} \alpha \\ \beta \\ \gamma \end{bmatrix}$$
$$\alpha + \beta + \gamma = 0$$

$$W^{+} = \begin{bmatrix} \alpha \\ \beta \\ \gamma \end{bmatrix}$$
$$\alpha + \beta + \gamma = 0$$

$$\alpha > 0, \quad \gamma < 0, \quad \text{if } W^+ \neq 0$$

$$W^{+} = \begin{bmatrix} \alpha \\ \beta \\ \gamma \end{bmatrix}$$

$$\alpha + \beta + \gamma = 0$$

$$\alpha > 0, \quad \gamma < 0, \quad \text{if } W^{+} \neq 0$$

$$\det(W^{+}) = \alpha\beta\gamma$$

Let $\alpha \geq \beta \geq \gamma$ be eigenvalues of W^+ :

$$W^{+} = \begin{bmatrix} \alpha \\ \beta \\ \gamma \end{bmatrix}$$

$$\alpha + \beta + \gamma = 0$$

$$\alpha > 0, \quad \gamma < 0, \quad \text{if } W^{+} \neq 0$$

$$\det(W^{+}) = \alpha\beta\gamma$$

necessarily has the same sign as $-\beta$.

$$W^{+} = \begin{bmatrix} \alpha \\ \beta \\ \gamma \end{bmatrix}$$

$$\alpha + \beta + \gamma = 0$$

$$\alpha > 0, \quad \gamma < 0, \quad \text{if } W^{+} \neq 0$$

$$\det(W^{+}) = \alpha\beta\gamma$$

$$\det(W^{+}) > 0 \iff \beta < 0$$

$$W^{+} = \begin{bmatrix} \alpha \\ \beta \\ \gamma \end{bmatrix}$$

$$\alpha + \beta + \gamma = 0$$

$$\alpha > 0, \quad \gamma < 0, \quad \text{if } W^{+} \neq 0$$

$$\det(W^{+}) = \alpha\beta\gamma$$

$$\det(W^{+}) > 0 \iff \beta < 0$$

$$W^{+} \sim \begin{bmatrix} + \\ - \end{bmatrix}$$

Let $\alpha \geq \beta \geq \gamma$ be eigenvalues of W^+ :

$$W^{+} = \begin{bmatrix} \alpha \\ \beta \\ \gamma \end{bmatrix}$$

$$\alpha + \beta + \gamma = 0$$

$$\alpha > 0, \quad \gamma < 0, \quad \text{if } W^{+} \neq 0$$

$$\det(W^{+}) = \alpha \beta \gamma$$

 $\det(W^+) > 0 \implies \alpha \text{ has multiplicity 1.}$

Let $\alpha \geq \beta \geq \gamma$ be eigenvalues of W^+ :

$$W^{+} = \begin{bmatrix} \alpha \\ \beta \\ \gamma \end{bmatrix}$$

$$\alpha + \beta + \gamma = 0$$

$$\alpha > 0, \quad \gamma < 0, \quad \text{if } W^{+} \neq 0$$

$$\det(W^{+}) = \alpha\beta\gamma$$

 $\det(W^+) > 0 \implies \alpha \text{ has multiplicity 1.}$

So $\alpha = \alpha_h : M \to \mathbb{R}^+$ a smooth function.

Let $\alpha \geq \beta \geq \gamma$ be eigenvalues of W^+ :

$$W^{+} = \begin{bmatrix} \alpha \\ \beta \\ \gamma \end{bmatrix}$$

$$\alpha + \beta + \gamma = 0$$

$$\alpha > 0, \quad \gamma < 0, \quad \text{if } W^{+} \neq 0$$

$$\det(W^{+}) = \alpha\beta\gamma$$

 $\det(W^+) > 0 \implies \alpha \text{ has multiplicity 1.}$

So $\alpha = \alpha_h : M \to \mathbb{R}^+$ a smooth function. Set

$$f = \alpha_h^{-1/3}, \qquad g = f^{-2}h = \alpha_h^{2/3}h.$$

For
$$g = f^{-2}h$$
,

For
$$g = f^{-2}h$$
,

$$\begin{bmatrix} \alpha \\ \beta \\ \gamma \end{bmatrix} = \begin{bmatrix} f^2 \alpha \\ f^2 \beta \\ f^2 \gamma \end{bmatrix}$$

For
$$g = f^{-2}h$$
,

$$\begin{bmatrix} \alpha \\ \beta \\ \gamma \end{bmatrix} = \begin{bmatrix} f^2 \alpha \\ f^2 \beta \\ f^2 \gamma \end{bmatrix}$$

So our choice of $f = \alpha^{-1/3}$ implies

For $g = f^{-2}h$,

$$\begin{bmatrix} \alpha \\ \beta \\ \gamma \end{bmatrix} = \begin{bmatrix} f^2 \alpha \\ f^2 \beta \\ f^2 \gamma \end{bmatrix}$$

So our choice of $f = \alpha^{-1/3}$ implies

$$\alpha = \alpha^{1/3} = f^{-1}$$

For
$$g = f^{-2}h$$
,

$$\begin{bmatrix} \alpha \\ \beta \\ \gamma \end{bmatrix} = \begin{bmatrix} f^2 \alpha \\ f^2 \beta \\ f^2 \gamma \end{bmatrix}$$

So our choice of $f = \alpha^{-1/3}$ implies

$$\alpha = \alpha^{1/3} = f^{-1}$$

$$\implies \alpha f = 1$$

For
$$g = f^{-2}h$$
,

$$\begin{bmatrix} \alpha \\ \beta \\ \gamma \end{bmatrix} = \begin{bmatrix} f^2 \alpha \\ f^2 \beta \\ f^2 \gamma \end{bmatrix}$$

So our choice of $f = \alpha^{-1/3}$ implies

$$\alpha = \alpha^{1/3} = f^{-1}$$

$$\implies \alpha f = 1$$

Now choose $\omega \in \Gamma \Lambda^+$ so that

$$W_q^+(\omega) = \alpha \ \omega, \quad |\omega|_g \equiv \sqrt{2},$$

after at worst passing to double cover $\hat{M} \to M$.

$$0 = \int_{\hat{M}} \left[\langle W^+, \nabla^* \nabla (\omega \otimes \omega) \rangle + \frac{s}{2} W^+(\omega, \omega) - 6 |W^+(\omega)|^2 + 2 |W^+|^2 |\omega|^2 \right] f d\mu$$

$$0 = \int_{M} \left[\langle W^{+}, \nabla^{*} \nabla (\omega \otimes \omega) \rangle + \frac{s}{2} W^{+}(\omega, \omega) - 6 |W^{+}(\omega)|^{2} + 2 |W^{+}|^{2} |\omega|^{2} \right] f d\mu$$

$$0 = \int_{M} \left[-2W^{+}(\nabla_{e}\omega, \nabla^{e}\omega) - 2W^{+}(\omega, \nabla^{e}\nabla_{e}\omega) + \frac{s}{2}W^{+}(\omega, \omega) - 6|W^{+}(\omega)|^{2} + 2|W^{+}|^{2}|\omega|^{2} \right] f d\mu$$

$$0 = \int_{M} \left[-2W^{+}(\nabla_{e}\omega, \nabla^{e}\omega) - 2\alpha\langle\omega, \nabla^{e}\nabla_{e}\omega\rangle + \frac{s}{2}\alpha|\omega|^{2} - 6\alpha^{2}|\omega|^{2} + 2|W^{+}|^{2}|\omega|^{2} \right] f d\mu$$

because

$$W_g^+(\omega) = \alpha \omega$$

$$0 = \int_{M} \left[-2W^{+}(\nabla_{e}\omega, \nabla^{e}\omega) + 2\alpha\langle\omega, \nabla^{*}\nabla\omega\rangle + \frac{s}{2}\alpha|\omega|^{2} - 6\alpha^{2}|\omega|^{2} + 2|W^{+}|^{2}|\omega|^{2} \right] f d\mu$$

$$0 \ge \int_{M} \left[-2W^{+}(\nabla_{e}\omega, \nabla^{e}\omega) + 2\alpha\langle\omega, \nabla^{*}\nabla\omega\rangle + \frac{s}{2}\alpha|\omega|^{2} - 6\alpha^{2}|\omega|^{2} + 3\alpha^{2}|\omega|^{2} \right] f d\mu$$

because

$$|W_g^+|^2 \ge \frac{3}{2}\alpha^2$$

$$0 \ge \int_{M} \left[-2W^{+}(\nabla_{e}\omega, \nabla^{e}\omega) + 2\alpha\langle\omega, \nabla^{*}\nabla\omega\rangle + \frac{s}{2}\alpha|\omega|^{2} - 3\alpha^{2}|\omega|^{2} \right] f d\mu$$

$$|\omega|_g^2 = 2 \implies (\nabla_e \omega) \perp \omega$$

$$0 \ge \int_{M} \left[-2W^{+}(\nabla_{e}\omega, \nabla^{e}\omega) + 2\alpha\langle\omega, \nabla^{*}\nabla\omega\rangle + \frac{s}{2}\alpha|\omega|^{2} - 3\alpha^{2}|\omega|^{2} \right] f d\mu$$

$$|\omega|_g^2 = 2 \implies (\nabla_e \omega) \perp \omega$$

$$\det(W^+) > 0 \implies W^+ \sim \begin{bmatrix} + \\ - \\ - \end{bmatrix}$$

$$0 \ge \int_{M} \left[-2W^{+}(\nabla_{e}\omega, \nabla^{e}\omega) + 2\alpha\langle\omega, \nabla^{*}\nabla\omega\rangle + \frac{s}{2}\alpha|\omega|^{2} - 3\alpha^{2}|\omega|^{2} \right] f d\mu$$

$$|\omega|_g^2 = 2 \implies (\nabla_e \omega) \perp \omega$$

$$\det(W^+) > 0 \implies W^+(\nabla_e \omega, \nabla^e \omega) \le 0$$

$$0 \ge \int_{M} \left[2\alpha \langle \omega, \nabla^* \nabla \omega \rangle + \frac{s}{2} \alpha |\omega|^2 - 3\alpha^2 |\omega|^2 \right] f d\mu$$

$$|\omega|_g^2 = 2 \implies (\nabla_e \omega) \perp \omega$$

$$\det(W^+) > 0 \implies -W^+(\nabla_e \omega, \nabla^e \omega) \ge 0$$

$$0 \ge \int_{M} \left[2\alpha \langle \omega, \nabla^* \nabla \omega \rangle + \frac{s}{2} \alpha |\omega|^2 - 3\alpha^2 |\omega|^2 \right] f \ d\mu$$

$$0 \ge \int_{M} \left[2\langle \omega, \nabla^* \nabla \omega \rangle + \frac{s}{2} |\omega|^2 - 3\alpha |\omega|^2 \right] (\alpha f) d\mu$$

$$0 \ge \int_{\mathcal{M}} \left[2\langle \omega, \nabla^* \nabla \omega \rangle + \frac{s}{2} |\omega|^2 - 3\alpha |\omega|^2 \right] (\alpha f) \ d\mu$$

But

$$\alpha f \equiv 1$$

$$0 \ge \int_{M} \left[2\langle \omega, \nabla^* \nabla \omega \rangle + \frac{s}{2} |\omega|^2 - 3|\omega|^2 \alpha \right] d\mu$$

$$0 \ge \int_{\mathcal{M}} \left[2\langle \omega, \nabla^* \nabla \omega \rangle - 3W^+(\omega, \omega) + \frac{s}{2} |\omega|^2 \right] d\mu$$

$$0 \ge \int_{M} \left[\frac{1}{2} |\nabla \omega|^2 + \frac{3}{2} \langle \omega, \left(\nabla^* \nabla - 2W^+ + \frac{s}{3} \right) \omega \rangle \right] d\mu$$

$$0 \ge \int_{M} \left[\frac{1}{2} |\nabla \omega|^2 + \frac{3}{2} \langle \omega, (d+d^*)^2 \omega \rangle \right] d\mu$$

Because

$$(d+d^*)^2 = \nabla^*\nabla - 2W^+ + \frac{s}{3}$$

on $\Gamma\Lambda^+$.

$$0 \ge \frac{1}{2} \int_{M} |\nabla \omega|^2 d\mu + 3 \int_{M} |d\omega|^2 d\mu$$

$$0 \ge \frac{1}{2} \int_{M} |\nabla \omega|^2 d\mu + 3 \int_{M} |d\omega|^2 d\mu$$

So $\nabla \omega \equiv 0$, and g is Kähler!

Theorem B. Let (M, h) be a simply-connected compact oriented Einstein 4-manifold, and suppose that its self-dual Weyl curvature

$$W^+:\Lambda^+\to\Lambda^+$$

satisfies

$$\det(W^+) > 0$$

at every point of M. Then h is conformally Kähler, and M is a Del Pezzo surface.

$$\beta \le \frac{1}{4}\alpha \ne 0.$$

$$\beta \le \frac{1}{4}\alpha \ne 0.$$

This implies

$$W^+(\nabla_e \omega, \nabla^e \omega) \le \beta |\nabla \omega|^2 \le \frac{1}{4} \alpha |\nabla \omega|^2$$

$$\beta \le \frac{1}{4}\alpha \ne 0.$$

This implies

$$W^+(\nabla_e \omega, \nabla^e \omega) \le \beta |\nabla \omega|^2 \le \frac{1}{4} \alpha |\nabla \omega|^2$$

and is enough to force $d\omega = 0$.

$$\beta \le \frac{1}{4}\alpha \ne 0.$$

This implies

$$W^+(\nabla_e \omega, \nabla^e \omega) \le \beta |\nabla \omega|^2 \le \frac{1}{4} \alpha |\nabla \omega|^2$$

and is enough to force $d\omega = 0$.

Produces harmonic ω with $W^+(\omega, \omega) > 0$.

$$\beta \le \frac{1}{4}\alpha \ne 0.$$

This implies

$$W^+(\nabla_e \omega, \nabla^e \omega) \le \beta |\nabla \omega|^2 \le \frac{1}{4} \alpha |\nabla \omega|^2$$

and is enough to force $d\omega = 0$.

Produces harmonic ω with $W^+(\omega, \omega) > 0$.

Now use my earlier result!

Theorem C. Let (M, h) be a compact oriented Riemannian 4-manifold with $\delta W^+ = 0$. If

$$W^+ \neq 0$$
 and $\det(W^+) \ge -\frac{5\sqrt{2}}{21\sqrt{21}}|W^+|^3$

everywhere on M, then actually $det(W^+) > 0$. In particular, if (M, h) is a simply-connected Einstein manifold, then h is conformally Kähler, and M is a Del Pezzo surface.

Obrigado por me convidar!

Obrigado por me convidar!

