
Diffusion Schrödinger Bridge with
Applications to Score-Based Generative
Modeling

Valentin De Bortoli

March 16, 2023

1 / 24



What is generative modeling?

Generative modeling: Given a dataset of samples from a distribution π how
to obtain new samples from π?

A general approach:

▶ Sample X0 from π0 (reference distribution).
▶ Sample Z from πZ (noise distribution).
▶ Push with g(X0,Z) → approximate sample from π.
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Why generative modeling?

Application in computational biology: Senior et al. (2020).
▶ Amino-acid sequence to 3D structure.
▶ Cryo-Electron Microscopy or crystallography = experimental techniques

to determine the shape of the protein.
▶ Crystallizing a protein is a real challenge Avanzato et al. (2019).
▶ Competition to predict structure: Critical Assessment of protein

Structure Prediction.
Conditional generative modeling.

Image extracted from Senior et al. (2020).
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A myriad of models
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Some challenges in generative modeling

Theoretical
understanding

▶ Convergence of
generative models?

Properties of the data

▶ Riemannian data.

▶ Inverse problems.

Properties of the process

▶ Optimal transport.

▶ Stochastic control.

Focus on denoising diffusion models.
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Generative Modeling: the rise of
diffusion models



Time-reversal of diffusions

Forward decomposition: p(x0:N ) = p0(x0)
∏N−1

k=0 pk+1|k(xk+1|xk).

Backward decomposition: p(x0:N ) = pN (xN )
∏N−1

k=0 pk|k+1(xk|xk+1).

Video extracted from Song and Ermon (2019).
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Approximate time reversal

¿How to approximate the backward decomposition?

Backward decomposition: p(x0:N ) = pN (xN )
∏N−1

k=0 pk|k+1(xk|xk+1).

▶ How to compute pk|k+1(xk|xk+1) = pk+1|k(xk+1|xk)pk(xk)/pk+1(xk+1)?
▶ In practice pk+1|k = N(xk − γxk,

√
2γ Id) is Gaussian.

▶ (Discretization of dXt = −Xtdt +
√
2dBt (Ornstein-Ulhenbeck))

▶ pk|k+1 is approximately Gaussian

Score matching techniques: Vincent (2011); Hyvärinen (2005)

∇ log pk+1(xk+1) = Ep0|k+1 [∇ log pk+1|0(xk+1|X0)].

▶ Loss function: ℓ(sk+1) = E[∥sk+1(Xk+1)−∇ log pk+1|0(Xk+1|X0)∥2].
▶ Algorithm: replace∇ log pk+1 by sk+1.
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Unconditional CelebA synthesis
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An application: text-to-image

From prompt to images: Imagen, DALL-E 2, Stable Diffusion, Midjourney.

CLIP (Contrastive Language–Image Pre-training) guidance.
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Convergence of diffusion models (π̂)

Under dissipativity conditions (D.B et al., 20211)

▶ ∥st(x)−∇ log pt(x)∥ ≤ M.

▶ π admits a density p and ⟨∇ log p(x), x⟩ ≤ −m∥x∥2 + c.

Then, there exists A ≥ 0 such that

Under the manifold hypothesis (D.B., 20222)

▶ π is supported on a compact manifoldM.

Then there exists A ≥ 0 such that

W1(π, π̂) ≤ A(exp[−T ] + γ1/2 + M).

1D.B., Thornton, Heng, Doucet – Diffusion Schrödinger Bridge – NeurIPS 2021
2D.B. – Convergence of diffusion models under manifold hypotheses – TMLR 2022

10 / 24



Convergence of diffusion models



A more precise statement

Convergence result under the manifold hypothesis (D.B., 20223)
Under the manifold hypothesis and controls on the score approximation, there
exists D0 ≥ 0 such that

W1(π̂, π) ≤ D0(exp[κ/ε](M+ γ1/2)/ε2 + exp[κ/ε] exp[−T/β̄] + ε1/2) ,

with κ = diam(M)2(1+ β̄)/2 and D0 an explicit constant.

We control three terms:

▶ Discretization term: M, network error ; γ, discretization stepsize.
▶ Convergence term: T , forward time.
▶ Non-degeneracy term: ε, stopping time in the backward.

First, we discuss the assumptions:

▶ Manifold hypothesis (assumption on π).
▶ Score approximation (assumption on sθ).

2D.B. – Convergence of diffusion models under manifold hypotheses – TMLR 2022
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Distances and the manifold hypothesis

Problem with total variation distance:

▶ µ, ν with disjoint supports, ∥µ− ν∥TV = 1.
▶ No notion of sample proximity

(“vertical” distance).

Themanifold hypothesis:

▶ Data distribution is supported on a
low-dimensional compact space
M ⊂ Rd .

▶ However, generative model has
distribution on Rd .

▶ Under the manifold hypothesis

∥π − π̂∥TV = 1 .

Let’s turn toWasserstein distances
(“horizontal distance”).

.
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Assumption on the score

Uniform control on the score
There exists M ≥ 0 such that ∥sθ(t, xt)−∇ log pt(xt)∥ ≤ M(1+ ∥xt∥)/σ2

t

Uniform assumption but allows for explosive behavior.

Behaviour observed in practice.

More realistic assumptions (L2 error) in Chen et al. (2022); Lee et al. (2022).
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Other assumptions and special ingredient

The diffusion is usually given with a speed

dXt = −βtXtdt +
√

2βtdBt .

β0 ≪ βT in practice and linear schedule.

Control of the speed
t 7→ βt is continuous, non-decreasing and there exists β̄ > 0 such that for any
t ∈ [0, T ], 1/β̄ ≤ βt ≤ β̄.

Control of the stepsize.

Control of the stepsize
For any k ∈ {0, . . . ,K − 1}, we have γk supv∈[T−tk+1,T−tk] βv/σ

2
v ≤ γ ≤ 1/2.

Satisfied if γk small enough.

To avoid degeneracy, we do not consider the last step (as in Song et al. (2020)).
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The central decomposition

The central decomposition

W1(π∞RK , π)

≤ W1(π∞RK , π∞QtK ) +W1(π∞QtK , πPT−tK ) +W1(πPT−tK , π) .

where
▶ (Pt)t≥0 is the forward Ornstein-Ulhenbeck semi-group,
▶ (Qt)t≥0 is the backward Ornstein-Ulhenbeck semi-group,
▶ (Rk)k∈{0,...,K−1} is the iterated kernel associated with the

backward Markov chain.

Decomposition of the error:
▶ Discretization term: W1(π∞RK , π∞QtK ).
▶ Convergence term: W1(π∞QtK , πPT−tK ).
▶ Non-degeneracy term: W1(πPT−tK , π).
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Controlling the discretization

Problem with theWasserstein distance:

▶ Do not satisfyW1(µQ, νQ) ≤ W1(µ, ν).
▶ We have to control the backward.

Control of the backward process:

▶ Use of the interpolation formula del Moral and Singh (2019)

dYx
s,t = βT−t{Yx

s,t + 2∇ log qT−t(Yx
s,t)}dt +

√
2βT−tdBt , Yx

s,s = x .

dȲx
s,t = βT−t{Ȳx

s,t + 2sθ(T − tk, Ȳx
s,tk )}dt +

√
2βT−tdBt , Ȳx

s,s = x .

Yx
s,t − Ȳx

s,t =
∫ t
s ∇Yu,t(Ȳs,u)

⊤∆bu((Ȳs,v)v∈[s,u])du ,

▶ Uniform control of the tangent process (∇Yu,t)u,t∈[0,T ].
▶ Explosion of the score near time 0 (observed in practice!).

Solution? Stop the process before time 0 (at time ε, done in practice).

W1(π̂, π) ≤ D(exp[κ/ε](M+ δ1/2)/ε2 + exp[κ/ε] exp[−T/β̄] + ε1/2) .
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Schrödinger Bridges: a new
generative modeling framework



Shorter generative processes?

Not enough stepsizes leads to poor approximation (the Ornstein-Ulhenbeck
process does not mix fast enough).

Illustration of failure: N is too small so pN is very different from pprior. This
harms the quality of the reconstruction for the time-reversal.

Trade-off:

▶ Large N → improvement in quality (fidelity).
▶ Large N →model is slow at sampling time.

Challenge: how to “shorten” the diffusion process?
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The trilemma of generative modeling

Image extracted from Xiao et al. (2021).
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Revisiting Generative Modeling using Schrödinger Bridges

The Schrödinger Bridge (SB) problem is a classical problem appearing in
applied mathematics, optimal transport and probability.

▶ Consider a reference density p(x0:N ), find π⋆(x0:N ) such that

▶ Goal: If π⋆ is available: XN ∼ pprior and Xk ∼ π⋆
k|k+1(·|Xk+1).

Static formulation: π⋆(x0:N ) = πs,⋆(x0, xN )p|0,N (x1:N−1|x0, xN ) where

▶ Variational form:

▶ In its static form the Schrödinger Bridge is a special case of entropic
optimal transport, see Mikami (2004).
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The Iterative Proportional Fitting algorithm

The SB problem can be solved using Iterative Proportional Fitting (IPF)
Sinkhorn and Knopp (1967); Fortet (1940), i.e. set π0 = p and for n ∈ N

π2n+1 = argmin{KL(π|π2n), πN = pprior},

π2n+2 = argmin{KL(π|π2n+1), π0 = pdata}.

This is akin to alternative projection in a Euclidean setting.
limn→+∞ πn = π⋆ under regularity conditions.
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Solving the Schrödinger Bridge

Explicit solution of the first IPF step

KL(π|π0) = KL(πN |pN ) + EπN [KL(π|N |p|N )].

Therefore,

π1(x0:N ) = pprior(xN )p(x0:N−1|xN )

π1(x0:N ) = pprior(xN )
∏N−1

k=0 pk|k+1(xk|xk+1).

Take-home message: Approximation to first iteration of IPF corresponds to
current denoising diffusion models.

The IPF is a refinement on denoising diffusion models.
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Diffusion Schrödinger Bridge

Diffusion Schrödinger Bridge4:

▶ Use diffusion models to solve IPF at each step.
▶ Alternate between updating the forward and backward dynamics.
▶ (One network parameterizing the forward, one parameterizing the

backward).

4D.B., Thornton, Heng, Doucet – Diffusion Schrödinger Bridge – NeurIPS 2021
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2D illustration
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Conclusion



Conclusion

Fruitful interaction between stochastic processes and generative modeling.

Extension to other data/process constraints built on stochastic processes.

Promising developments of control and optimal transport techniques for
generative models (and vice-versa).

"Thank you" generated with the text-to-prompt model Stable diffusion.
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Approximating Backward Transitions

We restrict ourselves to discretized Ornstein-Ulhenbeck processes

pk+1|k(xk+1|xk) = N (xk+1; xk − γxk,
√
γ Id),

(γ > 0 is close to 0)

Using a Taylor expansion we get

pk|k+1(xk|xk+1) = pk+1|k(xk+1|xk) exp[log pk(xk)− log pk+1(xk+1)]

≈ N (xk; xk+1 + γxk+1 + 2γ∇ log pk+1(xk+1)︸ ︷︷ ︸
Stein score

,
√
2γ Id).

The Stein score is not available but using that
pk+1(xk+1) =

∫
p0(x0)pk+1|0(xk+1|x0)dx0, we get that

∇ log pk+1(xk+1) = Ep0|k+1 [∇xk+1 log pk+1|0(xk+1|X0)].
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Estimating the Scores using Score Matching

Conditional expectation→ Regression problem

sk+1 = argmins Ep0,k+1 [||s(Xk+1)−∇xk+1 log pk+1|0(Xk+1|X0)||2].

In practice, we restrict ourselves to neural networks and estimate all
scores simultaneously i.e. sθ⋆(k, xk) ≈ ∇ log pk(xk) where

θ⋆ ≈ argminθ
∑N

k=1 Ep0,k [||sθ(k,Xk)−∇xk log pk|0(Xk|X0)||2],

If log pk+1|0(xk+1|x0) is not available, then use

∇ log pk+1(xk+1) = Epk|k+1 [∇xk+1 log pk+1|k(xk+1|Xk)]

Can also be derived from a continuous-time perspective
(time-reversal of diffusion, Feynman-Kac formula) and can be seen as
ELBO (Huang et al., 2021).

Yet another approach goes fully variational (Ho et al., 2020).
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Sketch of the proof

The central decomposition

||L(X0)− pdata||TV = ||ppriorR̂N − pdata||TV
= ||ppriorR̂N − pTQT ||TV
≤ ||ppriorR̂N − ppriorQT ||TV + ||pTQT − ppriorQT ||TV
≤ ||ppriorR̂N − ppriorQT ||TV + ||pdataPT − pprior||TV,

where
▶ (Pt)t≥0 is the forward Ornstein-Ulhenbeck semi-group,
▶ (Qt)t≥0 is the backward Ornstein-Ulhenbeck semi-group,
▶ (R̂n)n∈{1,...,N} is the iterated kernel associated with the backward

Markov chain.

||ppriorR̂N − ppriorQT ||TV: approximation error→ Girsanov theorem.

||pdataPT − pprior||TV: geometric ergodicity of Ornstein-Ulhenbeck.
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Reverse process on a compact manifold

The Brownian motion is defined as a process (BM
t )t≥0 such that for

any f ∈ C∞(M), (Mf
t )t≥0 is a martingale where for any t ≥ 0

Mf
t = f (BM

t )− f (BM
0 )−

∫ t
0 (1/2)∆M(f )(BM

s )ds.

The reverse process is given by (Yt)t∈[0,T ] such that for any
f ∈ C∞(M), (Mf

t )t≥0 is a martingale where for any t ∈ [0, T ]

Mf
t = f (Yt)− f (Y0)−

∫ t
0 {⟨∇ log pt(Xs),∇f (Ys)⟩M + (1/2)∆M(f )(Ys)}ds.

This is an extension of reversal results (Haussmann et al., 1986)
(Conforti et al., 2021).

Take-home message: The formula is the same except that gradients,
scalar product and Laplacian are considered w.r.t. the underlying metric.
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Sampling on a manifold

How to sample from the process (Yt)t∈[0,T ] (approximately)?
Equivalent of the Euler-Maruyama discretization is the Geodesic
RandomWalk (GRW)

Definition of GRW

Let Xγ
0 be a M-valued random variable. For any γ > 0, we define

(Xγ
n )n∈N such that for any n ∈ N,

Xγ
n+1 = expXγ

n
(γ{b(Xγ

n ) + (1/
√
γ)(Vn+1 − b(Xγ

n ))}) .

where (Vn)n∈N is a sequence of M-valued random variables such that for
any n ∈ N, Vn+1 has distribution νXγ

n
conditionally to Xγ

n (mean b(Xγ
n ),

covariance Σ(Xγ
n )).

Weakly converges towards the diffusion
dXt = b(Xt)dt +Σ(Xt)dBM

t for small stepsizes γ.
Hard to obtain quantitative results (coupling techniques in
Riemannian setting).
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Perspectives & Challenges



Plan

Some challenges:

Scaling up Diffusion Schrodinger Bridge and protein applications.

Particle evolution and probabilistic splines.

Theoretical understanding of diffusion models and other projects.
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Scaling up and protein applications

To be competitive: access to large GPU infrastructure.

More than 200 V100 days to train one SoTA diffusion model on ImageNet
512× 512.
Importance of the scaling for:
▶ Image processing (realistic outputs, interaction with language

models...)
▶ Protein Modeling (long proteins...) (image from Trippe et al. (2022))
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Particle evolution and spline

For population evolution, one Schrödinger bridge is not enough.

Multiple snapshots, can we consider multiple Schrödinger bridges?

How can we impose some regularity in the probabilistic structure?
▶ Spline in probabilistic spaces (Chen et al. (2018))
▶ Efficient combination with Diffusion Schrödinger Bridges.

Image extracted from Bunne et al. (2022)
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Theoretical understanding of diffusion models & other projects

A lot of open questions:

▶ Role of themanifold hypothesis.
▶ Role of the Empirical measure.
▶ And what aboutmultimodal behavior?

Image extracted from Fefferman et al. (2015)

Other projects

▶ VAE as entropic regularization
▶ Interpretation of Transformers with category theory tools.
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Some results on SO3(R)

An illustration: targetingmultimodal distributions on SO3(R).
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Motivation

Many datasets do not lie on a Euclidean space.
We need to include a geometric prior:
▶ Protein modeling (Boomsma et al., 2008; Hamelryck et al., 2006;

Mardia et al., 2008; Shapovalov and Dunbrack Jr, 2011; Mardia et
al., 2007).

▶ Geological sciences (Karpatne et al., 2018; Peel et al., 2001).
▶ Robotics (Feiten et al., 2013; Senanayake and Ramos, 2018).

Image extracted from Mathieu et al., 2020.
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Noising process on a compact manifold

To define a score-based generative modeling we need to define a
noising process
▶ In Euclidean spaceswe choose a Ornstein-Ulhenbeck process.
▶ In Riemannian manifold we choose a Brownian motion.

In the Euclidean setting the Ornstein-Ulhenbeck process
converges towards a unit Gaussian.
In the compact Riemannian manifold setting the Brownian
motion converges towards the uniform distribution.

Geometric ergodicity (Urakawa, 2006, Proposition 2.6)
For any t > 0, Pt admits a density pt|0 w.r.t. pref and prefPt = pref , i.e. pref
is an invariant measure for (Pt)t≥0. In addition, if there exists C, α ≥ 0
such that pt|0(x|x) ≤ Ct−α/2 for any t ∈ (0, 1] and any x ∈ M then for
any p0 ∈ P(M) and for any t ≥ 1/2 we have

∥p0Pt − pref∥TV ≤ C1/2eλ1/2e−λ1t ,

where λ1 is the first non-negative eigenvalue of −∆M in L2(pref).
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Reverse process on a compact manifold

The Brownian motion is defined as a process (BM
t )t≥0 such that for

any f ∈ C∞(M), (Mf
t )t≥0 is a martingale where for any t ≥ 0

Mf
t = f (BM

t )− f (BM
0 )−

∫ t
0 (1/2)∆M(f )(BM

s )ds.

The reverse process is given by (Yt)t∈[0,T ] such that for any
f ∈ C∞(M), (Mf

t )t≥0 is a martingale where for any t ∈ [0, T ]

Mf
t = f (Yt)− f (Y0)−

∫ t
0 {⟨∇M log pt(Xs),∇Mf (Ys)⟩M + (1/2)∆M(f )(Ys)}ds.

This is an extension of reversal results (Haussmann et al., 1986)
(Conforti et al., 2021).

The formula is the same except that gradients, scalar product and
Laplacian are considered w.r.t. the underlying metric.
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Sampling on a manifold

How to sample from the process (bfYt)t∈[0,T ] (approximately)?
Equivalent of the Euler-Maruyama discretization is the Geodesic
RandomWalk (GRW)

Definition of GRW

Let Xγ
0 be a M-valued random variable. For any γ > 0, we define

(Xγ
n )n∈N such that for any n ∈ N,

Xγ
n+1 = expXγ

n

(
γ{b(Xγ

n ) + (1/√γ)(Vn+1 − b(Xγ
n ))}

)
, where (Vn)n∈N is a

sequence of M-valued random variables such that for any n ∈ N, Vn+1

has distribution νXγ
n
conditionally to Xγ

n (mean b(Xγ
n ), covariance Σ(Xγ

n )).

Convergence of GRW (Jorgensen, 1975, Theorem 2.1)
Under mild conditions on M, for any t ≥ 0, f ∈ C(M) we have that
limγ→0

∣∣∣E [
f (Xγ

⌈t/γ⌉)
]
− Pt [f ]

∣∣∣ = 0, where (Pt)t≥0 is the semi-group
associated with the infinitesimal generator A : C∞(M) → C∞(M)

given for any f ∈ C∞(M) by A (f ) = ⟨b,∇f ⟩M + 1
2 ⟨Σ,∇

2f ⟩M.

Hard to obtain quantitative results (coupling techniques fail).
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Loss function

We need to estimate ∇ log pt .

Same as Euclidean case, ∇ log pt(xt) = E[∇ log pt|0(Xt |X0)|Xt = xt ].

Extra difficulty,∇ log pt|0 is not available in close form.

Two possibilities to circumvent this issue:
▶ Use the divergence theorem

∇ log pt = argmins{(1/2)∥s(BM
t )∥2 + E

[
div(s)(BM

t )
]
}.

▶ Use approximation of∇ log pt|0 (Varadhan approximation and series
expansion).

∇ log pt = argmins{E
[
∥s(BM

t )−∇ log pt|0(BM
t |BM

0 )∥2
]
}.

43 / 24



Euclidean VS compact Riemannian

Riemannian score-based generative modeling (RSGM)
▶ Sample from the forward dynamics.
▶ Train the score network.
▶ Sample from the backward dynamics (initialized at the uniform

distribution).
Differences between the Euclidean setting and the compact
manifold setting.

Ingredient \ Space Euclidean Compact manifold

Forward process Ornstein–Ulhenbeck Brownian motion

Easy-to-sample distribution Gaussian Uniform

Time reversal (Cattiaux et al., 2021) This paper

Sampling of the forward process Direct Geodesic Random Walk

Sampling of the backward process Euler–Maruyama Geodesic Random Walk

Table 1: Differences between SGM on Euclidean spaces and RSGM on compact
Riemannian manifolds.
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Extension to Schrödinger bridges

We can extend the Schrödinger bridge framework to the manifold
setting.

Difficulty: considering an equivalent of themean-matching
technique on manifold (divergence form).

Implicit mean-matching loss
Let (Xt)t∈[0,T ] be a M-valued process with distribution
P ∈ P(C([0, T ] ,M)) such that for any t ∈ [0, T ], Xt admits a positive
density pt ∈ C∞(M) w.r.t. pref . Let s : [0, T ] → XM. For any t ∈ [0, T ]
and x ∈ M, let

b(t, x) = −f (t, x) + g(t,Xt)
2∇ log pt(x).

Then, for any t ∈ [0, T ], we have that

b(t, ·) = argminr{E[ 12∥f (t,Xt) + r(Xt)∥2 + g(t,Xt)
2div(r)(Xt)]}.
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Application

Learned density on Volcano/Earthquake/Flood/Fire datasets.

Earthquake Flood Fire
Mixture of Kent 0.33±0.05 0.73±0.07 −1.18±0.06

Riemannian CNF 0.19±0.04 0.90±0.03 −0.66±0.05

Moser Flow −0.09±0.02 0.62±0.04 −1.03±0.03

Stereographic Score-Based −0.04±0.11 1.31±0.16 0.28±0.20

Riemannian Score-Based −0.21±0.03 0.52±0.02 −1.24±0.07

Dataset size 6120 4875 12809

Table 2: Negative log-likelihood scores for each method on the earth and climate
science datasets. Bold indicates best results (up to statistical significance). Means
and standard deviations are computed over 5 different runs.
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Why generative modeling? (1/2)

Application inmeteorology: Ravuri et al. (2021).

▶ Prediction of rain in the next 2 hours: nowcasting.
▶ Solving physical PDEs: planet scale predictions days ahead.
▶ Struggle for high resolution predictions on short time ranges.

Access to a lot of high quality data: conditional GAN.

Image extracted from Ravuri et al. (2021).
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Some visual results
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Dataset interpolation
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