Heaviness and SH-visibility

Umut Varolgunes

Boğaziçi University

March 14, 2023

Umut Varolgunes Heaviness and SH-visibility

• Consider the unit sphere $S^2 \subset \mathbb{R}^3$ with its area form

 $dA = \sin \theta d\theta \wedge d\phi.$

Total area 4π .

- A Hamiltonian isotopy on S^2 simply means an area preserving isotopy. Example: rotations along an axis.
- A Hamiltonian isotopy on $S^2 \times S^2$ means an isotopy for which the symplectic area (the sum of signed areas of two projections) of any embedded disk is preserved at all times.
- When I say symplectic manifold you can instead think about these examples.

Displaceability

- Let (M, ω) be a closed symplectic manifold.
- K ⊂ M is called displaceable if at the end of some Hamiltonian isotopy φ we have φ(K) ∩ K = Ø
- Consider an embedded connected graph $G \subset S^2$ with finitely many smooth edges.
- When is G displaceable?
- Without the area preservation requirement, always.
- The complement of *G* is a disjoint union of finitely many open disks with nice exhaustions.
- Displaceability is equivalent to one of these disks having area more than 2π .
- We could prove this by hand now!

Displaceability in higher dimensions

- When is $G \times G \subset S^2 \times S^2$ displaceable?
- This seems impossible to decide by hand. Note that the product form of the subset need not persist under the isotopy.
- Lagrangian Floer theory is only of limited use because these sets are not immersed submanifolds.
- For general compact subsets of *M*, Entov-Polterovich introduced the symplectomorphism invariant notion of **heaviness**.
- The definition relies on Hamiltonian Floer theory (rephrased definition soon).
- **Theorem** (Entov-Polterovich 2009): If *K* ⊂ *M* is heavy, then it is non-displaceable.
- It turns out that $G \subset S^2$ is non-displaceable if and only if it is heavy, but this is not always true.

Symplectic cohomology of compact subsets

• Let us define the Novikov field:

$$\Lambda = \left\{ \sum_{i=0}^{\infty} a_i T^{\lambda_i} \mid a_i \in \mathbb{Q}, \lambda_i \in \mathbb{R}, \lambda_i < \lambda_{i+1}, \lim_{i \to \infty} \lambda_i = +\infty \right\}$$

 In my thesis I constructed a presheaf on compact subsets of M,

$$K \mapsto SH^*_M(K; \Lambda),$$

of $\mathbb{Z}/2\text{-}\mathsf{graded}$ A-vector spaces, also using Hamiltonian Floer theory.

- **Theorem** (V. 2018): If $K \subset M$ is *SH*-visible, that is $SH_M(K; \Lambda) \neq 0$, then it is non-displaceable.
- **Conjecture** (Tonkonog-V. 2019): *SH*-visibility is equivalent to heaviness.
- Theorem (Mak-Sun-V. 2022): True.

A consequence of Mayer-Vietoris property for SH_M

- Theorem (V. 2018): Assume that we have an involutive system f : M → ℝ^N and a finite cover by compact subsets P_i of its image. Then, at least one of f⁻¹(P_i) is SH-visible.
- As a consequence of our recent Theorem one can replace *SH*-visible with heavy.
- Using also the approximation properties of heaviness, in fact we can deduce that *f* has to have a heavy/*SH*-visible fiber.
- With these properties, it is an elementary exercise to prove that G × G ⊂ S² × S² is displaceable if and only if G ⊂ S² is displaceable (originally due to Entov-Polterovich).
- If direction is trivial. For only if, construct an appropriate involutive system.

Banach A-dga's

- Λ has a non-archimedean valuation.
- (C, d, ·) is a Z/2-graded Λ-chain complex with a degree 0 bilinear operation satisfying the super-Leibniz rule.
- C is equipped with a non-archimedean Λ-valuation (i.e. e^{-val} is a Λ-norm satisfying ultrametric inequality) and it is complete with respect to this norm.
- *d* and · are valuation non-decreasing (continuous enough but for our purposes this simplification is ok).
- (C, d) alone (no product) is called a Banach Λ -chain complex.
- H*(C) has an induced semi-valuation (i.e. semi-norm) and a product structure. The semi-valuation is by taking the supremum of the valuations of all representatives.

Hamiltonian Floer theory

- Given non-degenerate Hamiltonian H : M × S¹ → ℝ and choices, we obtain a chain complex CF*(H; Λ) over Λ:
 - vector space over Λ generated by the (finitely many) 1-periodic orbits of X_H (mod 2 degree by the Lefschetz sign)
 - 2 self-map d by counting Floer solutions with weights $T^{topE(u)}$
- Valuation coming from declaring the defining basis orthonormal make it into a Banach Λ-chain complex.
- Different choices lead to valuation preserving homotopy equivalent complexes.
- Can define chain maps CF^{*}(H, Λ) → CF^{*}(H', Λ) with a lower bound on the operator valuation given by

$$\int_{S^1} \min_x \left(H'(t,x) - H(t,x) \right) dt.$$

• These continuation maps give canonical isomorphisms on homology

• There are also canonical PSS maps

$$C^*(M;\mathbb{Z})\otimes\Lambda\to CF^*(H;\Lambda)$$

- These are chain maps with operator valuation bounded below by ∫_{S1} min_x H(t, x)dt
- Spectral invariant c(H) is defined as the valuation of PSS(1), where 1 is the unit in H*(M; Λ). Note that the definition involves a max-min process.
- The definition can be extended
 - to any continuous $H: M \times S^1 \to \mathbb{R}$ by C⁰-approximations (commonly used)
 - ② to any lower semi-continuous $H : M \to \mathbb{R} \cup \{+\infty\}$ by monotone approximations (less used, upper ok too).

• The characteristic function of a compact $K \subset M$:

$$\chi_{\mathcal{K}}(x) = egin{cases} 0, & ext{if } x \in \mathcal{K} \ +\infty, & ext{otherwise} \end{cases}$$

is lower semi-continuous.

- It is easy to see that $c(\chi_K) \ge 0$, which is all we need below. Using product structures, we can prove more.
- **Proposition**: $c(\chi_K)$ is either 0 or ∞ .
- **Definition**: *K* is called heavy, if it is 0.
- The going up of the functions outside of K is trying to increase the spectral invariant but K (being heavy) keeps it down.

Product structure on symplectic cohomology

- One should think of SH^{*}_M(K; Λ) as HF^{*}(χ_K; Λ). The definition also involves a monotone approximation and an appropriate direct limit in the category of Banach Λ-chain complexes.
- Because χ_K + χ_K = χ_K, we expect a pair-of-pants type product structure on SH^{*}_M(K; Λ).
- Theorem (Tonkonog-V. 2019, Abouzaid-Groman-V. 2022): There exists a Banach Λ-dga A_K and a chain map PSS_K : C^{*}(M; Z) ⊗ Λ → A_K such that
 - **1** \mathcal{A}_{K} is a chain level model for $SH_{M}^{*}(K; \Lambda)$.
 - 2 $val_{\mathcal{A}_{\mathcal{K}}}(PSS_{\mathcal{K}}(a)) = c(a; \chi_{\mathcal{K}}).$
 - Solution $PSS_{K}(1)$ is a unit.

- If K is not heavy, we get that $PSS_{K}(1)$ has a positive valuation representative a in A_{K} .
- We construct a primitive of a using a telescoping trick, since a · (a · (... · (a · a) ...) all represent PSS_K(1) and have valuations going to infinity. This only uses that PSS_K(1) is an idempotent.
- Hence, $PSS_{\mathcal{K}}(1) = 0$ and by unitality we get that $SH^*_{\mathcal{M}}(\mathcal{K}; \Lambda) = 0.$
- Conversely, if $PSS_{\mathcal{K}}(1)$ is zero, then $c(1; \chi_{\mathcal{K}}) = \infty$.
- Thank you for listening!