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A simple motor task: center-out reaches
Instructed delay center-out reaching task 



Neural activity: 
variability and specificity 

Georgopoulos, Kalaska, Caminity, Massey, J of Neurosci (1982)

Single neuron recordings



Tuning curves in motor cortex

Georgopoulos, Kalaska, Caminiti, Massey, J Neurosci (1982)
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reach implies 

Cosine tuning for direction of motion

Georgopoulos, Kalaska, Caminity, Masey,  Journal of Neuroscience (1982)
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Multi Electrode Arrays (MEAs)

M1



Neural recordings: center-out task



Neural recordings: center-out task

110 neurons, M1, hS3



Population activity : multiple targets
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Target-dependent population activity



reach implies 

Cosine tuning for direction of motion

Georgopoulos, Kalaska, Caminity, Masey,  Journal of Neuroscience (1982)

Cosine tuning for direction of motion

Georgopoulos, Kalaska, Caminiti, Massey, J Neurosci (1982)



Population of cosine-tuned cells

N=100

PCA?

Population of cosine tuned neurons 



Target-dependent population activity

Santhanam, Yu, Gilja, Ryu, Afshar, Sahani, & Shenoy. J Neurophysiol (2009)

Neural modes: directions in neural space

Specific patterns of populations activity 

Santhanam, Yu, Gilja, Ryu, Afshar, Sahani, Shenoy, J Neurophysiol (2009) 
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Population activity 

110 neurons, M1, hS3



Analysis of population activity

• Consider a population of 𝑁 neurons whose spiking activity 
is observed during a time interval (0,𝑇 ].
• The interval is divided into 𝐾 bins of size  D = 𝑇 /𝐾, labeled 
by an index 1 ≤ 𝑘 ≤ 𝐾.
• In each time bin 𝑘 we observe the number of spikes 𝑛𝑖 (𝑘)
emitted by neuron 𝑖, for all 1 ≤ 𝑖 ≤ 𝑁. 

Neuron 1

Neuron 2

Neuron 𝑁
𝑛𝑁 (𝑘)3 2 1 0 0 4 3 0 0 2 1 0



Population activity
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Data matrix !" has $" rows and  , columns

, is the duration of the experiment in units of bin size ∆

For a reach movement, $" ≈ 106 in M1

Stringer, Pachitariu, Steinmetz, Carandini, & Harris. Nature (2019)
Stringer, Pachitariu, Steinmetz, Carandini, Harris, Nature (2019) 



Population activity: Subsampling
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Data matrix !" has $" rows and , columns 

- is the ambient dimension 

- ≈ 102 for Multi-Electrode Arrays (MEAs)

- ≈ 103 for Neuropixels



Population dynamics: the empirical neural space



Population dynamics: the empirical neural space
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Dimensionality reduction: neural modes and 
latent variables

neural manifold 
DIMENSIONALITY REDUCTION

linear or nonlinear? 

neural modes
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Neural manifolds: linear or nonlinear?

neural manifold 

neural modes

Jazayeri, Ostojic, Curr Opin Neurobiol (2021)

intrinsic flat



Dimensionality reduction: neural modes and 
latent variables
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Population dynamics: latent variables
as a generative model
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The neural manifold and latent dynamics 

Neuron 94, 978 (2017)

Latent dynamics: the time dependent activation of neural modes



Neural modes have also been identified in 
other brain areas: frontal25, prefrontal26–29, 
parietal30,31, visual32–34, auditory35, and 
olfactory36 cortices.

The ubiquity of neural manifolds

25. Wang, J., Narain, D., Hosseini, E. & Jazayeri, M. Flexible control of speed of cortical dynamics . bioRxiv (2017). doi:10.1101/155390
26. Machens, C. K., Romo, R. & Brody, C. D. Functional, but not anatomical, separation of ‘what’ and ‘when’ in prefrontal cortex. J. 
Neurosci. 30, 350–60 (2010).
27. Markowitz, D. a, Curtis, C. E. & Pesaran, B. Multiple component networks support working memory in prefrontal cortex. Proc Natl Acad
Sci USA 112, 11084–11089 (2015).
28. Mante, V., Sussillo, D., Shenoy, K. V & Newsome, W. T. Context-dependent computation by recurrent dynamics in prefrontal cortex. 
Nature 503, 78–84 (2013).
29. Durstewitz, D., Vittoz, N. M., Floresco, S. B. & Seamans, J. K. Abrupt transitions between prefrontal neural ensemble states accompany 
behavioral transitions during rule learning. Neuron 66, 438–448 (2010).
30. Raposo, D., Kaufman, M. T. & Churchland, A. K. A category-free neural population supports evolving demands during decision-making. 
Nat. Neurosci. 17, 1784–1792 (2014).
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33. Cohen, M. R. & Maunsell, J. H. R. A neuronal population measure of attention predicts behavioral performance on individual trials. J. 
Neurosci. 30, 15241–53 (2010).
34. Cowley, B. R., Smith, M. A., Kohn, A. & Yu, B. M. Stimulus-Driven Population Activity Patterns in Macaque Primary Visual Cortex. PLoS
Comput. Biol. 12, e1005185 (2016).
35. Luczak, A., Barthó, P. & Harris, K. D. Spontaneous Events Outline the Realm of Possible Sensory Responses in Neocortical Populations. 
Neuron 62, 413–425 (2009).
36. Kobak, D. et al. Demixed principal component analysis of neural population data. Elife 5, 1–37 (2016).
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Task: Behavioral stability



Stable neural dynamics underlying 
consistent behavior?

• Subjects consistently perform the same
behavior over days, months, and years.

• Hypothesis: the true latent dynamics
associated with consistent behavior should
be stable.

• But: The same neurons cannot be recorded
over this period.

In order to verify this hypothesis, we need to compensate for
the fact that the true latent dynamics is being projected onto
different empirical manifolds on different days.



Alignment of latent dynamics



Manifold orientation and latent dynamics 

Use Singular Value Decomposition (SVD) on data matrices !:

Data matrix for day " !# = %# Σ# '#(

Data matrix for day ) !* = %* Σ* '*(

Both data matrices ! are of dimension + by ,, where the ambient
dimension + is the cardinality of the union set of neurons recorded
on days " and ), and , is the duration of the experiment.

Neurons unrecorded on a given day are assigned zero activity.
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Day-specific neural modes and manifolds 



Day-specific neural modes and manifolds 
Keep the first 𝑑 columns of the matrices 𝑈$ and 𝑈%, 
to obtain 2𝑈$ and 2𝑈%.

&𝑈

𝐷

𝐷𝑑

The day-specific low-dimensional manifolds are two hyperplanes:

the 𝑑-dimensional hyperplane spanned by the columns of 2𝑈$
the 𝑑-dimensional hyperplane spanned by the columns of 2𝑈%

𝑈

These column vectors are the day-specific neural modes 

𝑑 is the flat dimension of the day-specific manifolds 



Canonical Correlation Analysis (CCA)
The data matrices !" and !# are projected onto the corresponding
$-dimensional manifolds spanned by the neural modes using %&"
and %&# to obtain the latent variables '" and '#:

'" = %&") !" and     '# = %&#) !#

These data matrices are of dimension $ by *, where:
$: flat manifold dimensionality
*: duration of the experiment

The CCs between the corresponding unaligned latent variables are
given by the pairwise correlations between the rows of '" and '#:

'" '#)

𝑑
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Canonical Correlation Analysis (CCA)
CCA starts with a QR decomposition of the transposed latent 
variable matrices !" and !#,

!"$ = &" '" and     !#$ = &# '#

The ( column vectors of each matrix & provide an orthonormal
basis for the column vectors of the corresponding matrix !$. The
( by ( inner product matrix of &" and &# yields a SVD:

&"$ &# = ) * +$

The elements of the diagonal matrix * are the canonical correlations
(CCs), sorted from largest to smallest. They quantify the similarity in
the aligned latent dynamics.

The CCs between the unaligned latent dynamics are the pairwise 
correlations between the rows of 𝐿! and 𝐿": 𝐿! 𝐿"#

Canonical Correlation Analysis (CCA)



Canonical Correlation Analysis (CCA)

CCA yields new manifold directions that maximize the pairwise
correlations between latent dynamics across the two days. The
linear transformations that align the latent variables are effected
by ! by ! matrices "# and "$:

"# = &#'()

"$ = &$'(*day +

day ,
-# ⟹ "#/ -#

-$ ⟹ "$/ -$

Bach, Jordan, J Mach Learn Res (2002) 



Stability of M1 latent dynamics

Gallego, Perich, et al, Nat Neurosci (2020)



Stability of M1 latent dynamics



Population activity: 
relation to motor output 



Stable prediction of movement kinematics



Prediction of muscle activity



The future: natural behavior 



Alignment of latent dynamics

Gallego, Perich, Chowdhury, Solla, Miller, Nature Neurosci (2020) 



Neural manifolds for the 
control of movement

Northwestern University

Juan Gallego Matthew Perich Raeed Chowdhury Lee Miller


