On the birational geometry of Fano threefold complete intersections

Tiago Duarte Guerreiro

University of Essex
t.duarteguerreiro@essex.ac.uk

March 2, 2023

Overview

(1) What is it all about?
(2) MMP in dimension 2
(3) MMP in dimension $n \geq 3$
(4) Results

Algebraic Varieties

Definition
Classical Algebraic Geometry is the study of geometric structures defined by polynomials equations.

Algebraic Varieties

Definition
Classical Algebraic Geometry is the study of geometric structures defined by polynomials equations.

Let $R=\mathbb{K}\left[x_{1}, \ldots, x_{n+1}\right]$ where \mathbb{K} is a field and $I \subset R$ an ideal.

$$
X_{I}=\left\{\left(a_{1}, \ldots, a_{n+1}\right) \in \mathbb{K}^{n+1} \mid f\left(a_{1}, \ldots, a_{n+1}\right)=0, \forall f \in I\right\}
$$

Algebraic Varieties

Definition
Classical Algebraic Geometry is the study of geometric structures defined by polynomials equations.

Let $R=\mathbb{K}\left[x_{1}, \ldots, x_{n+1}\right]$ where \mathbb{K} is a field and $I \subset R$ an ideal.

$$
X_{I}=\left\{\left(a_{1}, \ldots, a_{n+1}\right) \in \mathbb{K}^{n+1} \mid f\left(a_{1}, \ldots, a_{n+1}\right)=0, \forall f \in I\right\}
$$

Theorem (Hilbert)
A is a Noetherian ring $\Longrightarrow A\left[x_{1}, \ldots, x_{n+1}\right]$ is a Noetherian ring.
Hence,

$$
X_{I}=\left\{\left(a_{1}, \ldots, a_{n+1}\right) \in \mathbb{K}^{n+1} \mid f_{i}\left(a_{1}, \ldots, a_{n+1}\right)=0,1 \leq i \leq s\right\}
$$

Algebraic Varieties

Definition
Classical Algebraic Geometry is the study of geometric structures defined by polynomials equations.

Let $R=\mathbb{K}\left[x_{1}, \ldots, x_{n+1}\right]$ where \mathbb{K} is a field and $I \subset R$ an ideal.

$$
X_{I}=\left\{\left(a_{1}, \ldots, a_{n+1}\right) \in \mathbb{K}^{n+1} \mid f\left(a_{1}, \ldots, a_{n+1}\right)=0, \forall f \in I\right\} .
$$

Theorem (Hilbert)
A is a Noetherian ring $\Longrightarrow A\left[x_{1}, \ldots, x_{n+1}\right]$ is a Noetherian ring.
Hence,

$$
X_{I}=\left\{\left(a_{1}, \ldots, a_{n+1}\right) \in \mathbb{K}^{n+1} \mid f_{i}\left(a_{1}, \ldots, a_{n+1}\right)=0,1 \leq i \leq s\right\} .
$$

To ease notation we usually write it as $X:\left(f_{1}=\cdots=f_{s}=0\right)$.

Example: Clebsch Cubic

$S_{\text {Clebsch }}:\left(x^{3}+y^{3}+z^{3}+t^{3}+w^{3}=x+y+z+t+w=0\right) \subset \mathbb{P}^{4}$

Example: Clebsch Cubic

$S_{\text {Clebsch }}:\left(x^{3}+y^{3}+z^{3}+t^{3}+w^{3}=x+y+z+t+w=0\right) \subset \mathbb{P}^{4}$

$$
\operatorname{Aut}\left(S_{\text {Clebsch }}\right)=S_{5}
$$

Guiding Problem

Guiding Problem

Classify Algebraic Varieties up to isomorphism.

Guiding Problem

Guiding Problem
Classify Algebraic Varieties up to isomorphism.
"Easier" Guiding Problem
Classify Algebraic Varieties up to Birational equivalence.

Guiding Problem

```
Guiding Problem
Classify Algebraic Varieties up to isomorphism.
"Easier" Guiding Problem
Classify Algebraic Varieties up to Birational equivalence.
```

Definition
We say that X and Y are birationally equivalent or birational if there is an isomorphism between open dense sets of X and Y. We write it as $X \simeq Y$.

Guiding Problem

Guiding Problem
Classify Algebraic Varieties up to isomorphism.
"Easier" Guiding Problem
Classify Algebraic Varieties up to Birational equivalence.

Definition
We say that X and Y are birationally equivalent or birational if there is an isomorphism between open dense sets of X and Y. We write it as $X \simeq Y$.

Any birational map between smooth projective curves extends to a morphism.

Example

The unit sphere

$$
\mathbb{S}^{n}:\left(x_{1}^{2}+\cdots+x_{n+1}^{2}=1\right) \subset \mathbb{R}^{n+1}
$$

projects from the north pole $\mathbf{N}=$ $(0, \ldots, 1)$ to the plane $x_{n+1}=0$, where we use coordinates y_{1}, \ldots, y_{n}.

Example

The unit sphere

$$
\mathbb{S}^{n}:\left(x_{1}^{2}+\cdots+x_{n+1}^{2}=1\right) \subset \mathbb{R}^{n+1}
$$

projects from the north pole $\mathbf{N}=$ $(0, \ldots, 1)$ to the plane $x_{n+1}=0$, where we use coordinates y_{1}, \ldots, y_{n}.

We have,

$$
\Phi\left(x_{1}, \ldots, x_{n+1}\right)=\left(\frac{x_{1}}{1-x_{n+1}}, \ldots, \frac{x_{n}}{1-x_{n+1}}\right)
$$

and

$$
\Phi^{-1}\left(y_{1}, \ldots, y_{n}\right)=\left(\frac{2 y_{1}}{1+S}, \ldots, \frac{2 y_{n}}{1+S}, \frac{-1+S}{1+S}\right)
$$

where $S=\sum y_{i}^{2}$. We write,

$$
\mathbb{S}^{n} \rightarrow \mathbb{R}^{n}
$$

The Canonical Divisor

Definition
Recall that for a smooth variety X of dimension n, the canonical bundle is the line bundle $\omega_{X}=\Omega_{X}^{n}$, that is, the nth exterior power of the cotangent bundle on X. A canonical divisor is any divisor D for which $\omega_{X}=\mathcal{O}_{X}(D)$. We denote it by K_{X}.

The Canonical Divisor

Definition

Recall that for a smooth variety X of dimension n, the canonical bundle is the line bundle $\omega_{X}=\Omega_{X}^{n}$, that is, the nth exterior power of the cotangent bundle on X. A canonical divisor is any divisor D for which $\omega_{X}=\mathcal{O}_{X}(D)$. We denote it by K_{X}.

Example

Let $X=\mathbb{P}^{1}=\mathbb{C}_{z} \cup\{\infty\}$. Let $\omega=d z$. At ∞ the local coordinate changes to $w=1 / z$ and $\omega=d(1 / w)=-1 / w^{2} d w$. Then ω has a pole of order 2 at ∞. We write it as $K_{X}=-2 \cdot\{\infty\}$

The Canonical Divisor

Definition

Recall that for a smooth variety X of dimension n, the canonical bundle is the line bundle $\omega_{X}=\Omega_{X}^{n}$, that is, the nth exterior power of the cotangent bundle on X. A canonical divisor is any divisor D for which $\omega_{X}=\mathcal{O}_{X}(D)$. We denote it by K_{X}.

Example

Let $X=\mathbb{P}^{1}=\mathbb{C}_{z} \cup\{\infty\}$. Let $\omega=d z$. At ∞ the local coordinate changes to $w=1 / z$ and $\omega=d(1 / w)=-1 / w^{2} d w$. Then ω has a pole of order 2 at ∞. We write it as $K_{X}=-2 \cdot\{\infty\}$

Definition
Let X be a normal projective variety with good singularities. We say that X is

- Fano if $-K_{X}$ is ample;
- Calabi-Yau if $-K_{X}$ is trivial:
- Canonically Polarised if K_{X} is ample.

The Canonical Divisor

Example

Let $X=\mathbb{P}^{d}$. Then $K_{X}=-(d+1) H$, where $H \subset \mathbb{P}^{d}$ is a hyperplane.

The Canonical Divisor

Example

Let $X=\mathbb{P}^{d}$. Then $K_{X}=-(d+1) H$, where $H \subset \mathbb{P}^{d}$ is a hyperplane.

Theorem (Adjunction Formula)
Suppose D is a smooth divisor on a smooth projective variety X. Then,

$$
K_{D}=\left.\left(K_{X}+D\right)\right|_{D}
$$

The Canonical Divisor

Example
Let $X=\mathbb{P}^{d}$. Then $K_{X}=-(d+1) H$, where $H \subset \mathbb{P}^{d}$ is a hyperplane.

Theorem (Adjunction Formula)
Suppose D is a smooth divisor on a smooth projective variety X. Then,

$$
K_{D}=\left.\left(K_{X}+D\right)\right|_{D}
$$

Example
Let $C \subset \mathbb{P}^{2}$ be a smooth projective curve. Then,

$$
K_{C}=\left.\left(K_{\mathbb{P}^{2}}+C\right)\right|_{C}=\left.(-3 L+d L)\right|_{C}=\left.(d-3) L\right|_{C} .
$$

Taking degrees,

$$
\operatorname{deg}\left(K_{C}\right)=2 g(C)-2=-3 L \cdot C+C^{2}=-3 d+d^{2} .
$$

The Canonical Divisor

Example
Let $X=\mathbb{P}^{d}$. Then $K_{X}=-(d+1) H$, where $H \subset \mathbb{P}^{d}$ is a hyperplane.

Theorem (Adjunction Formula)
Suppose D is a smooth divisor on a smooth projective variety X. Then,

$$
K_{D}=\left.\left(K_{X}+D\right)\right|_{D}
$$

Example

Let $C \subset \mathbb{P}^{2}$ be a smooth projective curve. Then,

$$
K_{C}=\left.\left(K_{\mathbb{P}^{2}}+C\right)\right|_{C}=\left.(-3 L+d L)\right|_{C}=\left.(d-3) L\right|_{C} .
$$

Taking degrees,

$$
\operatorname{deg}\left(K_{C}\right)=2 g(C)-2=-3 L \cdot C+C^{2}=-3 d+d^{2} .
$$

C is Fano

$$
\begin{array}{lll}
\Longleftrightarrow & g(C)=0 & \Longleftrightarrow \\
g(C)=1 & \Longleftrightarrow & d<3 \\
& d=3
\end{array}
$$

C is Calabi-Yau
C is Canonically Polarised $\Longleftrightarrow g(C) \geq 2 \Longleftrightarrow d>3$

The Canonical Divisor

Example

Let $X:=X_{d_{1}, \ldots, d_{s}} \subset \mathbb{P}^{d}$ be a smooth complete intersection of multidegree $\left(d_{1}, \ldots, d_{n}\right)$. Then, $K_{X}=\left.\left(-d-1+\sum d_{i}\right) H\right|_{X}$, where H is a generic hyperplane section of \mathbb{P}^{d} not containing X and

X is Fano	$\Longleftrightarrow d+1-\sum d_{i}>0$	
X is Calabi-Yau	\Longleftrightarrow	$d+1-\sum d_{i}=0$
X is Canonically Polarised	\Longleftrightarrow	$d+1-\sum d_{i}<0$

The Three Mosqueteers

Let W be a smooth projective variety. The goal of the Minimal Model Program (MMP) is to find a good representative of the birational class of W.

The Three Mosqueteers

Let W be a smooth projective variety. The goal of the Minimal Model Program (MMP) is to find a good representative of the birational class of W.

Conjecture

Each smooth projective variety is birational to a projective variety with good singularities Y such that either

- Y admits a Fano fibration or
- Y admits a Calabi-Yau fibration or
- Y is Canonically Polarised.

The Three Mosqueteers

Let W be a smooth projective variety. The goal of the Minimal Model Program (MMP) is to find a good representative of the birational class of W.

Conjecture

Each smooth projective variety is birational to a projective variety with good singularities Y such that either

- Y admits a Fano fibration or
- Y admits a Calabi-Yau fibration or
- Y is Canonically Polarised.

Theorem (Birkar-Cascini-Hacon-McKernan, '10)
Let W be a smooth projective variety which is uniruled. Then W is birational to a Fano fibration.

The Blowup

The Blowup

$$
\begin{aligned}
& \varphi: B l_{0} \mathbb{C}^{2} \rightarrow \mathbb{C}^{2}, \quad E:=\varphi^{-1}(0) \\
& B l_{0} \mathbb{C}^{2} \backslash E \simeq \mathbb{C}^{2} \backslash 0 \\
& E \simeq \mathbb{P}^{1}, E^{2}=-1
\end{aligned}
$$

The Blowup

$$
\begin{aligned}
& \varphi: B l_{0} \mathbb{C}^{2} \rightarrow \mathbb{C}^{2}, \quad E:=\varphi^{-1}(0) \\
& B l_{0} \mathbb{C}^{2} \backslash E \simeq \mathbb{C}^{2} \backslash 0 \\
& E \simeq \mathbb{P}^{1}, E^{2}=-1 .
\end{aligned}
$$

- Weak Factorisation Theorem (Abramovich, Karu, Matsuki, Wlodarczyk, 1999): Any birational map between two smooth complex projective varieties can be decomposed into finitely many blow-ups or blow-downs of smooth subvarieties.

The Blowup

$$
\begin{aligned}
& \varphi: B l_{0} \mathbb{C}^{2} \rightarrow \mathbb{C}^{2}, \quad E:=\varphi^{-1}(0) \\
& B l_{0} \mathbb{C}^{2} \backslash E \simeq \mathbb{C}^{2} \backslash 0 \\
& E \simeq \mathbb{P}^{1}, E^{2}=-1 .
\end{aligned}
$$

- Weak Factorisation Theorem (Abramovich, Karu, Matsuki, Wlodarczyk, 1999): Any birational map between two smooth complex projective varieties can be decomposed into finitely many blow-ups or blow-downs of smooth subvarieties.
- Resolution of Singularities (Hironaka, 1964): Every variety is birational to a smooth projective variety.

Example

The blowup map is the main source of birational but non-isomorphic projective surfaces.

Example

Consider the smooth cubic surface

$$
S:\left(x^{3}+y^{3}+z^{3}+t^{3}=0\right) \subset \mathbb{P}^{3} .
$$

It is well known that $S=\left.B\right|_{p_{1}, \ldots, p_{6}} \mathbb{P}^{2}$. Hence, $S \simeq \mathbb{P}^{2}$.

Example

The blowup map is the main source of birational but non-isomorphic projective surfaces.

Example

Consider the smooth cubic surface

$$
S:\left(x^{3}+y^{3}+z^{3}+t^{3}=0\right) \subset \mathbb{P}^{3} .
$$

It is well known that $S=B l_{p_{1}, \ldots, p_{6}} \mathbb{P}^{2}$. Hence, $S \simeq \mathbb{P}^{2}$. However, S and \mathbb{P}^{2} are not isomorphic since S contains disjoint lines but any two lines in \mathbb{P}^{2} intersect in a point.

Example

The blowup map is the main source of birational but non-isomorphic projective surfaces.

Example

Consider the smooth cubic surface

$$
S:\left(x^{3}+y^{3}+z^{3}+t^{3}=0\right) \subset \mathbb{P}^{3} .
$$

It is well known that $S=B I_{p_{1}, \ldots, p_{6}} \mathbb{P}^{2}$. Hence, $S \simeq \mathbb{P}^{2}$. However, S and \mathbb{P}^{2} are not isomorphic since S contains disjoint lines but any two lines in \mathbb{P}^{2} intersect in a point.

This leads to the idea of minimal model:

Question

Is there a simpler representative in a birational equivalence class of a surface?

Castelnuovo's Contraction Criterion

$$
\begin{aligned}
& \varphi: B l_{0} \mathbb{C}^{2} \rightarrow \mathbb{C}^{2}, \quad E:=\varphi^{-1}(0) \\
& B l_{0} \mathbb{C}^{2} \backslash E \simeq \mathbb{C}^{2} \backslash 0 \\
& E \simeq \mathbb{P}^{1}, E^{2}=-1
\end{aligned}
$$

Theorem (Castelnuovo Contraction Criterion, XIX)
Let S be a smooth projective surface and $E \simeq \mathbb{P}^{1}$ with $E^{2}=-1$ an irreducible curve in S. Then, there exists a smooth surface S^{\prime} and a contraction morphism $\varphi: S \rightarrow S^{\prime}$ such that $\varphi: S \backslash E \rightarrow S^{\prime} \backslash 0$ is an isomorphism and $\varphi(E)=0$.

A graph theoretic viewpoint

Let G be a directed graph such that

- A vertex is a smooth projective surface;

A graph theoretic viewpoint

Let G be a directed graph such that

- A vertex is a smooth projective surface;
- Two vertices S and S^{\prime} have an oriented edge $S \rightarrow S^{\prime}$ iff S is the blowup of S^{\prime} at a point.

A graph theoretic viewpoint

Let G be a directed graph such that

- A vertex is a smooth projective surface;
- Two vertices S and S^{\prime} have an oriented edge $S \rightarrow S^{\prime}$ iff S is the blowup of S^{\prime} at a point.

A graph theoretic viewpoint

Let G be a directed graph such that

- A vertex is a smooth projective surface;
- Two vertices S and S^{\prime} have an oriented edge $S \rightarrow S^{\prime}$ iff S is the blowup of S^{\prime} at a point.

(1) There are infinitely many vertices above S.

A graph theoretic viewpoint

Let G be a directed graph such that

- A vertex is a smooth projective surface;
- Two vertices S and S^{\prime} have an oriented edge $S \rightarrow S^{\prime}$ iff S is the blowup of S^{\prime} at a point.

(1) There are infinitely many vertices above S.
(2) The connected component of the graph containing S coincides with its birational class.

A graph theoretic viewpoint

Let G be a directed graph such that

- A vertex is a smooth projective surface;
- Two vertices S and S^{\prime} have an oriented edge $S \rightarrow S^{\prime}$ iff S is the blowup of S^{\prime} at a point.

(1) There are infinitely many vertices above S.
(2) The connected component of the graph containing S coincides with its birational class.
(3) G has an end-point.

Minimal Model Program for Surfaces
(1) Take a smooth projective surface S.

Minimal Model Program for Surfaces

(1) Take a smooth projective surface S.
(2) If S has a (-1)-curve E, we can contract E to a point via $f_{1}: S \rightarrow S_{1}$. Otherwise stop.

Minimal Model Program for Surfaces

(1) Take a smooth projective surface S.
(2) If S has a (-1)-curve E, we can contract E to a point via $f_{1}: S \rightarrow S_{1}$. Otherwise stop.
(3) Substitute S by S_{1} and continue from (2).

Minimal Model Program for Surfaces

(1) Take a smooth projective surface S.
(2) If S has a (-1)-curve E, we can contract E to a point via $f_{1}: S \rightarrow S_{1}$. Otherwise stop.
(3) Substitute S by S_{1} and continue from (2).

Example

Let S be the smooth cubic surface

$$
S:\left(x^{3}+y^{3}+z^{3}+t^{3}=0\right) \subset \mathbb{P}^{3}
$$

Then S has 27 lines, all of which are (-1)-curves. Applying the steps of the MMP for surfaces, we contract 6 curves to get the birational morphism

$$
\varphi: S \rightarrow S_{1} \rightarrow \cdots \rightarrow S_{6} \simeq \mathbb{P}^{2}
$$

Since \mathbb{P}^{2} has no (-1)-curves, we are done.

Minimal Model Program for Surfaces

Theorem (MMP for Surfaces)
Let S be a smooth projective surface. Then, the graph G containing S has an end-point S^{\prime} such that either
(1) $S^{\prime} \simeq \mathbb{P}^{2}$ or $S^{\prime} \simeq \mathbb{P}^{1} \times C$;
(2) $K_{S^{\prime}}$ is nef.

Minimal Model Program for Surfaces

Theorem (MMP for Surfaces)

Let S be a smooth projective surface. Then, the graph G containing S has an end-point S^{\prime} such that either
(1) $S^{\prime} \simeq \mathbb{P}^{2}$ or $S^{\prime} \simeq \mathbb{P}^{1} \times C$;
(2) $K_{S^{\prime}}$ is nef.

Remark
The first case happens when S is a rational or ruled surface and, in this case, there are infinitely many end points. For instance, if we consider the connected component of rational surfaces, \mathbb{P}^{2} is an end-point but so is any Hirzebruch Surface

$$
\mathbb{F}_{n}:=\mathbb{P}\left(\mathcal{O}_{\mathbb{P}^{1}} \oplus \mathcal{O}_{\mathbb{P}^{1}}(-n)\right)
$$

for $n \neq 1$.

Minimal Model Program in Higher Dimension

Let X be a smooth projective variety of dimension $n \geq 3$.

Let X be a smooth projective variety of dimension $n \geq 3$.
(1) For a given contraction $\varphi: X \rightarrow X^{\prime}, X^{\prime}$ might be singular.
(2) Not all contractions are divisorial.

Minimal Model Program in Higher Dimension

Let X be a smooth projective variety of dimension $n \geq 3$.
(1) For a given contraction $\varphi: X \rightarrow X^{\prime}, X^{\prime}$ might be singular.
(2) Not all contractions are divisorial.

To extend the MMP to higher dimensions, one needs to extend the category we work with to allow for mild singularities.

Singularities

Definition
A prime divisor D on a normal variety X is \mathbb{Q}-Cartier if there is a non-zero multiple m such that $m D$ is Cartier. If every divisor on X is \mathbb{Q}-Cartier then X is called \mathbb{Q}-factorial.

Singularities

Definition
A prime divisor D on a normal variety X is \mathbb{Q}-Cartier if there is a non-zero multiple m such that $m D$ is Cartier. If every divisor on X is \mathbb{Q}-Cartier then X is called \mathbb{Q}-factorial.

Example

Singularities

Definition
A prime divisor D on a normal variety X is \mathbb{Q}-Cartier if there is a non-zero multiple m such that $m D$ is Cartier. If every divisor on X is \mathbb{Q}-Cartier then X is called \mathbb{Q}-factorial.

Example

Example
The cone $(x y-u v=0) \subset \mathbb{C}^{4}$ is not \mathbb{Q}-factorial. On the other hand, $\left(x y+z w+z^{3}+w^{3}=0\right) \subset \mathbb{C}^{4}$ is.

Singularities

Definition
A normal \mathbb{Q}-factorial variety X has terminal singularities if for any resolution $\varphi: Y \rightarrow X$ we have,

$$
K_{Y}-\varphi^{*} K_{X}=\sum a_{i} E_{i}, \quad a_{i}>0
$$

where E_{i} are all the exceptional divisors of the resolution. It has canonical singularities if $a_{i} \geq 0$.

Singularities

Definition
A normal \mathbb{Q}-factorial variety X has terminal singularities if for any resolution $\varphi: Y \rightarrow X$ we have,

$$
K_{Y}-\varphi^{*} K_{X}=\sum a_{i} E_{i}, \quad a_{i}>0
$$

where E_{i} are all the exceptional divisors of the resolution. It has canonical singularities if $a_{i} \geq 0$.

Example

- Let $X=\mathbb{P}(1,1,2)$. Then a resolution of X is a blowup of the vertex, $\varphi: \mathbb{F}_{2} \rightarrow X$ and is crepant, i.e.,

$$
K_{\mathbb{F}_{2}}=\varphi^{*} K_{X} .
$$

Singularities

Definition
A normal \mathbb{Q}-factorial variety X has terminal singularities if for any resolution $\varphi: Y \rightarrow X$ we have,

$$
K_{Y}-\varphi^{*} K_{X}=\sum a_{i} E_{i}, \quad a_{i}>0
$$

where E_{i} are all the exceptional divisors of the resolution. It has canonical singularities if $a_{i} \geq 0$.

Example

- Let $X=\mathbb{P}(1,1,2)$. Then a resolution of X is a blowup of the vertex, $\varphi: \mathbb{F}_{2} \rightarrow X$ and is crepant, i.e.,

$$
K_{\mathbb{F}_{2}}=\varphi^{*} K_{X} .
$$

- Let $X=\mathbb{P}(1,1,1,2)$. Then a resolution of X is a blowup of the vertex, $\varphi: T \rightarrow X$ and it satisfies

$$
K_{T}=\varphi^{*} K_{X}+\frac{1}{2} E .
$$

Singularities

Definition
Let $F \in \mathbb{C}\left\{x_{1}, x_{2}, x_{4}, x_{4}\right\}$ be a convergent power series around 0 . Then $(F=0)$ is a compound du Val Singularity (or cDV) if F is of the form

$$
h\left(x_{1}, x_{2}, x_{3}\right)+x_{4} g\left(x_{1}, x_{2}, x_{3}, x_{4}\right)=0
$$

where $h=0$ defines a canonical surface singularity.

Singularities

Definition

Let $F \in \mathbb{C}\left\{x_{1}, x_{2}, x_{4}, x_{4}\right\}$ be a convergent power series around 0 . Then $(F=0)$ is a compound du Val Singularity (or cDV) if F is of the form

$$
h\left(x_{1}, x_{2}, x_{3}\right)+x_{4} g\left(x_{1}, x_{2}, x_{3}, x_{4}\right)=0
$$

where $h=0$ defines a canonical surface singularity.

Let μ_{r} be the cyclic group of r th roots of unity. Define the action of μ_{r} on \mathbb{C}^{4} with coordinates $x_{1}, x_{2}, x_{3}, x_{4}$ by

$$
\begin{aligned}
\mu_{r} \times \mathbb{C}^{4} & \longrightarrow \mathbb{C}^{4} \\
\left(\epsilon,\left(x_{1}, x_{2}, x_{3}, x_{4}\right)\right) & \longmapsto\left(\epsilon^{\alpha_{1}} x_{1}, \epsilon^{\alpha_{2}} x_{2}, \epsilon^{\alpha_{3}} x_{3}, \epsilon^{\alpha_{4}} x_{4}\right)
\end{aligned}
$$

Singularities

Definition

Let $F \in \mathbb{C}\left\{x_{1}, x_{2}, x_{4}, x_{4}\right\}$ be a convergent power series around 0 . Then $(F=0)$ is a compound du Val Singularity (or cDV) if F is of the form

$$
h\left(x_{1}, x_{2}, x_{3}\right)+x_{4} g\left(x_{1}, x_{2}, x_{3}, x_{4}\right)=0
$$

where $h=0$ defines a canonical surface singularity.

Let μ_{r} be the cyclic group of r th roots of unity. Define the action of μ_{r} on \mathbb{C}^{4} with coordinates $x_{1}, x_{2}, x_{3}, x_{4}$ by

$$
\begin{aligned}
\mu_{r} \times \mathbb{C}^{4} & \longrightarrow \mathbb{C}^{4} \\
\left(\epsilon,\left(x_{1}, x_{2}, x_{3}, x_{4}\right)\right) & \longmapsto\left(\epsilon^{\alpha_{1}} x_{1}, \epsilon^{\alpha_{2}} x_{2}, \epsilon^{\alpha_{3}} x_{3}, \epsilon^{\alpha_{4}} x_{4}\right)
\end{aligned}
$$

Theorem (Reid, '83)
Suppose F is equivariant with respect to the action given by $\boldsymbol{\mu}_{r}$. Then, every terminal 3-fold singularity over \mathbb{C} is isomorphic to

$$
\left(F\left(x_{1}, x_{2}, x_{3}, x_{4}\right)=0\right) / \mu_{r} .
$$

The Atiyah Flop

The Atiyah Flop

A graph theoretic viewpoint

Let G be a directed graph such that

- A vertex is a normal \mathbb{Q}-factorial projective variety of dimension at least three;

A graph theoretic viewpoint

Let G be a directed graph such that

- A vertex is a normal \mathbb{Q}-factorial projective variety of dimension at least three;
- Two vertices X and X^{\prime} have an oriented edge $X \rightarrow X^{\prime}$ iff X is the blowup of X^{\prime} at a point

A graph theoretic viewpoint

Let G be a directed graph such that

- A vertex is a normal \mathbb{Q}-factorial projective variety of dimension at least three;
- Two vertices X and X^{\prime} have an oriented edge $X \rightarrow X^{\prime}$ iff X is the blowup of X^{\prime} at a point or there is SQM between X and X^{\prime}.

A graph theoretic viewpoint

Let G be a directed graph such that

- A vertex is a normal \mathbb{Q}-factorial projective variety of dimension at least three;
- Two vertices X and X^{\prime} have an oriented edge $X \rightarrow X^{\prime}$ iff X is the blowup of X^{\prime} at a point or there is SQM between X and X^{\prime}.

(1) There are infinitely many vertices above X.

A graph theoretic viewpoint

Let G be a directed graph such that

- A vertex is a normal \mathbb{Q}-factorial projective variety of dimension at least three;
- Two vertices X and X^{\prime} have an oriented edge $X \rightarrow X^{\prime}$ iff X is the blowup of X^{\prime} at a point or there is SQM between X and X^{\prime}.

(1) There are infinitely many vertices above X.
(2) The connected component of the graph containing X coincides with its birational class.

A graph theoretic viewpoint

Let G be a directed graph such that

- A vertex is a normal \mathbb{Q}-factorial projective variety of dimension at least three;
- Two vertices X and X^{\prime} have an oriented edge $X \rightarrow X^{\prime}$ iff X is the blowup of X^{\prime} at a point or there is SQM between X and X^{\prime}.

(1) There are infinitely many vertices above X.
(2) The connected component of the graph containing X coincides with its birational class. But contains varieties which are not necessarily smooth.

A graph theoretic viewpoint

Let G be a directed graph such that

- A vertex is a normal \mathbb{Q}-factorial projective variety of dimension at least three;
- Two vertices X and X^{\prime} have an oriented edge $X \rightarrow X^{\prime}$ iff X is the blowup of X^{\prime} at a point or there is SQM between X and X^{\prime}.

(1) There are infinitely many vertices above X.
(2) The connected component of the graph containing X coincides with its birational class. But contains varieties which are not necessarily smooth.
(3) Does G have an end-point?

Minimal Model Program in dimension 3

Theorem (Mori, 1988: MMP for 3-dimensional varieties)
Let X be a smooth projective 3-dimensional variety. Then, the graph of X has an endpoint X^{\prime}.

Minimal Model Program in dimension 3

Theorem (Mori, 1988: MMP for 3-dimensional varieties)
Let X be a smooth projective 3-dimensional variety. Then, the graph of X has an endpoint X^{\prime}. Moreover, X^{\prime} is such that either
(1) X^{\prime} is Fano or is a del Pezzo fibration or a conic bundle.
(2) $K_{X^{\prime}}$ is nef.

Minimal Model Program in dimension 3

Theorem (Mori, 1988: MMP for 3-dimensional varieties)
Let X be a smooth projective 3-dimensional variety. Then, the graph of X has an endpoint X^{\prime}. Moreover, X^{\prime} is such that either
(1) X^{\prime} is Fano or is a del Pezzo fibration or a conic bundle.
(2) $K_{X^{\prime}}$ is nef.

Question
The first case happens if X is a uniruled variety. If G has more than one end-point, then how are these related?

Birational Rigidity

Let X be an endpoint of running the MMP for a uniruled variety.

Birational Rigidity

Let X be an endpoint of running the MMP for a uniruled variety.
Definition
Let G be the connected graph representing the birational class of X. We say that X is birationally rigid if X is the only endpoint of G.

Birational Rigidity

Let X be an endpoint of running the MMP for a uniruled variety.

Definition

Let G be the connected graph representing the birational class of X. We say that X is birationally rigid if X is the only endpoint of G. More contretely, let X be a normal \mathbb{Q}-factorial Fano variety of Picard rank 1 with at most terminal singularities. Let $\varphi: X \rightarrow Y$ be a birational map to a Fano fibration. We say that X is birationally rigid if X and Y are biregular.

Birational Rigidity

Let X be an endpoint of running the MMP for a uniruled variety.
Definition
Let G be the connected graph representing the birational class of X. We say that X is birationally rigid if X is the only endpoint of G. More contretely, let X be a normal \mathbb{Q}-factorial Fano variety of Picard rank 1 with at most terminal singularities. Let $\varphi: X \rightarrow Y$ be a birational map to a Fano fibration. We say that X is birationally rigid if X and Y are biregular.

Theorem (Iskovskikh-Manin, '71-Corti, '95)
A smooth quartic threefold $X_{4} \subset \mathbb{P}^{4}$ is birationally rigid.
In particular, X_{4} is non-rational.

Birational Rigidity

Theorem (Corti-Mella, '04)
Let $X_{4} \subset \mathbb{P}^{4}$ be a quartic threefold with a singularity $\mathbf{p} \in X_{4}$ analytically equivalent to $\left(x y+z^{3}+t^{3}=0\right)$, but otherwise general. Then, the only Fano fibration birational but non-biregular to X_{4} is a quasismooth complete intersection $Y_{3,4} \subset \mathbb{P}(1,1,1,1,2,2)$.

In particular, X_{4} is bi-rigid and non-rational

Birational Rigidity

Theorem (Corti-Mella, '04)
Let $X_{4} \subset \mathbb{P}^{4}$ be a quartic threefold with a singularity $\mathbf{p} \in X_{4}$ analytically equivalent to $\left(x y+z^{3}+t^{3}=0\right)$, but otherwise general. Then, the only Fano fibration birational but non-biregular to X_{4} is a quasismooth complete intersection $Y_{3,4} \subset \mathbb{P}(1,1,1,1,2,2)$.

In particular, X_{4} is bi-rigid and non-rational even though it is not birationally rigid.
Theorem (DG, '22)
Let $X_{4} \subset \mathbb{P}^{4}$ be a quartic threefold with three $c A_{2}$ singularities along a line $L \subset X_{4}$, but otherwise general. Then we have birational maps

Birational Rigidity

Let X be polarised by an ample divisor A for which $-K_{X}=\iota_{X} A$. Then we consider the multsection ring

$$
R(X, A)=\bigoplus_{m \geq 0} H^{0}\left(X, \mathcal{O}_{X}(m A)\right)
$$

A (minimal) choice of generators for $R(X, A)$ determines an embedding into some weighted projective space

$$
X \hookrightarrow \mathbb{P} .
$$

Birational Rigidity

Let X be polarised by an ample divisor A for which $-K_{X}=\iota_{X} A$. Then we consider the multsection ring

$$
R(X, A)=\bigoplus_{m \geq 0} H^{0}\left(X, \mathcal{O}_{X}(m A)\right)
$$

A (minimal) choice of generators for $R(X, A)$ determines an embedding into some weighted projective space

$$
X \hookrightarrow \mathbb{P} .
$$

Theorem ((Cheltsov-Park '14), (Abban-Cheltsov-Park '20), (Okada - '14-21), (DG - '22))
Let $X \hookrightarrow \mathbb{P}$ be a terminal \mathbb{Q}-factorial complete intersection Fano threefold with at most cyclic quotient singularities. Then $\operatorname{codim}_{\mathbb{P}} X \leq 3$, and

- If $\operatorname{codim}_{\mathbb{P}} X=1$, then X is birationally rigid iff X is one of 95 families.
- If $\operatorname{codim}_{\mathbb{P}} X=2$, then X is birationally rigid iff X is one of 19 families.
- If $\operatorname{codim}_{\mathbb{P}} X=3$, then X is is the complete intersection of three quadrics and is not birationally rigid.

Cones and Birational Geometry

To a smooth projective variety one can associate cones of (equivalence classes of) divisors in

$$
N^{1}(X)=\operatorname{Div}(X) / \equiv .
$$

We have the inclusions

$$
\operatorname{Amp}(X) \subset \operatorname{Nef}(X) \subset \overline{\operatorname{Mov}}(X) \subset \overline{\operatorname{Eff}}(X)
$$

Cones and Birational Geometry
To a smooth projective variety one can associate cones of (equivalence classes of) divisors in

$$
N^{1}(X)=\operatorname{Div}(X) / \equiv
$$

We have the inclusions

$$
\operatorname{Amp}(X) \subset \operatorname{Nef}(X) \subset \overline{\operatorname{Mov}}(X) \subset \overline{\operatorname{Eff}}(X)
$$

Example

$$
x=\mathbb{P}^{3}
$$

$$
\operatorname{Nef}(x)=\operatorname{Mov}(x)=E f f(x)=\mathbb{R}_{4}[H] .
$$

Cones and Birational Geometry

Mori: The contractions of a smooth projective variety are controlled by (the dual of) its Nef Cone.
Definition (Mori Dream Space)
Let X be a normal projective \mathbb{Q}-factorial variety. We say X is a Mori Dream Space if

- $\operatorname{Pic}(X)_{\mathbb{Q}}=N^{1}(X)$
- $\operatorname{Nef}(X)$ is the affine hull of finitely many semi-ample line bundles.
- There is a finite collection of SQMs $f_{i}: X \xrightarrow{\prime} \rightarrow X_{i}$ such that each X_{i} satisfies the above and $\operatorname{Mov}(X)=\bigcup_{i} f_{i}^{*}\left(\operatorname{Nef}\left(X_{i}\right)\right)$.

Theorem (Hu-Keel, '00)
MMP holds for any Mori Dream Space. Moreover, the chambers $f_{i}^{*}\left(\operatorname{Nef}\left(X_{i}\right)\right)$ and their faces give a fan supported in $\operatorname{Mov}(X)$ and the cones in the fan are in one-to-one correspondence with contractions.

Cones and Birational Geometry

Example

Let X_{4} be the quartic threefold containing a line L and $3 \times c A_{2}$ singular points on it. Let H be (the pull-back of) a hyperplane section and E the exceptional divisor resulting from blowing up L. Then,

Cones and Birational Geometry

Example

Let X_{4} be the quartic threefold contraining a line L and $3 \times c A_{2}$ singular points on it. Let H be (the pull-back of) a hyperplane section and E the exceptional divisor resulting from blowing up L. Then,

The Sarkisov Program

Question

How are end products of applying MMP to uniruled varieties related?

The Sarkisov Program

Question

How are end products of applying MMP to uniruled varieties related?

Theorem (Corti, '95 and Hacon-McKernan, '13)
Let X_{1} and X_{2} be birational Fano fibrations with normal \mathbb{Q}-factorial terminal singularities. Then there is a finite sequence of Sarkisov links connecting them.

