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What is it all about?

Algebraic Varieties

Definition

Classical Algebraic Geometry is the study of geometric structures defined by polynomials
equations.

Let R = K[x1, . . . , xn+1] where K is a field and I ⊂ R an ideal.

XI = {(a1, . . . , an+1) ∈ Kn+1 | f (a1, . . . , an+1) = 0, ∀f ∈ I}.

Theorem (Hilbert)

A is a Noetherian ring =⇒ A[x1, . . . , xn+1] is a Noetherian ring.

Hence,
XI = {(a1, . . . , an+1) ∈ Kn+1 | fi (a1, . . . , an+1) = 0, 1 ≤ i ≤ s}.

To ease notation we usually write it as X : (f1 = · · · = fs = 0).
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What is it all about?

Example: Clebsch Cubic

SClebsch : (x
3 + y3 + z3 + t3 + w3 = x + y + z + t + w = 0) ⊂ P4

Aut(SClebsch) = S5
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What is it all about?

Guiding Problem

Guiding Problem

Classify Algebraic Varieties up to isomorphism.

”Easier” Guiding Problem

Classify Algebraic Varieties up to Birational equivalence.

Definition

We say that X and Y are birationally equivalent or birational if there is an isomorphism between
open dense sets of X and Y . We write it as X ≃ Y .

Any birational map between smooth projective curves extends to a morphism.
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What is it all about?

Example

The unit sphere

Sn : (x21 + · · ·+ x2n+1 = 1) ⊂ Rn+1

projects from the north pole N =
(0, . . . , 1) to the plane xn+1 = 0, where
we use coordinates y1, . . . , yn.

We have,

Φ(x1, . . . , xn+1) =

(
x1

1− xn+1
, . . . ,

xn

1− xn+1

)
and

Φ−1(y1, . . . , yn) =

(
2y1

1 + S
, . . . ,

2yn

1 + S
,
−1 + S

1 + S

)
where S =

∑
y2
i . We write,

Sn 99K Rn.
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What is it all about?

The Canonical Divisor

Definition

Recall that for a smooth variety X of dimension n, the canonical bundle is the line bundle
ωX = Ωn

X , that is, the nth exterior power of the cotangent bundle on X . A canonical divisor is
any divisor D for which ωX = OX (D). We denote it by KX .

Example

Let X = P1 = Cz ∪ {∞}. Let ω = dz. At ∞ the local coordinate changes to w = 1/z and
ω = d(1/w) = −1/w2dw . Then ω has a pole of order 2 at ∞. We write it as KX = −2 · {∞}

Definition

Let X be a normal projective variety with good singularities. We say that X is

Fano if −KX is ample;

Calabi-Yau if −KX is trivial:

Canonically Polarised if KX is ample.
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What is it all about?

The Canonical Divisor

Example

Let X = Pd . Then KX = −(d + 1)H, where H ⊂ Pd is a hyperplane.

Theorem (Adjunction Formula)

Suppose D is a smooth divisor on a smooth projective variety X . Then,

KD = (KX + D)|D .

Example

Let C ⊂ P2 be a smooth projective curve. Then,

KC = (KP2 + C)|C = (−3L+ dL)|C = (d − 3)L|C .

Taking degrees,
deg(KC ) = 2g(C)− 2 = −3L · C + C2 = −3d + d2.

C is Fano ⇐⇒ g(C) = 0 ⇐⇒ d < 3
C is Calabi-Yau ⇐⇒ g(C) = 1 ⇐⇒ d = 3
C is Canonically Polarised ⇐⇒ g(C) ≥ 2 ⇐⇒ d > 3
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What is it all about?

The Canonical Divisor

Example

Let X := Xd1,...,ds ⊂ Pd be a smooth complete intersection of multidegree (d1, . . . , dn). Then,

KX = (−d − 1 +
∑

di )H|X , where H is a generic hyperplane section of Pd not containing X and

X is Fano ⇐⇒ d + 1−
∑

di > 0
X is Calabi-Yau ⇐⇒ d + 1−

∑
di = 0

X is Canonically Polarised ⇐⇒ d + 1−
∑

di < 0
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What is it all about?

The Three Mosqueteers

Let W be a smooth projective variety. The goal of the Minimal Model Program (MMP) is to find
a good representative of the birational class of W .

W MMP Y

Conjecture

Each smooth projective variety is birational to a projective variety with good singularities Y such
that either

Y admits a Fano fibration or

Y admits a Calabi-Yau fibration or

Y is Canonically Polarised.

Theorem (Birkar-Cascini-Hacon-McKernan, ’10)

Let W be a smooth projective variety which is uniruled. Then W is birational to a Fano fibration.
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MMP in dimension 2

The Blowup

φ : Bl0C2 → C2, E := φ−1(0)

Bl0C2 \ E ≃ C2 \ 0

E ≃ P1, E2 = −1.

Weak Factorisation Theorem (Abramovich, Karu, Matsuki, Wlodarczyk, 1999): Any
birational map between two smooth complex projective varieties can be decomposed into
finitely many blow-ups or blow-downs of smooth subvarieties.

Resolution of Singularities (Hironaka, 1964): Every variety is birational to a smooth
projective variety.
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MMP in dimension 2

Example

The blowup map is the main source of birational but non-isomorphic projective surfaces.

Example

Consider the smooth cubic surface

S : (x3 + y3 + z3 + t3 = 0) ⊂ P3.

It is well known that S = Blp1,...,p6P2. Hence, S ≃ P2.

However, S and P2 are not isomorphic
since S contains disjoint lines but any two lines in P2 intersect in a point.

This leads to the idea of minimal model:

Question

Is there a simpler representative in a birational equivalence class of a surface?
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MMP in dimension 2

Castelnuovo’s Contraction Criterion

φ : Bl0C2 → C2, E := φ−1(0)

Bl0C2 \ E ≃ C2 \ 0

E ≃ P1, E2 = −1.

Theorem (Castelnuovo Contraction Criterion, XIX)

Let S be a smooth projective surface and E ≃ P1 with E2 = −1 an irreducible curve in S. Then,
there exists a smooth surface S ′ and a contraction morphism φ : S → S ′ such that
φ : S \ E → S ′ \ 0 is an isomorphism and φ(E) = 0.
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MMP in dimension 2

A graph theoretic viewpoint

Let G be a directed graph such that

A vertex is a smooth projective surface;

Two vertices S and S ′ have an oriented edge S → S ′ iff S is the blowup of S ′ at a point.

S

1 There are infinitely many vertices above S.

2 The connected component of the graph containing S coincides with its birational class.

3 G has an end-point.
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MMP in dimension 2

Minimal Model Program for Surfaces

1 Take a smooth projective surface S .

2 If S has a (−1)−curve E , we can contract E to a point via f1 : S → S1. Otherwise stop.

3 Substitute S by S1 and continue from (2).

Example

Let S be the smooth cubic surface

S : (x3 + y3 + z3 + t3 = 0) ⊂ P3.

Then S has 27 lines, all of which are (−1)-curves. Applying
the steps of the MMP for surfaces, we contract 6 curves to
get the birational morphism

φ : S → S1 → · · · → S6 ≃ P2.

Since P2 has no (−1)-curves, we are done.
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MMP in dimension 2

Minimal Model Program for Surfaces

Theorem (MMP for Surfaces)

Let S be a smooth projective surface. Then, the graph G containing S has an end-point S ′ such
that either

1 S ′ ≃ P2 or S ′ ≃ P1 × C;

2 KS′ is nef.

Remark

The first case happens when S is a rational or ruled surface
and, in this case, there are infinitely many end points. For
instance, if we consider the connected component of ratio-
nal surfaces, P2 is an end-point but so is any Hirzebruch
Surface

Fn := P(OP1 ⊕OP1 (−n))

for n ̸= 1.
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MMP in dimension n ≥ 3

Minimal Model Program in Higher Dimension

Let X be a smooth projective variety of dimension n ≥ 3.

1 For a given contraction φ : X → X ′, X ′ might be singular.

2 Not all contractions are divisorial.

To extend the MMP to higher dimensions, one needs to extend the category we work with to
allow for mild singularities.
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MMP in dimension n ≥ 3

Singularities

Definition

A prime divisor D on a normal variety X is Q-Cartier if there is a non-zero multiple m such that
mD is Cartier. If every divisor on X is Q-Cartier then X is called Q-factorial.

Example

Example

The cone (xy − uv = 0) ⊂ C4 is not Q-factorial. On the other hand,
(xy + zw + z3 + w3 = 0) ⊂ C4 is.
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MMP in dimension n ≥ 3

Singularities

Definition

A normal Q-factorial variety X has terminal singularities if for any resolution φ : Y → X we have,

KY − φ∗KX =
∑

aiEi , ai > 0

where Ei are all the exceptional divisors of the resolution. It has canonical singularities if ai ≥ 0.

Example

Let X = P(1, 1, 2). Then a resolution of X is a blowup of the vertex, φ : F2 → X and is
crepant, i.e.,

KF2 = φ∗KX .

Let X = P(1, 1, 1, 2). Then a resolution of X is a blowup of the vertex, φ : T → X and it
satisfies

KT = φ∗KX +
1

2
E .

Tiago Duarte Guerreiro (Uni of Essex) Geometry of Fano threefolds March 2, 2023 19 / 30



MMP in dimension n ≥ 3

Singularities

Definition

A normal Q-factorial variety X has terminal singularities if for any resolution φ : Y → X we have,

KY − φ∗KX =
∑

aiEi , ai > 0

where Ei are all the exceptional divisors of the resolution. It has canonical singularities if ai ≥ 0.

Example

Let X = P(1, 1, 2). Then a resolution of X is a blowup of the vertex, φ : F2 → X and is
crepant, i.e.,

KF2 = φ∗KX .

Let X = P(1, 1, 1, 2). Then a resolution of X is a blowup of the vertex, φ : T → X and it
satisfies

KT = φ∗KX +
1

2
E .

Tiago Duarte Guerreiro (Uni of Essex) Geometry of Fano threefolds March 2, 2023 19 / 30



MMP in dimension n ≥ 3

Singularities

Definition

A normal Q-factorial variety X has terminal singularities if for any resolution φ : Y → X we have,

KY − φ∗KX =
∑

aiEi , ai > 0

where Ei are all the exceptional divisors of the resolution. It has canonical singularities if ai ≥ 0.

Example

Let X = P(1, 1, 2). Then a resolution of X is a blowup of the vertex, φ : F2 → X and is
crepant, i.e.,

KF2 = φ∗KX .

Let X = P(1, 1, 1, 2). Then a resolution of X is a blowup of the vertex, φ : T → X and it
satisfies

KT = φ∗KX +
1

2
E .

Tiago Duarte Guerreiro (Uni of Essex) Geometry of Fano threefolds March 2, 2023 19 / 30



MMP in dimension n ≥ 3

Singularities

Definition

Let F ∈ C{x1, x2, x4, x4} be a convergent power series around 0. Then (F = 0) is a compound du
Val Singularity (or cDV) if F is of the form

h(x1, x2, x3) + x4g(x1, x2, x3, x4) = 0

where h = 0 defines a canonical surface singularity.

Let µr be the cyclic group of rth roots of unity. Define the action of µr on C4 with coordinates
x1, x2, x3, x4 by

µr × C4 −→ C4

(ϵ, (x1, x2, x3, x4)) 7−→ (ϵα1x1, ϵ
α2x2, ϵ

α3x3, ϵ
α4x4)

Theorem (Reid, ’83)

Suppose F is equivariant with respect to the action given by µr . Then, every terminal 3-fold
singularity over C is isomorphic to

(F (x1, x2, x3, x4) = 0)/µr .
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MMP in dimension n ≥ 3

The Atiyah Flop
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MMP in dimension n ≥ 3

A graph theoretic viewpoint

Let G be a directed graph such that

A vertex is a normal Q-factorial projective variety of dimension at least three;

Two vertices X and X ′ have an oriented edge X → X ′ iff X is the blowup of X ′ at a point
or there is SQM between X and X ′.

X

1 There are infinitely many vertices above X .

2 The connected component of the graph containing X coincides with its birational class. But
contains varieties which are not necessarily smooth.

3 Does G have an end-point?
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MMP in dimension n ≥ 3

Minimal Model Program in dimension 3

Theorem (Mori, 1988: MMP for 3-dimensional varieties)

Let X be a smooth projective 3-dimensional variety. Then, the graph of X has an endpoint X ′.

Moreover, X ′ is such that either

1 X ′ is Fano or is a del Pezzo fibration or a conic bundle.

2 KX ′ is nef.

Question

The first case happens if X is a uniruled variety. If G has more than one end-point, then how are
these related?
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Results

Birational Rigidity

Let X be an endpoint of running the MMP for a uniruled variety.

Definition

Let G be the connected graph representing the birational class of X . We say that X is
birationally rigid if X is the only endpoint of G . More contretely, let X be a normal Q-factorial
Fano variety of Picard rank 1 with at most terminal singularities. Let φ : X 99K Y be a birational
map to a Fano fibration. We say that X is birationally rigid if X and Y are biregular.

Theorem (Iskovskikh-Manin, ’71 - Corti, ’95)

A smooth quartic threefold X4 ⊂ P4 is birationally rigid.

In particular, X4 is non-rational.
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Results

Birational Rigidity

Theorem (Corti-Mella, ’04)

Let X4 ⊂ P4 be a quartic threefold with a singularity p ∈ X4 analytically equivalent to
(xy + z3 + t3 = 0), but otherwise general. Then, the only Fano fibration birational but
non-biregular to X4 is a quasismooth complete intersection Y3,4 ⊂ P(1, 1, 1, 1, 2, 2).

In particular, X4 is bi-rigid and non-rational

even though it is not birationally rigid.

Theorem (DG, ’22)

Let X4 ⊂ P4 be a quartic threefold with three cA2 singularities along a line L ⊂ X4, but otherwise
general. Then we have birational maps
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Results

Birational Rigidity

Let X be polarised by an ample divisor A for which −KX = ιXA. Then we consider the
multsection ring

R(X ,A) =
⊕
m≥0

H0(X ,OX (mA)).

A (minimal) choice of generators for R(X ,A) determines an embedding into some weighted
projective space

X ↪→ P.

Theorem ((Cheltsov-Park ’14), (Abban-Cheltsov-Park ’20), (Okada - ’14-21), (DG - ’22))

Let X ↪→ P be a terminal Q-factorial complete intersection Fano threefold with at most cyclic
quotient singularities. Then codimP X ≤ 3, and

If codimP X = 1, then X is birationally rigid iff X is one of 95 families.

If codimP X = 2, then X is birationally rigid iff X is one of 19 families.

If codimP X = 3, then X is is the complete intersection of three quadrics and is not
birationally rigid.
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Results

Cones and Birational Geometry

To a smooth projective variety one can associate cones of (equivalence classes of) divisors in

N1(X ) = Div(X )/≡.

We have the inclusions
Amp(X ) ⊂ Nef(X ) ⊂ Mov(X ) ⊂ Eff(X )

Example

Tiago Duarte Guerreiro (Uni of Essex) Geometry of Fano threefolds March 2, 2023 27 / 30



Results

Cones and Birational Geometry

To a smooth projective variety one can associate cones of (equivalence classes of) divisors in

N1(X ) = Div(X )/≡.

We have the inclusions
Amp(X ) ⊂ Nef(X ) ⊂ Mov(X ) ⊂ Eff(X )

Example

Tiago Duarte Guerreiro (Uni of Essex) Geometry of Fano threefolds March 2, 2023 27 / 30



Results

Cones and Birational Geometry

Mori: The contractions of a smooth projective variety are controlled by (the dual of) its Nef Cone.

Definition (Mori Dream Space)

Let X be a normal projective Q-factorial variety. We say X is a Mori Dream Space if

Pic(X )Q = N1(X )

Nef(X ) is the affine hull of finitely many semi-ample line bundles.

There is a finite collection of SQMs fi : X 99K Xi such that each Xi satisfies the above and
Mov(X ) =

⋃
i f

∗
i (Nef(Xi )).

Theorem (Hu-Keel, ’00)

MMP holds for any Mori Dream Space. Moreover, the chambers f ∗i (Nef(Xi )) and their faces give
a fan supported in Mov(X ) and the cones in the fan are in one-to-one correspondence with
contractions.
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Results

Cones and Birational Geometry

Example

Let X4 be the quartic threefold con-
taining a line L and 3 × cA2 singular
points on it. Let H be (the pull-back
of) a hyperplane section and E the ex-
ceptional divisor resulting from blowing
up L. Then,
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Results

The Sarkisov Program

Question

How are end products of applying MMP to uniruled varieties related?

Theorem (Corti, ’95 and Hacon-McKernan, ’13)

Let X1 and X2 be birational Fano fibrations with normal Q-factorial terminal singularities. Then
there is a finite sequence of Sarkisov links connecting them.
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