On the birational geometry of Fano threefold complete intersections

Tiago Duarte Guerreiro

University of Essex

t.duarteguerreiro@essex.ac.uk

March 2, 2023

	Guerreiro		

æ

1/30

What is it all about?

2 MMP in dimension 2

3 MMP in dimension $n \ge 3$

Tiago Duarte	Guerreiro	(Uni of Essex)

2

Definition

Classical **Algebraic Geometry** is the study of geometric structures defined by polynomials equations.

2

3/30

Definition

Classical **Algebraic Geometry** is the study of geometric structures defined by polynomials equations.

Let $R = \mathbb{K}[x_1, \ldots, x_{n+1}]$ where \mathbb{K} is a field and $I \subset R$ an ideal.

$$X_I = \{(a_1, \ldots, a_{n+1}) \in \mathbb{K}^{n+1} \mid f(a_1, \ldots, a_{n+1}) = 0, \forall f \in I\}.$$

イロト イヨト イヨト イヨト

2

Definition

Classical **Algebraic Geometry** is the study of geometric structures defined by polynomials equations.

Let $R = \mathbb{K}[x_1, \ldots, x_{n+1}]$ where \mathbb{K} is a field and $I \subset R$ an ideal.

$$X_I = \{(a_1, \ldots, a_{n+1}) \in \mathbb{K}^{n+1} \mid f(a_1, \ldots, a_{n+1}) = 0, \forall f \in I\}.$$

Theorem (Hilbert)

A is a Noetherian ring \implies $A[x_1, \ldots, x_{n+1}]$ is a Noetherian ring.

Hence,

$$X_{I} = \{(a_{1}, \ldots, a_{n+1}) \in \mathbb{K}^{n+1} \mid f_{i}(a_{1}, \ldots, a_{n+1}) = 0, 1 \leq i \leq s\}.$$

イロト イヨト イヨト イヨト

2

Definition

Classical **Algebraic Geometry** is the study of geometric structures defined by polynomials equations.

Let $R = \mathbb{K}[x_1, \ldots, x_{n+1}]$ where \mathbb{K} is a field and $I \subset R$ an ideal.

$$X_I = \{(a_1, \ldots, a_{n+1}) \in \mathbb{K}^{n+1} \mid f(a_1, \ldots, a_{n+1}) = 0, \forall f \in I\}.$$

Theorem (Hilbert)

A is a Noetherian ring \implies $A[x_1, \ldots, x_{n+1}]$ is a Noetherian ring.

Hence,

$$X_{I} = \{(a_{1}, \ldots, a_{n+1}) \in \mathbb{K}^{n+1} \mid f_{i}(a_{1}, \ldots, a_{n+1}) = 0, 1 \leq i \leq s\}.$$

To ease notation we usually write it as $X: (f_1 = \cdots = f_s = 0)$.

イロト イヨト イヨト イヨト

э.

Example: Clebsch Cubic

S_{Clebsch} : $(x^3 + y^3 + z^3 + t^3 + w^3 = x + y + z + t + w = 0) \subset \mathbb{P}^4$

イロト イロト イヨト イヨト 二日

Example: Clebsch Cubic

$$S_{\mathsf{Clebsch}}$$
: $(x^3 + y^3 + z^3 + t^3 + w^3 = x + y + z + t + w = 0) \subset \mathbb{P}^4$

$$Aut(S_{Clebsch}) = S_5$$

2

Guiding Problem

Classify Algebraic Varieties up to isomorphism.

	erreiro		

2

5/30

Guiding Problem

Classify Algebraic Varieties up to isomorphism.

"Easier" Guiding Problem

Classify Algebraic Varieties up to Birational equivalence.

æ

Guiding Problem

Classify Algebraic Varieties up to isomorphism.

"Easier" Guiding Problem

Classify Algebraic Varieties up to Birational equivalence.

Definition

We say that X and Y are **birationally equivalent** or **birational** if there is an isomorphism between open dense sets of X and Y. We write it as $X \simeq Y$.

5/30

(日) (四) (日) (日) (日)

Guiding Problem

Classify Algebraic Varieties up to isomorphism.

"Easier" Guiding Problem

Classify Algebraic Varieties up to Birational equivalence.

Definition

We say that X and Y are **birationally equivalent** or **birational** if there is an isomorphism between open dense sets of X and Y. We write it as $X \simeq Y$.

Any birational map between smooth projective curves extends to a morphism.

(日) (四) (日) (日) (日)

The unit sphere

$$\mathbb{S}^n$$
: $(x_1^2 + \cdots + x_{n+1}^2 = 1) \subset \mathbb{R}^{n+1}$

projects from the north pole $\mathbf{N} = (0, \dots, 1)$ to the plane $x_{n+1} = 0$, where we use coordinates y_1, \dots, y_n .

2

6/30

The unit sphere

$$\mathbb{S}^n$$
: $(x_1^2 + \cdots + x_{n+1}^2 = 1) \subset \mathbb{R}^{n+1}$

projects from the north pole N = (0, ..., 1) to the plane $x_{n+1} = 0$, where we use coordinates $y_1, ..., y_n$.

We have,

$$\Phi(x_1,\ldots,x_{n+1}) = \left(\frac{x_1}{1-x_{n+1}},\ldots,\frac{x_n}{1-x_{n+1}}\right)$$

and

$$\Phi^{-1}(y_1,\ldots,y_n) = \left(\frac{2y_1}{1+S},\ldots,\frac{2y_n}{1+S},\frac{-1+S}{1+S}\right)$$

where $S = \sum y_i^2$. We write,

$$\mathbb{S}^n \dashrightarrow \mathbb{R}^n$$
.

イロン イ団 とく ヨン イヨン

2

Definition

Recall that for a smooth variety X of dimension n, the **canonical bundle** is the line bundle $\omega_X = \Omega_X^n$, that is, the *n*th exterior power of the cotangent bundle on X. A **canonical divisor** is any divisor D for which $\omega_X = \mathcal{O}_X(D)$. We denote it by K_X .

7/30

Definition

Recall that for a smooth variety X of dimension n, the **canonical bundle** is the line bundle $\omega_X = \Omega_X^n$, that is, the *n*th exterior power of the cotangent bundle on X. A **canonical divisor** is any divisor D for which $\omega_X = \mathcal{O}_X(D)$. We denote it by K_X .

Example

Let $X = \mathbb{P}^1 = \mathbb{C}_z \cup \{\infty\}$. Let $\omega = dz$. At ∞ the local coordinate changes to w = 1/z and $\omega = d(1/w) = -1/w^2 dw$. Then ω has a pole of order 2 at ∞ . We write it as $K_X = -2 \cdot \{\infty\}$

7/30

(日) (四) (日) (日) (日)

Definition

Recall that for a smooth variety X of dimension n, the **canonical bundle** is the line bundle $\omega_X = \Omega_X^n$, that is, the *n*th exterior power of the cotangent bundle on X. A **canonical divisor** is any divisor D for which $\omega_X = \mathcal{O}_X(D)$. We denote it by K_X .

Example

Let $X = \mathbb{P}^1 = \mathbb{C}_z \cup \{\infty\}$. Let $\omega = dz$. At ∞ the local coordinate changes to w = 1/z and $\omega = d(1/w) = -1/w^2 dw$. Then ω has a pole of order 2 at ∞ . We write it as $K_X = -2 \cdot \{\infty\}$

Definition

Let X be a normal projective variety with good singularities. We say that X is

- **Fano** if $-K_X$ is ample;
- Calabi-Yau if $-K_X$ is trivial:
- Canonically Polarised if K_X is ample.

7/30

Example

Let $X = \mathbb{P}^d$. Then $K_X = -(d+1)H$, where $H \subset \mathbb{P}^d$ is a hyperplane.

2

Example

Let $X = \mathbb{P}^d$. Then $K_X = -(d+1)H$, where $H \subset \mathbb{P}^d$ is a hyperplane.

Theorem (Adjunction Formula)

Suppose D is a smooth divisor on a smooth projective variety X. Then,

 $K_D = (K_X + D)|_D.$

2

Example

Let $X = \mathbb{P}^d$. Then $K_X = -(d+1)H$, where $H \subset \mathbb{P}^d$ is a hyperplane.

Theorem (Adjunction Formula)

Suppose D is a smooth divisor on a smooth projective variety X. Then,

 $K_D = (K_X + D)|_D.$

Example

Let $C \subset \mathbb{P}^2$ be a smooth projective curve. Then,

$$K_C = (K_{\mathbb{P}^2} + C)|_C = (-3L + dL)|_C = (d - 3)L|_C.$$

Taking degrees,

$$\deg(K_C) = 2g(C) - 2 = -3L \cdot C + C^2 = -3d + d^2.$$

Example

Let $X = \mathbb{P}^d$. Then $K_X = -(d+1)H$, where $H \subset \mathbb{P}^d$ is a hyperplane.

Theorem (Adjunction Formula)

Suppose D is a smooth divisor on a smooth projective variety X. Then,

 $K_D = (K_X + D)|_D.$

Example

Let $C \subset \mathbb{P}^2$ be a smooth projective curve. Then,

$$K_C = (K_{\mathbb{P}^2} + C)|_C = (-3L + dL)|_C = (d - 3)L|_C.$$

Taking degrees,

$$\deg(K_C) = 2g(C) - 2 = -3L \cdot C + C^2 = -3d + d^2.$$

C is Fano	\iff	g(C)=0	\iff	d < 3
C is Calabi-Yau	\iff	g(C) = 1	\iff	d = 3
C is Canonically Polarised	\iff	$g(C) \geq 2$	\iff	d > 3

Tiago Duarte Guerreiro (Uni of Essex)

Example

Let $X := X_{d_1,...,d_s} \subset \mathbb{P}^d$ be a smooth complete intersection of multidegree $(d_1,...,d_n)$. Then, $K_X = (-d - 1 + \sum d_i)H|_X$, where H is a generic hyperplane section of \mathbb{P}^d not containing X and

X is Fano	\iff	$d+1-\sum d_i>0$
X is Calabi-Yau	\iff	$d+1-\sum d_i=0$
X is Canonically Polarised	\iff	$d+1-\sum d_i < 0$

The Three Mosqueteers

Let W be a smooth projective variety. The goal of the Minimal Model Program (MMP) is to find a good representative of the birational class of W.

$$W \longrightarrow MMP \longrightarrow Y$$

æ

The Three Mosqueteers

Let W be a smooth projective variety. The goal of the Minimal Model Program (MMP) is to find a good representative of the birational class of W.

$$W \longrightarrow MMP \longrightarrow Y$$

Conjecture

Each smooth projective variety is birational to a projective variety with good singularities Y such that either

- Y admits a Fano fibration or
- Y admits a Calabi-Yau fibration or
- Y is Canonically Polarised.

10/30

The Three Mosqueteers

Let W be a smooth projective variety. The goal of the Minimal Model Program (MMP) is to find a good representative of the birational class of W.

$$W \longrightarrow MMP \longrightarrow Y$$

Conjecture

Each smooth projective variety is birational to a projective variety with good singularities Y such that either

- Y admits a Fano fibration or
- Y admits a Calabi-Yau fibration or
- Y is Canonically Polarised.

Theorem (Birkar-Cascini-Hacon-McKernan, '10)

Let W be a smooth projective variety which is uniruled. Then W is birational to a Fano fibration.

イロト イヨト イヨト

10/30

э.

$$\begin{split} \varphi \colon Bl_0 \mathbb{C}^2 \to \mathbb{C}^2, \quad E := \varphi^{-1}(0) \\ Bl_0 \mathbb{C}^2 \setminus E \simeq \mathbb{C}^2 \setminus 0 \\ E \simeq \mathbb{P}^1, \ E^2 = -1. \end{split}$$

æ

11/30

$$\begin{split} \varphi \colon Bl_0 \mathbb{C}^2 \to \mathbb{C}^2, \quad E := \varphi^{-1}(0) \\ Bl_0 \mathbb{C}^2 \setminus E \simeq \mathbb{C}^2 \setminus 0 \\ E \simeq \mathbb{P}^1, \ E^2 = -1. \end{split}$$

イロト イヨト イヨト

• Weak Factorisation Theorem (Abramovich, Karu, Matsuki, Wlodarczyk, 1999): Any birational map between two smooth complex projective varieties can be decomposed into finitely many blow-ups or blow-downs of smooth subvarieties.

11/30

- Weak Factorisation Theorem (Abramovich, Karu, Matsuki, Wlodarczyk, 1999): Any birational map between two smooth complex projective varieties can be decomposed into finitely many blow-ups or blow-downs of smooth subvarieties.
- **Resolution of Singularities** (Hironaka, 1964): Every variety is birational to a *smooth* projective variety.

11/30

イロト イヨト イヨト

The blowup map is the main source of birational but non-isomorphic projective surfaces.

Example

Consider the smooth cubic surface

$$S: (x^3 + y^3 + z^3 + t^3 = 0) \subset \mathbb{P}^3.$$

It is well known that $S = Bl_{p_1,...,p_6} \mathbb{P}^2$. Hence, $S \simeq \mathbb{P}^2$.

2

12/30

The blowup map is the main source of birational but non-isomorphic projective surfaces.

Example

Consider the smooth cubic surface

$$S: (x^3 + y^3 + z^3 + t^3 = 0) \subset \mathbb{P}^3.$$

It is well known that $S = Bl_{p_1,...,p_6} \mathbb{P}^2$. Hence, $S \simeq \mathbb{P}^2$. However, S and \mathbb{P}^2 are *not* isomorphic since S contains disjoint lines but any two lines in \mathbb{P}^2 intersect in a point.

э

12/30

イロト イヨト イヨト

The blowup map is the main source of birational but non-isomorphic projective surfaces.

Example

Consider the smooth cubic surface

$$S: (x^3 + y^3 + z^3 + t^3 = 0) \subset \mathbb{P}^3.$$

It is well known that $S = Bl_{p_1,...,p_6} \mathbb{P}^2$. Hence, $S \simeq \mathbb{P}^2$. However, S and \mathbb{P}^2 are *not* isomorphic since S contains disjoint lines but any two lines in \mathbb{P}^2 intersect in a point.

This leads to the idea of minimal model:

Question

Is there a simpler representative in a birational equivalence class of a surface?

э

MMP in dimension 2

Castelnuovo's Contraction Criterion

$$\begin{split} \varphi \colon Bl_0 \mathbb{C}^2 \to \mathbb{C}^2, \quad & E := \varphi^{-1}(0) \\ Bl_0 \mathbb{C}^2 \setminus E \simeq \mathbb{C}^2 \setminus 0 \\ & E \simeq \mathbb{P}^1, \ E^2 = -1. \end{split}$$

Theorem (Castelnuovo Contraction Criterion, XIX)

Let S be a smooth projective surface and $E \simeq \mathbb{P}^1$ with $E^2 = -1$ an irreducible curve in S. Then, there exists a smooth surface S' and a contraction morphism $\varphi \colon S \to S'$ such that $\varphi \colon S \setminus E \to S' \setminus 0$ is an isomorphism and $\varphi(E) = 0$.

13/30

A graph theoretic viewpoint

Let G be a directed graph such that

• A vertex is a smooth projective surface;

æ

A graph theoretic viewpoint

Let G be a directed graph such that

- A vertex is a smooth projective surface;
- Two vertices S and S' have an oriented edge $S \rightarrow S'$ iff S is the blowup of S' at a point.

э

14/30

A graph theoretic viewpoint

Let G be a directed graph such that

- A vertex is a smooth projective surface;
- Two vertices S and S' have an oriented edge $S \rightarrow S'$ iff S is the blowup of S' at a point.

14/30

・ロト ・日下・ ・ ヨト・

Let G be a directed graph such that

- A vertex is a smooth projective surface;
- Two vertices S and S' have an oriented edge $S \rightarrow S'$ iff S is the blowup of S' at a point.

There are infinitely many vertices above S.

Image: A matching of the second se

Let G be a directed graph such that

- A vertex is a smooth projective surface;
- Two vertices S and S' have an oriented edge $S \rightarrow S'$ iff S is the blowup of S' at a point.

- Interest of the second seco
- **@** The connected component of the graph containing S coincides with its birational class.

Let G be a directed graph such that

- A vertex is a smooth projective surface;
- Two vertices S and S' have an oriented edge $S \rightarrow S'$ iff S is the blowup of S' at a point.

- There are infinitely many vertices above S.
- **@** The connected component of the graph containing S coincides with its birational class.
- G has an end-point.

1 Take a smooth projective surface *S*.

2

メロト メタト メヨト メヨト

1 Take a smooth projective surface *S*.

2 If S has a (-1)-curve E, we can contract E to a point via $f_1: S \to S_1$. Otherwise stop.

æ

< □ > < □ > < □ > < □ > < □ >

- **1** Take a smooth projective surface *S*.
- **2** If S has a (-1)-curve E, we can contract E to a point via $f_1: S \to S_1$. Otherwise stop.
- **③** Substitute S by S_1 and continue from (2).

æ

15/30

イロト イヨト イヨト イヨト

1 Take a smooth projective surface *S*.

- **2** If S has a (-1)-curve E, we can contract E to a point via $f_1: S \to S_1$. Otherwise stop.
- **③** Substitute S by S_1 and continue from (2).

Example

Let S be the smooth cubic surface

$$S: (x^3 + y^3 + z^3 + t^3 = 0) \subset \mathbb{P}^3.$$

Then S has 27 lines, all of which are (-1)-curves. Applying the steps of the MMP for surfaces, we contract 6 curves to get the birational morphism

$$\varphi \colon S \to S_1 \to \cdots \to S_6 \simeq \mathbb{P}^2.$$

Since \mathbb{P}^2 has no (-1)-curves, we are done.

イロト イポト イヨト イヨト

Theorem (MMP for Surfaces)

Let S be a smooth projective surface. Then, the graph G containing S has an end-point S' such that either

- $S' \simeq \mathbb{P}^2$ or $S' \simeq \mathbb{P}^1 \times C$;
- \bigcirc $K_{S'}$ is nef.

16/30

Image: A matching of the second se

Theorem (MMP for Surfaces)

Let S be a smooth projective surface. Then, the graph G containing S has an end-point S' such that either

•
$$S' \simeq \mathbb{P}^2$$
 or $S' \simeq \mathbb{P}^1 \times C$;

 $(K_{S'}$ is nef.

Remark

The first case happens when S is a rational or ruled surface and, in this case, there are infinitely many end points. For instance, if we consider the connected component of rational surfaces, \mathbb{P}^2 is an end-point but so is any Hirzebruch Surface

$$\mathbb{F}_n := \mathbb{P}(\mathcal{O}_{\mathbb{P}^1} \oplus \mathcal{O}_{\mathbb{P}^1}(-n))$$

Image: A matching of the second se

16/30

for $n \neq 1$.

Minimal Model Program in Higher Dimension

Let X be a smooth projective variety of dimension $n \ge 3$.

2

イロト イヨト イヨト イヨト

Minimal Model Program in Higher Dimension

Let X be a smooth projective variety of dimension $n \ge 3$.

- **9** For a given contraction $\varphi \colon X \to X'$, X' might be singular.
- Ont all contractions are divisorial.

2

17/30

イロン イ団 とく ヨン イヨン

Minimal Model Program in Higher Dimension

Let X be a smooth projective variety of dimension $n \ge 3$.

- **(**) For a given contraction $\varphi \colon X \to X'$, X' might be singular.
- Ont all contractions are divisorial.

To extend the MMP to higher dimensions, one needs to extend the category we work with to allow for mild singularities.

17/30

イロト イポト イヨト イヨト

Definition

A prime divisor D on a normal variety X is \mathbb{Q} -**Cartier** if there is a non-zero multiple m such that mD is Cartier. If every divisor on X is \mathbb{Q} -Cartier then X is called \mathbb{Q} -factorial.

э

18/30

< □ > < □ > < □ > < □ > < □ >

Definition

A prime divisor D on a normal variety X is \mathbb{Q} -**Cartier** if there is a non-zero multiple m such that mD is Cartier. If every divisor on X is \mathbb{Q} -Cartier then X is called \mathbb{Q} -factorial.

Example

Tiago Duarte Gue	rreiro (U	ni of	Essex)	
------------------	-----------	-------	--------	--

э

< □ > < □ > < □ > < □ > < □ >

Definition

A prime divisor D on a normal variety X is \mathbb{Q} -**Cartier** if there is a non-zero multiple m such that mD is Cartier. If every divisor on X is \mathbb{Q} -Cartier then X is called \mathbb{Q} -factorial.

Example

Example

The cone $(xy - uv = 0) \subset \mathbb{C}^4$ is not Q-factorial. On the other hand, $(xy + zw + z^3 + w^3 = 0) \subset \mathbb{C}^4$ is.

18/30

イロト イポト イヨト イヨト

Definition

A normal Q-factorial variety X has terminal singularities if for any resolution $\varphi: Y \to X$ we have,

$$K_Y - \varphi^* K_X = \sum a_i E_i, \quad a_i > 0$$

where E_i are all the exceptional divisors of the resolution. It has **canonical singularities** if $a_i \ge 0$.

э

< □ > < □ > < □ > < □ > < □ >

Definition

A normal Q-factorial variety X has terminal singularities if for any resolution $\varphi: Y \to X$ we have,

$$K_Y - \varphi^* K_X = \sum a_i E_i, \quad a_i > 0$$

where E_i are all the exceptional divisors of the resolution. It has **canonical singularities** if $a_i \ge 0$.

Example

• Let $X = \mathbb{P}(1, 1, 2)$. Then a resolution of X is a blowup of the vertex, $\varphi \colon \mathbb{F}_2 \to X$ and is crepant, i.e.,

$$K_{\mathbb{F}_2} = \varphi^* K_X.$$

イロト イポト イヨト イヨト

Definition

A normal Q-factorial variety X has terminal singularities if for any resolution $\varphi: Y \to X$ we have,

$$K_Y - \varphi^* K_X = \sum a_i E_i, \quad a_i > 0$$

where E_i are all the exceptional divisors of the resolution. It has **canonical singularities** if $a_i \ge 0$.

Example

• Let $X = \mathbb{P}(1, 1, 2)$. Then a resolution of X is a blowup of the vertex, $\varphi \colon \mathbb{F}_2 \to X$ and is crepant, i.e.,

$$K_{\mathbb{F}_2} = \varphi^* K_X.$$

• Let $X = \mathbb{P}(1, 1, 1, 2)$. Then a resolution of X is a blowup of the vertex, $\varphi \colon T \to X$ and it satisfies

$$K_T = \varphi^* K_X + \frac{1}{2} E.$$

э

イロト イポト イヨト イヨト

Definition

Let $F \in \mathbb{C}\{x_1, x_2, x_4, x_4\}$ be a convergent power series around 0. Then (F = 0) is a **compound du** Val Singularity (or cDV) if F is of the form

$$h(x_1, x_2, x_3) + x_4g(x_1, x_2, x_3, x_4) = 0$$

where h = 0 defines a canonical surface singularity.

20 / 30

< ロ > < 回 > < 回 > < 回 > < 回 >

Definition

Let $F \in \mathbb{C}\{x_1, x_2, x_4, x_4\}$ be a convergent power series around 0. Then (F = 0) is a compound du Val Singularity (or cDV) if F is of the form

$$h(x_1, x_2, x_3) + x_4g(x_1, x_2, x_3, x_4) = 0$$

where h = 0 defines a canonical surface singularity.

Let μ_r be the cyclic group of *r*th roots of unity. Define the action of μ_r on \mathbb{C}^4 with coordinates x_1, x_2, x_3, x_4 by

$$\mu_r \times \mathbb{C}^4 \longrightarrow \mathbb{C}^4$$
$$(\epsilon, (x_1, x_2, x_3, x_4)) \longmapsto (\epsilon^{\alpha_1} x_1, \epsilon^{\alpha_2} x_2, \epsilon^{\alpha_3} x_3, \epsilon^{\alpha_4} x_4)$$

20 / 30

イロト イポト イヨト イヨト

Definition

Let $F \in \mathbb{C}\{x_1, x_2, x_4, x_4\}$ be a convergent power series around 0. Then (F = 0) is a compound du Val Singularity (or cDV) if F is of the form

$$h(x_1, x_2, x_3) + x_4g(x_1, x_2, x_3, x_4) = 0$$

where h = 0 defines a canonical surface singularity.

Let μ_r be the cyclic group of *r*th roots of unity. Define the action of μ_r on \mathbb{C}^4 with coordinates x_1, x_2, x_3, x_4 by

$$\mu_r \times \mathbb{C}^4 \longrightarrow \mathbb{C}^4$$
$$(\epsilon, (x_1, x_2, x_3, x_4)) \longmapsto (\epsilon^{\alpha_1} x_1, \epsilon^{\alpha_2} x_2, \epsilon^{\alpha_3} x_3, \epsilon^{\alpha_4} x_4)$$

Theorem (Reid, '83)

Suppose F is equivariant with respect to the action given by μ_r . Then, every terminal 3-fold singularity over $\mathbb C$ is isomorphic to

$$(F(x_1, x_2, x_3, x_4) = 0)/\mu_r$$

< ロ > < 回 > < 回 > < 回 > < 回 >

20/30

э

The Atiyah Flop

2

イロト イヨト イヨト イヨト

The Atiyah Flop

2

Let G be a directed graph such that

• A vertex is a normal Q-factorial projective variety of dimension at least three;

э

< ロ > < 回 > < 回 > < 回 > < 回 >

Let G be a directed graph such that

- A vertex is a normal Q-factorial projective variety of dimension at least three;
- Two vertices X and X' have an oriented edge $X \to X'$ iff X is the blowup of X' at a point

э

< ロ > < 回 > < 回 > < 回 > < 回 >

Let G be a directed graph such that

- A vertex is a normal Q-factorial projective variety of dimension at least three;
- Two vertices X and X' have an oriented edge X → X' iff X is the blowup of X' at a point or there is SQM between X and X'.

22 / 30

イロト イ団ト イヨト イヨト

Let G be a directed graph such that

- A vertex is a normal Q-factorial projective variety of dimension at least three;
- Two vertices X and X' have an oriented edge X → X' iff X is the blowup of X' at a point or there is SQM between X and X'.

There are infinitely many vertices above X.

22 / 30

< □ > < 同 > < 回 > < 回 >

Let G be a directed graph such that

- A vertex is a normal Q-factorial projective variety of dimension at least three;
- Two vertices X and X' have an oriented edge X → X' iff X is the blowup of X' at a point or there is SQM between X and X'.

- There are infinitely many vertices above X.
- **\bigcirc** The connected component of the graph containing X coincides with its birational class.

Let G be a directed graph such that

- A vertex is a normal Q-factorial projective variety of dimension at least three;
- Two vertices X and X' have an oriented edge X → X' iff X is the blowup of X' at a point or there is SQM between X and X'.

- There are infinitely many vertices above X.
- The connected component of the graph containing X coincides with its birational class. But contains varieties which are not necessarily smooth.

Let G be a directed graph such that

- A vertex is a normal Q-factorial projective variety of dimension at least three;
- Two vertices X and X' have an oriented edge X → X' iff X is the blowup of X' at a point or there is SQM between X and X'.

- There are infinitely many vertices above X.
- The connected component of the graph containing X coincides with its birational class. But contains varieties which are not necessarily smooth.
- Ooes G have an end-point?

22 / 30

Minimal Model Program in dimension 3

Theorem (Mori, 1988: MMP for 3-dimensional varieties)

Let X be a smooth projective 3-dimensional variety. Then, the graph of X has an endpoint X'.

• • • • • • • • • •

Minimal Model Program in dimension 3

Theorem (Mori, 1988: MMP for 3-dimensional varieties)

Let X be a smooth projective 3-dimensional variety. Then, the graph of X has an endpoint X'. Moreover, X' is such that either

- \bigcirc X' is Fano or is a del Pezzo fibration or a conic bundle.
- \bigcirc $K_{X'}$ is nef.

• • • • • • • • • • •

Minimal Model Program in dimension 3

Theorem (Mori, 1988: MMP for 3-dimensional varieties)

Let X be a smooth projective 3-dimensional variety. Then, the graph of X has an endpoint X'. Moreover, X' is such that either

- X' is Fano or is a del Pezzo fibration or a conic bundle.
- $I K_{X'} is nef.$

Question

The first case happens if X is a *uniruled* variety. If G has more than one end-point, then how are these related?

23 / 30

• • • • • • • • • • •

Birational Rigidity

Let X be an endpoint of running the MMP for a uniruled variety.

2

メロト メロト メヨト メヨト

Let X be an endpoint of running the MMP for a uniruled variety.

Definition

Let G be the connected graph representing the birational class of X. We say that X is **birationally rigid** if X is the only endpoint of G.

< ロ > < 回 > < 回 > < 回 > < 回 >

Let X be an endpoint of running the MMP for a uniruled variety.

Definition

Let *G* be the connected graph representing the birational class of *X*. We say that *X* is **birationally rigid** if *X* is the only endpoint of *G*. More contretely, let *X* be a normal \mathbb{Q} -factorial Fano variety of Picard rank 1 with at most terminal singularities. Let $\varphi: X \dashrightarrow Y$ be a birational map to a Fano fibration. We say that *X* is **birationally rigid** if *X* and *Y* are biregular.

イロト イポト イヨト イヨト

Let X be an endpoint of running the MMP for a uniruled variety.

Definition

Let *G* be the connected graph representing the birational class of *X*. We say that *X* is **birationally rigid** if *X* is the only endpoint of *G*. More contretely, let *X* be a normal \mathbb{Q} -factorial Fano variety of Picard rank 1 with at most terminal singularities. Let $\varphi: X \dashrightarrow Y$ be a birational map to a Fano fibration. We say that *X* is **birationally rigid** if *X* and *Y* are biregular.

Theorem (Iskovskikh-Manin, '71 - Corti, '95)

A smooth quartic threefold $X_4 \subset \mathbb{P}^4$ is birationally rigid.

In particular, X_4 is *non*-rational.

24 / 30

イロト イヨト イヨト イヨト

Birational Rigidity

Theorem (Corti-Mella, '04)

Let $X_4 \subset \mathbb{P}^4$ be a quartic threefold with a singularity $\mathbf{p} \in X_4$ analytically equivalent to $(xy + z^3 + t^3 = 0)$, but otherwise general. Then, the only Fano fibration birational but non-biregular to X_4 is a quasismooth complete intersection $Y_{3,4} \subset \mathbb{P}(1,1,1,1,2,2)$.

In particular, X_4 is bi-rigid and *non*-rational

э

イロト 不得 トイヨト イヨト

Birational Rigidity

Theorem (Corti-Mella, '04)

Let $X_4 \subset \mathbb{P}^4$ be a quartic threefold with a singularity $\mathbf{p} \in X_4$ analytically equivalent to $(xy + z^3 + t^3 = 0)$, but otherwise general. Then, the only Fano fibration birational but non-biregular to X_4 is a quasismooth complete intersection $Y_{3,4} \subset \mathbb{P}(1,1,1,1,2,2)$.

In particular, X_4 is bi-rigid and *non*-rational even though it is not birationally rigid.

Theorem (DG, '22)

Let $X_4 \subset \mathbb{P}^4$ be a quartic threefold with three cA_2 singularities along a line $L \subset X_4$, but otherwise general. Then we have birational maps

25 / 30

イロト イヨト イヨト

Birational Rigidity

Let X be polarised by an ample divisor A for which $-K_X = \iota_X A$. Then we consider the multsection ring

$$R(X,A) = \bigoplus_{m \ge 0} H^0(X, \mathcal{O}_X(mA)).$$

A (minimal) choice of generators for R(X, A) determines an embedding into some weighted projective space

 $X \hookrightarrow \mathbb{P}.$

2

26 / 30

イロト イヨト イヨト イヨト

Birational Rigidity

Let X be polarised by an ample divisor A for which $-K_X = \iota_X A$. Then we consider the multsection ring

$$R(X,A) = \bigoplus_{m \ge 0} H^0(X, \mathcal{O}_X(mA)).$$

A (minimal) choice of generators for R(X, A) determines an embedding into some weighted projective space

 $X \hookrightarrow \mathbb{P}.$

Theorem ((Cheltsov-Park '14), (Abban-Cheltsov-Park '20), (Okada - '14-21), (DG - '22))

Let $X \hookrightarrow \mathbb{P}$ be a terminal Q-factorial complete intersection Fano threefold with at most cyclic quotient singularities. Then $\operatorname{codim}_{\mathbb{P}} X \leq 3$, and

- If $\operatorname{codim}_{\mathbb{P}} X = 1$, then X is birationally rigid iff X is one of 95 families.
- If $\operatorname{codim}_{\mathbb{P}} X = 2$, then X is birationally rigid iff X is one of 19 families.
- If $\operatorname{codim}_{\mathbb{P}} X = 3$, then X is is the complete intersection of three quadrics and is not birationally rigid.

イロト 不得 トイヨト イヨト

3

Cones and Birational Geometry

To a smooth projective variety one can associate cones of (equivalence classes of) divisors in

$$N^1(X) = Div(X)/\equiv.$$

We have the inclusions

$$\operatorname{Amp}(X) \subset \operatorname{Nef}(X) \subset \overline{\operatorname{Mov}}(X) \subset \overline{\operatorname{Eff}}(X)$$

2

イロト イロト イヨト イヨト

Cones and Birational Geometry

To a smooth projective variety one can associate cones of (equivalence classes of) divisors in

$$\mathsf{N}^1(X)=\mathsf{Div}(X)/{\equiv}.$$

We have the inclusions

$$\operatorname{Amp}(X)\subset\operatorname{Nef}(X)\subset\overline{\operatorname{Mov}}(X)\subset\overline{\operatorname{Eff}}(X)$$

Example

Tiago Duarte Guerreiro (Uni of Essex)

Mori: The contractions of a smooth projective variety are controlled by (the dual of) its Nef Cone.

Definition (Mori Dream Space)

Let X be a normal projective \mathbb{Q} -factorial variety. We say X is a Mori Dream Space if

- $\operatorname{Pic}(X)_{\mathbb{Q}} = N^1(X)$
- Nef(X) is the affine hull of finitely many semi-ample line bundles.
- There is a finite collection of SQMs f_i: X → X_i such that each X_i satisfies the above and Mov(X) = ⋃_i f_i^{*} (Nef(X_i)).

Theorem (Hu-Keel, '00)

MMP holds for any Mori Dream Space. Moreover, the chambers $f_i^*(Nef(X_i))$ and their faces give a fan supported in Mov(X) and the cones in the fan are in one-to-one correspondence with contractions.

3

28 / 30

イロト 不得 トイヨト イヨト

Cones and Birational Geometry

Example

Let X_4 be the quartic threefold containing a line L and $3 \times cA_2$ singular points on it. Let H be (the pull-back of) a hyperplane section and E the exceptional divisor resulting from blowing up L. Then,

Cones and Birational Geometry

Example

Let X_4 be the quartic threefold containing a line L and $3 \times cA_2$ singular points on it. Let H be (the pull-back of) a hyperplane section and E the exceptional divisor resulting from blowing up L. Then,

The Sarkisov Program

Question

How are end products of applying MMP to uniruled varieties related?

Tiago Duarte Guerreiro (Uni of Essex)

Geometry of Fano threefolds

March 2, 2023

< □ > < □ > < □ > < □ > < □ >

30/30

2

The Sarkisov Program

Question

How are end products of applying MMP to uniruled varieties related?

Theorem (Corti, '95 and Hacon-McKernan, '13)

Let X_1 and X_2 be birational Fano fibrations with normal \mathbb{Q} -factorial terminal singularities. Then there is a finite sequence of Sarkisov links connecting them.

イロト イヨト イヨト