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Executive summary of Geer’s talk

Reshetikhin–Turaev: a modular tensor category defines a 3d TFT

MTCs have the following properties:

1 semisimple
2 finite (finitely many simple objects up to isomorphism)
3 simple objects have non-zero dimension
4 non-degenerate (modularity condition).

BCGP, De Renzi: A relative MTC defines a 3d decorated TFT

Relative MTCs weaken 1 , 2 , 3 and modify 4 .
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Today’s goals

1 New examples of relative modular tensor categories

Representation categories of a non-standard quantization of the
complex Lie superalgebra glp1|1q

Generic/root of unity dichotomy of quantization parameter leads to
two classes of examples

2 Realization of known physical models via the associated TFT

Rozansky–Saleur: Up1|1q Wess–Zumino–Witten theory

Mikhaylov, Mikhaylov–Witten: Supergroup Chern–Simons theories
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Compact Chern–Simons theory I (Witten)

Three dimensional quantum gauge theory defined by

compact simple simply connected Lie group G , the gauge group

k P H4pBG ;Zq » Z, the level.

Formally, invariants of 3-manifolds are

ZpMq „
ż

Ω1pM;gq{C8pM;Gq
e
?
´1kCSpAqDA.

Invariants of coloured knots arise from Wilson operators

xKV y „

ż

Ω1pM;gq{C8pM;Gq
HolK pA;V qe

?
´1kCSpAqDA.

When M “ S3, G “ SUp2q and V “ C2, this is the Jones
polynomial.
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Compact Chern–Simons theory II

Key feature (Witten): Computations in Chern–Simons theory can
be approached via its boundary Wess–Zumino–Witten theory.

This leads to connections with the representation theory of

(rational) vertex operator algebras,

loop groups,

affine Lie algebras.
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Chern–Simons via Reshetikhin–Turaev theory I

RT: 3d TFTs from modular tensor categories

Let

g be a simple complex Lie algebra

k P Z suitable integer.

The category
Uqpgq-mod, qk “ 1,

is neither semisimple nor finite and has simple objects with
vanishing quantum dimension and so is not modular.
However,

C “ semisimplified Uqpgq-mod

is a modular tensor category [Reshetikhin–Turaev, Andersen, ...].
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Chern–Simons via Reshetikhin–Turaev theory II

The associated Reshetikhin–Turaev TFT

ZC : Cob Ñ Vect

models Chern–Simons theory with gauge group G at level k .

In particular, this defines invariants of

closed surfaces ZCpΣq P Vect and

closed 3-manifolds ZCpMq P C.

Physical perspective: C is the category of Wilson (line) operators
of Chern–Simons theory.
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Renormalized Reshetikhin–Turaev theory I

A relative modular category is a ribbon category C with a

1 compatible abelian group grading, C “
À

gPG Cg ,

2 monoidal action Z Ñ C0 of an abelian group Z ,

3 a non-zero modified trace on the ideal of projectives

such that

Cg is semisimple unless g P X for some small subset X Ă G
each Cg , g P GzX , has finitely many simples modulo Z

non-degeneracy: there exists ζ P Cˆ such that

, g ,hPGzX
Vi ,VjPCg

¨ ¨ ¨ .
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Renormalized Reshetikhin–Turaev theory II

Theorem (Blanchet–Costantino–Geer–Patureau-Mirand, De Renzi)

A relative modular category C defines a 3d decorated TFT

ZC : Cobad
C Ñ VectZ-gr.

In particular, ZC encodes

invariants of decorated surfaces pΣ, ω P H1pΣ;Gqq,
invariants of admissible 3-manifolds pM,T , ω P H1pMzT ;Gqq

the C-coloured ribbon graph T has a projective colour, or
ω is generic: ωpγq P GzX for some simple closed curve γ Ă M.

Question: Is there a physical realization of ZC?
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TFT from QFT I

TFTs appearing in supersymmetric QFT often arise as topological
twists

Chern–Simons theory with gauge supergroup

Rozansky–Witten theory of a holomorphic symplectic manifold
(intuition: fermionic counterpart of compact Chern–Simons theory)

Resulting categories of line operators are naturally differential
graded, usually non-semisimple.

Expectation: TFTs arising from topological twists of physical
QFTs are differential graded.
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TFT from QFT II

If the physical QFT has global symmetry group G, then the theory
can be coupled to background flat G-connections.

Expectation: The category of line operators decomposes as

C “
à

gPG
Cg .
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TFT from QFT III

Earlier results:

QFT for unrolled quantum slp2q

BCGP: relative MTC of representations of unrolled quantum slp2q,
many computations in resulting TFT

Creutzig–Dimofte–Garner–Geer: computations in A-type topological
twist of N “ 4 Chern–Simons-matter theory with gauge group
SUp2q match BCGP

Gukov–Hsin–Nakajima–Park–Pei: computations in equivariant
Rozansky–Witten theory match BCGP

Costantino–Gukov–Putrov: Ẑ -invariants as expansions of CGP
invariants

Quantum topology of glp1|1q

Alexander polynomial: Kauffman–Saleur, Frohman–Nicas, Kerler,
Viro, . . .

Heegaard–Floer theory: Manion–Rouquier, Manion
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The unrolled quantum group UE
q pglp1|1qq I

The complex Lie superalgebra glp1|1q “ EndCpC1|1q has
homogeneous basis

E “

ˆ

1 0
0 1

˙

, G “

ˆ

1 0
0 0

˙

, X “

ˆ

0 1
0 0

˙

, Y “

ˆ

0 0
1 0

˙

.

The defining relations are that E is central and

rG ,X s “ X , rG ,Y s “ ´Y ,

rX ,X s “ 0, rY ,Y s “ 0,

rX ,Y s “ E .
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The unrolled quantum group UE
q pglp1|1qq II

Fix ~ P C such that q :“ e~ P Cˆzt˘1u.

Definition

The unrolled quantum group UE
q pglp1|1qq is the superalgebra

generated by E ,G ,K˘1 and X ,Y such that E ,K˘1 are central and

KK´1 “ K´1K “ 1,

rG ,X s “ X , rG ,Y s “ ´Y ,

X 2 “ Y 2 “ 0,

XY ` YX “
K ´ K´1

q ´ q´1
.

There is a natural Hopf structure on UE
q pglp1|1qq.
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Integral weight modules I

A UE
q pglp1|1qq-module is called integral weight if

E and G are simultaneously diagonalizable,

G has integral weights and

K “ qE as operators.

The category Dq,int of integral weight modules is rigid monoidal.

One dimensional simples: pn, b, p̄q P Zˆ Zˆ Z2

εp
nπ
?
´1

~
, bqp̄ “ v

b

nπ
?
´1

~
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Integral weight modules II

Quantum Kac modules: pα, a, p̄q P Cˆ Zˆ Z2

V pα, aqp̄ “ v 1 v

X“rαsq
a´1

α

a

Y α

Then

V pα, aqp̄ is simple ô rαsq ‰ 0 ô α R π
?
´1
~ Z.

If α “ nπ
?
´1

~ , then V pα, aqp̄ is reducible indecomposable.

Matthew B. Young Chern–Simons theory



Integral weight modules III

Projective indecomposables: pn, b, p̄q P Zˆ Zˆ Z2

Pp
nπ
?
´1

~
, bqp̄ “

v`

v 1 v

v´

Y“´1

b`1

X

Y

b
b

X
b´1

, E “
nπ
?
´1

~
.
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Relative modular structures I

Theorem (Geer-Y.)

Dq,int admits two classes of relative modular structures

q is arbitrary

q is a primitive r th root of unity (say, odd)

G “ C{Z via E -weights
X “ 1

2Z{Z
Z “ Zˆ Zˆ Z2 Q pn, a, p̄q ÞÑ εp nπ

?
´1

~ , aqp̄.

Ingredients of proof:

Prove generic semisimplicity via injectivity of simple Kac modules

Use Viro’s explicit R-matrix as braiding

Verify generic coherence of candidate twist, then complete

Explicit description of projective indecomposables to establish
existence of a modified trace
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Relative modular structures II

Theorem (Geer-Y.)

If qr “ 1, then Dq,int admits a relative modular structure with

G “ C{Z via E -weights

X “ 1
2Z{Z

Z “ Zˆ Zˆ Z2 Q pn, a, p̄q ÞÑ εpnπ
?
´1

~ , aqp̄.
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Relation to supergroup Chern–Simons theories

Proposal (Geer-Y.)

The 3d TFT associated to Dq,int is a homological truncation of
1 pslp1|1q Chern–Simons if q is arbitrary

Rozansky–Witten theory of T_C
B-twist of a 3d N “ 4 free hypermultiplet

2 Up1|1q Chern–Simons theory at level r if qr “ 1

Up1q ˆ Up1q-equivariant Rozansky–Witten theory of T_C.
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Evidence

Evidence for the proposal by comparison with physics literature:

Rozansky–Saleur: GLp1|1q Wess–Zumino–Witten theory and
assumed Chern–Simons/WZW correspondence

Mikhaylov, Mikhaylov–Witten: Supergroup Chern–Simons theory
via geometric quantization and brane constructions

Kapustin–Saulina: Up1q ˆ Up1q-equivariant Rozansky–Witten
theory of T_C

Aghaei–Gainutdinov–Pawelkiewicz–Schomerus: Combinatorial
quantization in genus one via the small quantum group of glp1|1q
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Evidence I: Global symmetries
Cˆ » G acts as symmetries of pslp1|1q and glp1|1q, e.g.

glp1|1q´1 “ C ¨ Y , glp1|1q0 “ C ¨ G ‘ C ¨ E , glp1|1q`1 “ C ¨ X

Up1|1q Chern–Simons theory admits Wilson operators labelled by
Up1|1q representations

pslp1|1q Chern–Simons theory admits

Wilson operators labelled by pglp1|1q representations
monodromy operators

Henceforth: qr “ 1, r odd.
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Evidence II: Verlinde formula

Theorem (Geer-Y.)

Let Σg be a generic surface of genus g ě 1. Then

ZpΣg ˆ S1
β̄
q “ p´1qg`1r2g´1

r´1
ÿ

i“0

pqβ̄`i ´ q´β̄´i q2g´2.

Generating function of graded dimensions:

dimpt1,t2,sqZpΣg q “
ÿ

pn,n1,p̄qPZ

p´1qp̄ dimCZpn,n1,p̄qpΣg qt
n
1 t

n1
2 s p̄.

Corollary (Verlinde formula)

ZpΣg ˆ S1
β̄
q “ dim

p1,q´2r β̄ ,1qZpΣg q.
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Evidence III: Dimensions of state spaces

Theorem (Geer-Y.)

Let Σg be a generic surface of genus g ě 1. Then

ZpΣg q “
à

kPr´pg´1q,g´1sXrZ
Z
p0,k,kqpΣg q

with

dimCZ
p0,k,kqpΣg q “ r2g

ˆ

2g ´ 2

g ´ 1´ |k |

˙

.
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Evidence IV: Mapping class group actions

Theorem (Geer-Y.)

Let Σ1 be a non-generic surface of genus one. Then

ZpΣg q » Z0pΣg q » Cr2`1

and the mapping class group action is such that Dehn twists act
with infinite order.
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Thank you!
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