$U_q(\mathfrak{gl}(1|1))$ and U(1|1) Chern–Simons theory

Matthew B. Young

Utah State University

TQFT Club, IST Lisbon Mar. 1, 2023

Joint work with Nathan Geer arXiv:2210.04286

A (10) > (10)

Reshetikhin-Turaev: a modular tensor category defines a 3d TFT

MTCs have the following properties:

- semisimple
- Inite (finitely many simple objects up to isomorphism)
- simple objects have non-zero dimension
- Inon-degenerate (modularity condition).

BCGP, De Renzi: A relative MTC defines a 3d decorated TFT

Relative MTCs weaken 1, 2, 3 and modify 4.

New examples of relative modular tensor categories

- \bullet Representation categories of a non-standard quantization of the complex Lie superalgebra $\mathfrak{gl}(1|1)$
- Generic/root of unity dichotomy of quantization parameter leads to two classes of examples
- ② Realization of known physical models via the associated TFT
 - Rozansky–Saleur: U(1|1) Wess–Zumino–Witten theory
 - Mikhaylov, Mikhaylov-Witten: Supergroup Chern-Simons theories

Compact Chern–Simons theory I (Witten)

Three dimensional quantum gauge theory defined by

- compact simple simply connected Lie group G, the gauge group
- $k \in H^4(BG; \mathbb{Z}) \simeq \mathbb{Z}$, the *level*.

Formally, invariants of 3-manifolds are

$$\mathcal{Z}(M) \sim \int_{\Omega^1(M;\mathfrak{g})/C^\infty(M;G)} e^{\sqrt{-1}kCS(A)} \mathcal{D}A.$$

Invariants of coloured knots arise from Wilson operators

$$\langle K_V \rangle \sim \int_{\Omega^1(M;\mathfrak{g})/C^\infty(M;G)} Hol_K(A;V) e^{\sqrt{-1}kCS(A)} \mathcal{D}A.$$

When $M = S^3$, G = SU(2) and $V = \mathbb{C}^2$, this is the Jones polynomial.

Key feature (Witten): Computations in Chern–Simons theory can be approached via its boundary Wess–Zumino–Witten theory.

This leads to connections with the representation theory of

- (rational) vertex operator algebras,
- loop groups,
- affine Lie algebras.

Chern-Simons via Reshetikhin-Turaev theory I

RT: 3d TFTs from modular tensor categories

Let

- $\bullet \ \mathfrak{g}$ be a simple complex Lie algebra
- $k \in \mathbb{Z}$ suitable integer.

The category

$$U_q(\mathfrak{g})$$
-mod, $q^k = 1$,

is neither semisimple nor finite and has simple objects with vanishing quantum dimension and so is not modular. However,

 $\mathcal{C} = \text{semisimplified } U_q(\mathfrak{g}) \text{-mod}$

is a modular tensor category [Reshetikhin-Turaev, Andersen, ...].

Chern-Simons via Reshetikhin-Turaev theory II

The associated Reshetikhin-Turaev TFT

 $\mathcal{Z}_{\mathcal{C}}:\mathsf{Cob}\to\mathsf{Vect}$

models Chern–Simons theory with gauge group G at level \overline{k} .

In particular, this defines invariants of

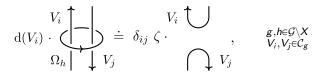
- \bullet closed surfaces $\mathcal{Z}_{\mathcal{C}}(\Sigma) \in \mathsf{Vect}$ and
- closed 3-manifolds $\mathcal{Z}_{\mathcal{C}}(M) \in \mathbb{C}$.

Physical perspective: C is the category of Wilson (line) operators of Chern–Simons theory.

Renormalized Reshetikhin-Turaev theory I

- A relative modular category is a ribbon category ${\mathcal C}$ with a
- ${\rm \textcircled{O}}$ compatible abelian group grading, $\mathcal{C}=\bigoplus_{g\in\mathcal{G}}\mathcal{C}_g$,
- 2 monoidal action $Z \rightarrow C_0$ of an abelian group Z,
- a non-zero modified trace on the ideal of projectives such that
 - $\bullet \ \mathcal{C}_g$ is semisimple unless $g \in X$ for some small subset $X \subset \mathcal{G}$
 - each \mathcal{C}_g , $g \in \mathcal{G} ackslash X$, has finitely many simples modulo Z
 - non-degeneracy: there exists $\zeta \in \mathbb{C}^{\times}$ such that

o · · · .



回 ト イヨ ト イヨ ト 二 ヨ

Theorem (Blanchet–Costantino–Geer–Patureau-Mirand, De Renzi)

A relative modular category ${\mathcal C}$ defines a 3d decorated TFT

 $\mathcal{Z}_{\mathcal{C}}:\mathsf{Cob}_{\mathcal{C}}^{\mathsf{ad}}\to\mathsf{Vect}^{\mathsf{Z}\text{-}\mathsf{gr}}.$

In particular, $\mathcal{Z}_{\mathcal{C}}$ encodes

- invariants of decorated surfaces $(\Sigma, \omega \in H^1(\Sigma; \mathcal{G}))$,
- invariants of *admissible* 3-manifolds $(M, T, \omega \in H^1(M \setminus T; \mathcal{G}))$
 - $\bullet\,$ the $\mathcal C\text{-coloured}$ ribbon graph $\mathcal T$ has a projective colour, or
 - ω is generic: $\omega(\gamma) \in \mathcal{G} \setminus X$ for some simple closed curve $\gamma \subset M$.

Question: Is there a physical realization of $\mathcal{Z}_{\mathcal{C}}$?

TFTs appearing in supersymmetric QFT often arise as topological twists

- Chern-Simons theory with gauge supergroup
- Rozansky–Witten theory of a holomorphic symplectic manifold (intuition: fermionic counterpart of compact Chern–Simons theory)

Resulting categories of line operators are naturally differential graded, usually non-semisimple.

Expectation: TFTs arising from topological twists of physical QFTs are differential graded.

TFT from QFT II

If the physical QFT has global symmetry group \mathcal{G} , then the theory can be coupled to background flat \mathcal{G} -connections.

Expectation: The category of line operators decomposes as

$$\mathcal{C} = \bigoplus_{g \in \mathcal{G}} \mathcal{C}_g.$$

TFT from QFT III

Earlier results:

- \bullet QFT for unrolled quantum $\mathfrak{sl}(2)$
 - BCGP: relative MTC of representations of unrolled quantum $\mathfrak{sl}(2),$ many computations in resulting TFT
 - Creutzig–Dimofte–Garner–Geer: computations in A-type topological twist of $\mathcal{N}=4$ Chern–Simons-matter theory with gauge group SU(2) match BCGP
 - Gukov-Hsin-Nakajima-Park-Pei: computations in equivariant Rozansky-Witten theory match BCGP
 - Costantino–Gukov–Putrov: $\hat{Z}\text{-invariants}$ as expansions of CGP invariants
- Quantum topology of $\mathfrak{gl}(1|1)$
 - Alexander polynomial: Kauffman–Saleur, Frohman–Nicas, Kerler, Viro, . . .
 - Heegaard–Floer theory: Manion–Rouquier, Manion

▲ □ ▶ ▲ □ ▶ ▲ □ ▶

Ξ

San

The unrolled quantum group $U_q^{\mathcal{E}}(\mathfrak{gl}(1|1))$ |

The complex Lie superalgebra $\mathfrak{gl}(1|1)=\mathsf{End}_{\mathbb{C}}(\mathbb{C}^{1|1})$ has homogeneous basis

$$E = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}, \quad G = \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}, \quad X = \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}, \quad Y = \begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix}.$$

The defining relations are that E is central and

$$[G, X] = X,$$
 $[G, Y] = -Y,$
 $[X, X] = 0,$ $[Y, Y] = 0,$
 $[X, Y] = E.$

The unrolled quantum group $U_q^{\mathsf{E}}(\mathfrak{gl}(1|1))$ II

Fix $\hbar \in \mathbb{C}$ such that $q := e^{\hbar} \in \mathbb{C}^{\times} \setminus \{\pm 1\}.$

Definition

The unrolled quantum group $U_q^E(\mathfrak{gl}(1|1))$ is the superalgebra generated by $E, G, K^{\pm 1}$ and X, Y such that $E, K^{\pm 1}$ are central and

$$KK^{-1} = K^{-1}K = 1,$$

$$[G, X] = X,$$
 $[G, Y] = -Y,$
 $X^2 = Y^2 = 0,$
 $XY + YX = \frac{K - K^{-1}}{q - q^{-1}}.$

There is a natural Hopf structure on $U_q^E(\mathfrak{gl}(1|1))$.

Integral weight modules I

A $U_q^E(\mathfrak{gl}(1|1))$ -module is called *integral weight* if

- E and G are simultaneously diagonalizable,
- G has integral weights and
- $K = q^E$ as operators.

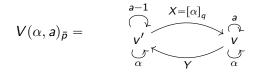
The category $\mathcal{D}^{q,\text{int}}$ of integral weight modules is rigid monoidal.

One dimensional simples: $(n, b, \overline{p}) \in \mathbb{Z} \times \mathbb{Z} \times \mathbb{Z}_2$

$$\epsilon(\frac{n\pi\sqrt{-1}}{\hbar},b)_{\bar{p}} = \bigvee_{\substack{0 \\ \downarrow \\ \frac{n\pi\sqrt{-1}}{\hbar}}}^{b}$$

Integral weight modules II

Quantum Kac modules: $(\alpha, a, \bar{p}) \in \mathbb{C} \times \mathbb{Z} \times \mathbb{Z}_2$

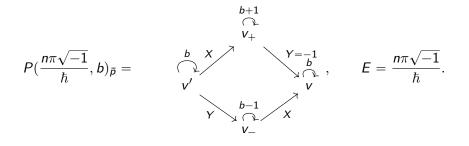


Then

- $V(\alpha, a)_{\bar{p}}$ is simple $\Leftrightarrow [\alpha]_q \neq 0 \Leftrightarrow \alpha \notin \frac{\pi \sqrt{-1}}{\hbar} \mathbb{Z}$.
- If $\alpha = \frac{n\pi\sqrt{-1}}{\hbar}$, then $V(\alpha, a)_{\bar{p}}$ is reducible indecomposable.

Integral weight modules III

Projective indecomposables: $(n, b, \bar{p}) \in \mathbb{Z} \times \mathbb{Z} \times \mathbb{Z}_2$



臣

Theorem (Geer-Y.)

 $\mathcal{D}^{q, \mathsf{int}}$ admits two classes of relative modular structures

- q is arbitrary
- q is a primitive rth root of unity (say, odd)
 - $\mathcal{G} = \mathbb{C}/\mathbb{Z}$ via *E*-weights

•
$$X = \frac{1}{2}\mathbb{Z}/\mathbb{Z}$$

•
$$Z = \mathbb{Z} \times \mathbb{Z} \times \mathbb{Z}_2 \ni (n, a, \bar{p}) \mapsto \epsilon(\frac{n\pi\sqrt{-1}}{\hbar}, a)_{\bar{p}}.$$

Ingredients of proof:

- Prove generic semisimplicity via injectivity of simple Kac modules
- Use Viro's explicit *R*-matrix as braiding
- Verify generic coherence of candidate twist, then complete
- Explicit description of projective indecomposables to establish existence of a modified trace

Theorem (Geer-Y.)

If $q^r=1$, then $\mathcal{D}^{q,\text{int}}$ admits a relative modular structure with

- $\mathcal{G} = \mathbb{C}/\mathbb{Z}$ via *E*-weights
- $X = \frac{1}{2}\mathbb{Z}/\mathbb{Z}$
- $Z = \mathbb{Z} \times \mathbb{Z} \times \mathbb{Z}_2 \ni (n, a, \bar{p}) \mapsto \epsilon(\frac{n\pi\sqrt{-1}}{\hbar}, a)_{\bar{p}}.$

Relation to supergroup Chern–Simons theories

Proposal (Geer-Y.)

The 3d TFT associated to $\mathcal{D}^{q,\text{int}}$ is a homological truncation of

• $\mathfrak{psl}(1|1)$ Chern–Simons if q is arbitrary

- Rozansky–Witten theory of $T^{\,\vee}\mathbb{C}$
- B-twist of a 3d $\mathcal{N} = 4$ free hypermultiplet

2 U(1|1) Chern–Simons theory at level r if $q^r = 1$

• $U(1) \times U(1)$ -equivariant Rozansky–Witten theory of $T^{\vee}\mathbb{C}$.

Evidence for the proposal by comparison with physics literature:

- Rozansky–Saleur: *GL*(1|1) Wess–Zumino–Witten theory and assumed Chern–Simons/WZW correspondence
- Mikhaylov, Mikhaylov–Witten: Supergroup Chern–Simons theory via geometric quantization and brane constructions
- Kapustin–Saulina: $U(1)\times U(1)$ -equivariant Rozansky–Witten theory of $\mathcal{T}^{\,\vee\,}\mathbb{C}$
- Aghaei–Gainutdinov–Pawelkiewicz–Schomerus: Combinatorial quantization in genus one via the small quantum group of $\mathfrak{gl}(1|1)$

Evidence I: Global symmetries

 $\bullet~\mathbb{C}^{\times}\simeq \mathcal{G}$ acts as symmetries of $\mathfrak{psl}(1|1)$ and $\mathfrak{gl}(1|1),$ e.g.

 $\mathfrak{gl}(1|1)_{-1} = \mathbb{C} \cdot Y, \quad \mathfrak{gl}(1|1)_0 = \mathbb{C} \cdot G \oplus \mathbb{C} \cdot E, \quad \mathfrak{gl}(1|1)_{+1} = \mathbb{C} \cdot X$

- U(1|1) Chern–Simons theory admits Wilson operators labelled by U(1|1) representations
- $\mathfrak{psl}(1|1)$ Chern–Simons theory admits
 - \bullet Wilson operators labelled by $\mathfrak{pgl}(1|1)$ representations
 - monodromy operators

Henceforth:
$$q^r = 1$$
, r odd.

・ロト ・回ト ・ヨト ・ヨト

E

Evidence II: Verlinde formula

Theorem (Geer-Y.)

Let Σ_g be a generic surface of genus $g \ge 1$. Then

$$\mathcal{Z}(\Sigma_{g} \times S^{1}_{\bar{\beta}}) = (-1)^{g+1} r^{2g-1} \sum_{i=0}^{r-1} (q^{\bar{\beta}+i} - q^{-\bar{\beta}-i})^{2g-2}.$$

Generating function of graded dimensions:

$$\dim_{(t_1,t_2,s)} \mathcal{Z}(\Sigma_g) = \sum_{(n,n',\bar{p})\in \mathbb{Z}} (-1)^{\bar{p}} \dim_{\mathbb{C}} \mathcal{Z}_{(n,n',\bar{p})}(\Sigma_g) t_1^n t_2^{n'} s^{\bar{p}}.$$

Corollary (Verlinde formula)

$$\mathcal{Z}(\Sigma_{g} \times S^{1}_{\bar{\beta}}) = \dim_{(1,q^{-2r\bar{\beta}},1)} \mathcal{Z}(\Sigma_{g}).$$

イロト イヨト イヨト イヨト

Э

Evidence III: Dimensions of state spaces

Theorem (Geer-Y.)

Let Σ_g be a generic surface of genus $g \ge 1$. Then

$$\mathcal{Z}(\Sigma_g) = \bigoplus_{k \in [-(g-1),g-1] \cap r\mathbb{Z}} \mathcal{Z}_{(0,k,\overline{k})}(\Sigma_g)$$

with

$$\dim_{\mathbb{C}} \mathcal{Z}_{(0,k,\overline{k})}(\Sigma_g) = r^{2g} \binom{2g-2}{g-1-|k|}.$$

同ト・モト・モー

Evidence IV: Mapping class group actions

Theorem (Geer-Y.)

Let Σ_1 be a *non-generic surface* of genus one. Then

$$\mathcal{Z}(\Sigma_g)\simeq \mathcal{Z}_0(\Sigma_g)\simeq \mathbb{C}^{r^2+1}$$

and the mapping class group action is such that Dehn twists act with infinite order.

Thank you!

590

E

▲ロ > ▲ □ > ▲ □ > ▲ □ > .