Future stability of models of the universe

Hans Ringström KTH Royal Institute of Technology

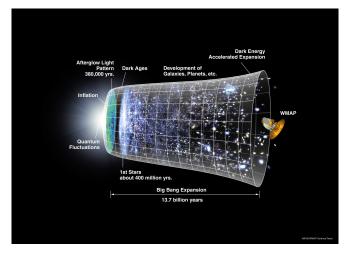
Instituto Superior Técnico, Lisbon, June 17, 2013

Introduction

The standard models of the universe

- satisfy the cosmological principle (i.e., they are spatially homogeneous and isotropic),
- are spatially flat,
- have matter content consisting of ordinary matter, dark matter and dark energy.

Current model of the universe



Questions

Since the universe is not exactly spatially homogeneous and isotropic, it is natural to ask: **are the standard models future stable?**

Since the assumption of spatial homogeneity and isotropy yields strong restrictions on the allowed topologies, it is also of interest to ask: what are the restrictions on the global topology of the universe imposed by the constraint that what we observe seems to be close to a standard model?

Matter models

Perfect fluids: Matter described by energy density ρ and pressure $\mathfrak{p}.$ Dust: $\mathfrak{p}=0.$ Radiation: $\mathfrak{p}=\rho/3.$

Vlasov matter: collection of particles, where

- the particles all have unit mass,
- collisions are neglected,
- the particles follow geodesics,
- collection described statistically by a distribution function.

Einstein's equations

Einstein's equations:

$$G + \Lambda g = T$$
,

where

- \blacktriangleright (M,g) is a Lorentz manifold,
- $G = \text{Ric} \frac{1}{2}Sg$ is the Einstein tensor,
- Λ is the cosmological constant,
- T is the stress energy tensor.

Vlasov matter, mathematical structures

In the Vlasov setting, the relevant mathematical structures are

- ▶ the mass shell P; the future directed unit timelike vectors in (M, g),
- ▶ the distribution function $f: P \to [0, \infty)$,
- the stress energy tensor

$$\left. T_{lphaeta} \right|_{\xi} = \int_{P_{\xi}} \mathit{fp}_{lpha} \mathit{p}_{eta} \mu_{P_{\xi}},$$

the Vlasov equation

$$\mathcal{L}f=0.$$

The Einstein-Vlasov system

The Einstein-Vlasov system consists of the equations

$$G + \Lambda g = T,$$

 $\mathcal{L}f = 0$

for g and f. Note that the second equation corresponds to the requirement that f be constant along timelike geodesics.

Standard models

Spatial homogeneity, isotropy and flatness imply that the metric takes the form

$$g=-dt^2+a^2(t)\bar{g}.$$

The stress energy tensor of the Vlasov matter then takes perfect fluid form, and the energy density and pressure are given by

$$ho_{\mathrm{Vl}}(t) = \int_{\mathbb{R}^3} \bar{\mathsf{f}} \left(\mathsf{a}(t) \bar{q} \right) (1 + |\bar{q}|^2)^{1/2} d\bar{q}, \ \mathfrak{p}_{\mathrm{Vl}}(t) = \frac{1}{3} \int_{\mathbb{R}^3} \bar{\mathsf{f}} \left(\mathsf{a}(t) \bar{q} \right) \frac{|\bar{q}|^2}{(1 + |\bar{q}|^2)^{1/2}} d\bar{q},$$

where \overline{f} , a function on \mathbb{R}^3 , is the initial datum for the distribution function.

Approximating fluids

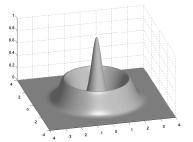


Figure: An illustration of an initial datum for the distribution function which is appropriate when approximating a standard model.

Induced initial data

Let (M, g, f) be a solution and Σ be a spacelike hypersurface in (M, g). Then the **initial data induced on** Σ consist of

- ▶ the Riemannian metric induced on Σ by g, say \bar{g} ,
- ▶ the second fundamental form induced on Σ by g, say \bar{k} ,
- ▶ the induced distribution function $\bar{f}: T\Sigma \to [0, \infty)$.

Here

$$\bar{f} = f \circ \operatorname{proj}_{\Sigma}^{-1},$$

where $\operatorname{proj}_{\Sigma}: P_{\Sigma} \to T\Sigma$ represents projection orthogonal to the normal.

Constraint equations

Due to the fact that (M, g, f) solve the Einstein-Vlasov system, $(\bar{g}, \bar{k}, \bar{f})$ have to solve the **constraint equations**:

$$\bar{r} - \bar{k}_{ij}\bar{k}^{ij} + (\operatorname{tr}\bar{k})^2 = 2\Lambda + 2\rho^{VI}, \tag{1}$$

$$\overline{\nabla}^{j} \bar{k}_{ji} - \overline{\nabla}_{i} (\operatorname{tr} \bar{k}) = -\bar{J}_{i}^{\text{Vl}}. \tag{2}$$

Here

$$\rho^{\mathrm{VI}}(\xi) = \int_{\mathcal{T}_{\varepsilon}\Sigma} \bar{f}(\bar{p})[1 + \bar{g}(\bar{p}, \bar{p})]^{1/2} \bar{\mu}_{\bar{g}, \xi}, \tag{3}$$

$$\bar{J}^{\text{Vl}}(\bar{X}) = \int_{\mathcal{T}_{\varepsilon}\Sigma} \bar{f}(\bar{p})\bar{g}(\bar{X},\bar{p})\bar{\mu}_{\bar{g},\xi}. \tag{4}$$

Abstract initial data

Abstract initial data consist of

- \triangleright an *n*-dimensional manifold Σ ,
- ightharpoonup a Riemannian metric \bar{g} on Σ,
- ▶ a symmetric covariant 2-tensor field \bar{k} on Σ ,
- ▶ a function $\bar{f}: T\Sigma \to [0, \infty)$ (belonging to a suitable function space),

all assumed to be smooth and such that the constraint equations (1) and (2) are satisified.

Developments

Given abstract initial data, a development is

- ightharpoonup a solution (M, g, f) to the Einstein-Vlasov system, and
- ▶ an embedding $i: \Sigma \to M$

such that the initial data induced on $i(\Sigma)$ by (M, g, f) correspond to the abstract initial data.

Maximal globally hyperbolic development

Definition

Given initial data, a maximal globally hyperbolic development of the data is a globally hyperbolic development (M,g,f), with embedding $i:\Sigma\to M$, such that if (M',g',f') is any other globally hyperbolic development of the same data, with embedding $i':\Sigma\to M'$, then there is a map $\psi:M'\to M$ which is a diffeomorphism onto its image such that $\psi^*g=g'$, $\psi^*f=f'$ and $\psi\circ i'=i$.

Function spaces

If Σ is a compact manifold, $\bar{\mathfrak{D}}_{\mu}^{\infty}(T\Sigma)$ denotes the space of smooth functions $f:T\Sigma\to\mathbb{R}$ such that

$$\|\bar{f}\|_{\mathcal{H}^{l}_{\mathrm{Vl},\mu}} = \left(\sum_{i=1}^{j} \sum_{|\alpha|+|\beta| \leq l} \int_{\bar{\mathsf{x}}_{i}(U_{i}) \times \mathbb{R}^{n}} \langle \bar{\varrho} \rangle^{2\mu+2|\beta|} \bar{\chi}_{i}(\bar{\xi}) (\partial_{\bar{\xi}}^{\alpha} \partial_{\bar{\varrho}}^{\beta} \bar{\mathsf{f}}_{\bar{\mathsf{x}}_{i}})^{2} (\bar{\xi}, \bar{\varrho}) d\bar{\xi} d\bar{\varrho}\right)^{1/2}$$

is finite for every $l \ge 0$, where

$$\langle \bar{\varrho} \rangle = (1 + |\bar{\varrho}|^2)^{1/2}.$$

Previous results

- ► Stability of de Sitter space in 3 + 1-dimensions, etc., Helmut Friedrich, '86, '91.
- Stability of even dimensional de Sitter spaces, Michael Anderson '05.
- Stability in the non-linear scalar field case, H.R. '08.
- Einstein-Euler with a positive cosmological constant, Igor Rodnianski and Jared Speck, preprint '09.

Bianchi initial data

Let

- ▶ *G* be a 3-dimensional Lie group,
- ▶ $5/2 < \mu \in \mathbb{R}$,
- ▶ \bar{g} and \bar{k} be a left invariant Riemannian metric and symmetric covariant 2–tensor field on G respectively,
- $ar{f} \in \bar{\mathfrak{D}}^\infty_\mu(TG)$ be left invariant and non-negative.

Then $(G, \bar{g}, \bar{k}, \bar{f})$ are referred to as **Bianchi initial data** for the Einstein–Vlasov system, assuming they satisfy the constraints.

Future stability of spatially locally homogeneous solutions

Let $(G, \bar{g}_{\rm bg}, \bar{k}_{\rm bg}, \bar{f}_{\rm bg})$ be Bianchi initial data for the Einstein–Vlasov system, where

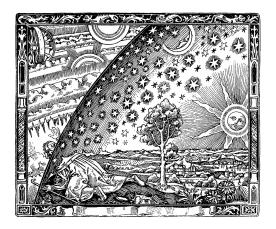
- ▶ the universal covering group of G is not isomorphic to SU(2),
- ightharpoonup tr $ar{k}_{
 m bg}=ar{g}_{
 m bg}^{ij}ar{k}_{{
 m bg},ij}>0.$

Assume that there is a cocompact subgroup Γ of the isometry group of the initial data. Let Σ be the compact quotient. Then there is an $\epsilon>0$ such that if $(\Sigma,\bar{g},\bar{k},\bar{f})$ are initial data satisfying

$$\|\bar{g} - \bar{g}_{\text{bg}}\|_{H^5} + \|\bar{k} - \bar{k}_{\text{bg}}\|_{H^4} + \|\bar{f} - \bar{f}_{\text{bg}}\|_{H^4_{\text{Vl},\mu}} \leq \epsilon,$$

then the maximal Cauchy development of $(\Sigma, \bar{g}, \bar{k}, \bar{f})$ is future causally geodesically complete.

What is the shape of the universe?



Minkowski space; non-silent causality

Let $\gamma(t)=(t,0,0,0)$. Then γ is an observer in Minkowski space. How much of the t=0 hypersurface does γ see?

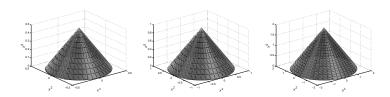


Figure: The causal past of $\gamma(t)$ intersected with the causal future of the t=0 hypersurface for t=1/2, t=1 and t=2.

de Sitter space; silent causality

Consider the metric

$$g=-dt^2+e^{2t}\bar{g}.$$

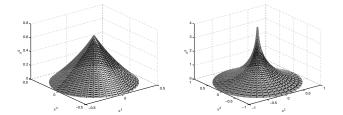


Figure: The causal past of $\gamma(t)$ intersected with the causal future of the t=0 hypersurface for t=1/2 and for all t.

Question, topology

Assume that

- the observational data indicate that, to our past, the universe is well approximated by one of the standard models,
- ▶ interpreting the data in this model, we only have information concerning the universe for $t \ge t_0$,
- there is a big bang,
- ▶ analogous statements apply to all observers in the universe (with the same t_0).

The question is then: what conclusions are we allowed to draw concerning the global spatial topology of the universe?

Ingredients

Assume we are given

- a standard model, characterised by an existence interval I, a scale factor a etc.,
- ▶ a $t_0 \in I$, which represents the time to the future of which we wish the approximation to be valid,
- ▶ an $I \in \mathbb{N}$, specifying the norm with respect to which we measure proximity to the standard model,
- ightharpoonup an $\epsilon > 0$, characterising the size of the distance,
- a closed 3-manifold Σ.

Construction

There is a solution (M, g, f) with the following properties:

- \blacktriangleright (M,g,f) is a maximal Cauchy development,
- ightharpoonup (M,g) is future causally geodesically complete,
- ▶ there is a Cauchy hypersurface, say \bar{S} , in (M,g), diffeomorphic to Σ ,
- given an observer γ in (M,g), there is a neighbourhood, say U, of

$$J^-(\gamma)\cap J^+(\bar{S})$$

such that the solution in U is ϵ -close to the standard model in a solid cylinder of the form $[t_0, \infty) \times \bar{B}_R(0)$,

- ▶ all timelike geodesics in (M, g) are past incomplete,
- the solution is stable with these properties.

Further reading...

