Generalisations To Infinity In Finitary 2-Representation Theory

James Macpherson

February 9, 2023

History

Categorification

- Basic ethos: create a 'higher level' *n*-category that encodes a structure of interest.
- Use the extra machinery of the *n*-category to derive new information about the lower level structure.
- First known example: [Kho00], categorified Jones polynomials (invariants in knot theory) as the Euler characteristics of complexes of modules (i.e. elements of some category).
- Problem: higher level structures are more complicated and harder to study.
- Solution: Representation Theory.

History

2-Representation Theory

- This leads to '2-Representation Theory' that is, the representation theory of 2-categories.
- Various authors have approached this in different ways:
 - Etingof–Ostrik: 2-representations of tensor categories.
 - Khovanov–Lauda and Rouquier: 2-representations in Lie theory.
 - Mazorchuk–Miemietz: finitary 2-representation theory.

History

Talk Structure

- I will first introduce finitary 2-categories and their 2-representations.
- A particular focus on 'external vs. internal' results.
- Second part of the talk will introduce wide finitary 2-categories.
- Include results regarding internal 2-representations in this setup.

Basic Definitions

Finitary Categories

- Basic idea: A finitary (2-)category is a (2-)category with a significant degree of additive/linear structure.
- Let \Bbbk be an algebraically closed field.
- Always working with strict 2-categories in this talk.
- Mostly drawn from initial papers by Mazorchuk-Miemietz.

Definition

A finitary category is an additive $\Bbbk\mbox{-linear}$ idempotent complete category with:

- finitely many isomorphism classes of indecomposable objects;
- finite dimensional hom-spaces.
- We denote the 2-category of finitary categories, additive k-linear functors and natural transformations by
 ^f_k.

Basic Definitions

Basic Example

Consider the category $\operatorname{Rep}_{\Bbbk}^{\operatorname{fd}}(G)$ of finite dimensional representations of a finite group G over \Bbbk .

- A module category over the group algebra, so additive and k-linear.
- Schur's Lemma shows that the category is idempotent complete.
- Up to isomorphism, set of irreducible (i.e. indecomposable) representations in bijection with conjugacy classes of G, and so finitely many isoclasses of indecomposable objects.
- Hom-spaces between finite dimensional vector spaces are finite dimensional.

-Finitary 2-Representation Theory

Basic Definitions

Finitary 2-Categories

Definition

A *finitary 2-category* is a 2-category \mathscr{C} with finitely many objects such that:

- For any two objects i, j of \mathscr{C} , $\mathscr{C}(i, j)$ is a finitary category.
- Horizontal composition is biadditive and k-linear.
- For each object i, the identity 1-morphism 1ⁱ is indecomposable.

Basic Definitions

Internal Adjunctions

• Often desire extra structure for finitary 2-categories.

Definition

A finitary 2-category \mathscr{C} is a *quasi-fiat* 2-category if it has internal adjoints. More formally, for each 1-morphism $F: i \to j$ of \mathscr{C} there is a 1-morphism $F^*: j \to i$ along with 2-morphisms $\epsilon: FF^* \to \mathbb{1}_j$ and $\eta: \mathbb{1}_i \to F^*F$ which obey certain axioms.

• ϵ and η follow the standard axioms for an adjunction.

Definition

A quasi-fiat 2-category \mathscr{C} is *fiat* if $F^{**} \cong F$ for any 1-morphism F.

-2-Representations

2-Representations

- What are our analogues of vector spaces in classical representation theory?
- Answer: Finitary or abelian 2-representations.
- Let Ab_k denote the 2-category of k-linear abelian categories, k-linear additive functors and natural transformations.

Definition

Let \mathscr{C} be a finitary 2-category.

- A finitary 2-representation of \mathscr{C} is a strict 2-functor $\mathbf{M}: \mathscr{C} \to \mathfrak{A}^f_{\mathbf{k}}.$
- A *abelian* 2-representation of \mathscr{C} is a strict 2-functor $\mathbf{M}: \mathscr{C} \to \mathbf{Ab}_{\Bbbk}$.

Finitary 2-Representation Theory

└─2-Representations

2-Representations in Detail

In more detail:

- Let *C* be a finitary 2-category. A *finitary* 2-representation M of *C* consists of the following:
 - For each object i of *C*, a finitary category M(i).
 - For each 1-morphism $F : i \to j$ of \mathscr{C} , a k-linear additive functor $\mathbf{M}(F) : \mathbf{M}(i) \to \mathbf{M}(j)$.
 - For each 2-morphism $\alpha: F \to G$ of \mathscr{C} , a natural transformation $\mathbf{M}(\alpha): \mathbf{M}(F) \to \mathbf{M}(G)$.
- Two 2-representations M and N are *equivalent* if there exists a 2-natural transformation from M to N that induces an equivalence of categories for every i.

Finitary 2-Representation Theory

-2-Representations

Basic Example: Principal 2-Representations

The most straightforward example of a finitary 2-representation is the principal 2-representation P_i for some object i of C:

$$\mathbf{P}(\mathbf{j}) = \mathscr{C}(\mathbf{i}, \mathbf{j});$$

• For $F \in \mathscr{C}(j, k)$, $\mathbf{P}(F) = F \circ - : \mathscr{C}(i, j) \to \mathscr{C}(i, k)$;

For a 2-morphism $\alpha: F \to G$ and a 1-morphism $H \in \mathbf{P}(\mathbf{j}) = \mathscr{C}(\mathbf{i}, \mathbf{j})$,

$$\mathbf{P}(\alpha)_G = \alpha \circ_H \mathsf{id}_H : FH \to GH.$$

-2-Representations

Simple Transitive 2-Representations

- In modular representation theory, simple modules (a.k.a. irreducible representations) play an important role.
- Equivalent concept is *simple transitive 2-representations*.
- Simple: the (finitary) 2-representation has no proper *C*-stable ideals (analogous to simple rings, simple modules).
- Transitive: for any $X \in \mathbf{M}(i)$, $Y \in \mathbf{M}(j)$, there exists some 1-morphism $F \in \mathscr{C}(i, j)$ such that Y is a direct summand of $\mathbf{M}(F)(X)$.
- Slogan: Any object in a transitive 2-representation generates the whole 2-representation (up to equivalence) under the action of *C*.
- Legitimate analogue of simple modules, e.g. there exists a weak Jordan-Hölder Theorem.

Internal Vs. External

Internal Vs. External

- In representation theory, we often want to reduce 'external' problems to 'internal' ones.
- Classical example: in characteristic 0, for a group G, there are a lot of vector spaces to try constructing irreducible representations on.
- But representations are determined up to isomorphism by their characters, which are in bijection with conjugacy classes of G.
- Reduced 'external' problem of classifying representations to 'internal'(ish) problem of finding a known number of class functions on G.
- A lot of powerful theorems and concepts in 2-representation theory do similar things.
- I will detail two examples: cell 2-representations, and comodule 2-representations.

Finitary 2-Representation Theory

Cell 2-Representations

Cells in 2-Categories

- Based on Green's cells in semigroups from 1951.
- Given (isomorphism classes of) indecomposable 1-morphisms F and G of a finitary 2-category \mathscr{C} , say $F \leq_{\mathscr{L}} G$ (resp. $F \leq_{\mathscr{R}} G, F \leq_{\mathscr{J}} G$) if there exists some 1-morphism H with G a direct summand of HF (FH, HFK resp.).
- Equivalence classes of these pre-orders are *L*-cells (resp. *R*-cells, *J*-cells).
- Useful fact: Given an \mathscr{L} -cell \mathscr{L} , every $X \in \mathscr{L}$ has the same source object.

Finitary 2-Representation Theory

Cell 2-Representations

Cell 2-Representations

- We will define a specific type of simple transitive 2-representation that categorify cell modules.
- Let $\mathscr C$ be a finitary 2-category and let $\mathscr L$ be an left cell of $\mathscr C$ with domain i. We define a 2-representation $N_{\mathscr L}$ of $\mathscr C$ as follows:
 - $\mathbf{N}_{\mathscr{L}}(\mathbf{j})$ is the full subcategory of $\mathscr{C}(\mathbf{i}, \mathbf{j})$ generated by $\mathrm{add}\{FX|X \in \mathscr{L}, X : \mathbf{i} \to \mathbf{k}, F \in \mathscr{C}(\mathbf{k}, \mathbf{j})\}.$
 - The action of 1- and 2-morphisms is the same as in the principal 2-representation P_i.

Proposition (Mazorchuk, Miemietz '16)

 $N_{\mathscr{L}}$ has a unique simple transitive quotient 2-representation $C_{\mathscr{L}}$, called the cell 2-representation associated to \mathscr{L} .

Finitary 2-Representation Theory

Cell 2-Representations

The First Big Theorem

- Cell 2-representations are 'internal' structures entirely defined by information from *C*.
- When can we use them to classify 'external' 2-representations?
- One example is *strongly regular* fiat 2-categories, which are fiat 2-categories where the cells form a particularly pleasant structure.

Theorem (Mazorchuk, Miemietz '16)

Any simple transitive 2-representation of a strongly regular fiat 2-category is equivalent to a cell 2-representation.

Comodule 2-Reps

Coalgebra 1-Morphisms

- Given a fiat 2-category \mathscr{C} with transitive 2-representation \mathbf{M} , we use the notation $\mathscr{M} = \coprod_{j \in \mathscr{C}} \mathbf{M}(j)$ and $\mathscr{C}_{\mathtt{i}} = \coprod_{j \in \mathscr{C}} \mathscr{C}(\mathtt{i}, \mathtt{j}).$
- Let $X \in \mathbf{M}(\mathbf{i})$. There is an 'evaluation at X' functor $\operatorname{ev}_X : \mathfrak{C}_{\mathbf{i}} \to \mathcal{M}$, given by $\operatorname{ev}_X(F) = \mathbf{M}(F)X$, $\operatorname{ev}_X(\alpha) = \mathbf{M}(\alpha)_X$.
- We would like this functor to have a left adjoint. To do this, we need a larger 'enveloping' 2-category for *C*.

Finitary 2-Representation Theory

Comodule 2-Reps

Abelianisation I

Definition

Let \mathscr{B} be an additive category. We define its *injective Freyd* abelianisation $\underline{\mathscr{B}}$ as follows:

- Objects of $\underline{\mathfrak{B}}$ are morphisms of \mathfrak{B} .
- Morphisms are commutative diagrams $X \xrightarrow{f} Y$ modulo $\begin{array}{c} & & \\ g \\ & & & \\ & & \\$

'homotopy' - i.e. modulo those diagrams where there exists a morphism $q: Y \to X'$ such that g = qf.

Comodule 2-Reps

Abelianisation I

Theorem (Freyd '66)

If \mathfrak{B} has weak kernels, then $\underline{\mathfrak{B}}$ is an abelian category, and any additive functor $F: \mathfrak{B} \to \mathfrak{D}$, where \mathfrak{D} is an abelian category, extends uniquely to a left exact functor $\underline{F}: \underline{\mathfrak{B}} \to \mathfrak{D}$. In addition, \mathfrak{B} embeds into $\underline{\mathfrak{B}}$ as the full subcategory of injective objects.

• For our purposes, can extend the definition of abelianisation to finitary 2-categories and 2-representations.

Lemma (Mackaay, Mazorchuk, Miemietz, Tubbenhauer '16)

The left exact functor $\underline{ev}_X : \underline{\mathscr{C}_i} \to \underline{\mathscr{M}}$ has a left adjoint $[X, -] : \underline{\mathscr{M}} \to \underline{\mathscr{C}_i}.$

Comodule 2-Reps

The Second Big Theorem

Lemma (MMMT)

[X, X] has the structure of a coalgebra 1-morphism (i.e. it has counit and comultiplication 2-morphisms).

- The category of comodule 1-morphisms over [X, X], comod_{<u>C</u>}([X, X]) can be given a natural structure of an abelian C 2-representation.
- Let inj_{<u>€</u>}([X, X]) denote the sub-2-representation of comod<u><u>€</u>([X, X]) generated by its injective objects.</u>

Theorem (MMMT '16)

There is an equivalence of 2-representations of \mathscr{C} between $\underline{\mathbf{M}}$ and $\operatorname{comod}_{\underline{\mathscr{C}}}([X,X])$, which restricts to an equivalence of 2-representations between \mathbf{M} and $\operatorname{inj}_{\mathscr{C}}([X,X])$.

To Infinity And Beyond

Finiteness Conditions Revisited

 Let's recall the finiteness conditions in the definition of a finitary 2-category:

- Finitely many objects;
- Finitely many isomorphism classes of indecomposable 1-morphisms;
- Finite dimensional hom-spaces of 2-morphisms
- How can we relax these restrictions?

To Infinity And Beyond

└─Wide Finitary 2-Categories

Wide Finitary Categories

Definition

A category \mathscr{C} is *wide finitary* if it is an additive k-linear Krull-Schmidt category with countably many isomorphism classes of indecomposable objects and where the morphism sets are k-vector spaces of countable dimension. Define the 2-category \mathfrak{A}_{k}^{wf} to have as objects wide finitary categories, as 1-morphisms k-linear additive functors, and as 2-morphisms natural transformations.

• Why Krull-Schmidt?

- Retains any 1-morphism being a finite sum of indecomposable 1-morphisms.
- A lot of theory (e.g. being able to define cell 2-representations) heavily uses endomorphism rings of indecomposable 1-morphisms being local.

—To Infinity And Beyond

Wide Finitary 2-Categories

Basic Example

- Consider Rep^{fd}_k(sl₂), the category of finite dimensional representations of sl₂. It is a standard result that there is a unique indecomposable representation of dimension n for each n ∈ Z⁺.
- Consequently, there are infinitely many isomorphism classes of indecomposable objects.
- However, the hom-spaces retain a sufficiently pleasant structure that the category is at least wide finitary.

—To Infinity And Beyond

└─Wide Finitary 2-Categories

Locally Wide Finitary 2-Categories

Definition

A 2-category & is locally wide finitary if:

- *C* has countably many objects.
- For any objects $i, j \in \mathscr{C}$, $\mathscr{C}(i, j) \in \mathfrak{A}^{wf}_{\Bbbk}$.
- Horizontal composition is biadditive and k-linear.
- For each object i ∈ C, the identity 1-morphism 1 is indecomposable.

Definition

Let \mathscr{C} be a locally wide finitary 2-category. A wide finitary 2-representation of \mathscr{C} is a strict 2-functor from \mathscr{C} to $\mathfrak{A}_{\Bbbk}^{wf}$.

—To Infinity And Beyond

└─Wide Finitary 2-Categories

Things Get Complicated

- Certain concepts do generalise to this setting e.g. locally wide (quasi-)fiat 2-categories, (simple) transitive
 2-representations, cells, cell 2-representations, ideals of
 2-categories and 2-representations.
- However, there are a lot of concepts from (locally) finitary 2-representation theory that break when naïvely generalised.
- The remainder of this talk will focus on fixing these generalisation problems with regards to the comodule 2-representations.

—To Infinity And Beyond

Abelianisation II

Breaking Freyd Abelianisation

- Reminder: for injective Freyd abelianisation to produce an abelian (2-)category, we need weak kernels.
- Problem: in general, the hom-categories of locally wide finitary 2-categories do not have weak kernels.
- Need to find a more general abelianisation process.

To Infinity And Beyond

Abelianisation II

Adelman Abelianisation

Solution given by Adelman in a 1973 paper.

Definition

Let ${\mathscr C}$ be an additive category. The Adelman abelianisation $\widehat{{\mathscr C}}$ is a category with:

- Objects are pairs of morphisms $X_2 \xrightarrow{f_1} X_1 \xrightarrow{f_2} X_3$.
- Morphisms are commutative diagrams

those diagrams where there exist morphisms $q_1: X_1 \to Y_2$ and $q_2: X_3 \to Y_1$ such that $g_1q_1 + q_2f_2 = h_1$.

—To Infinity And Beyond

└─ Abelianisation II

Adelman Abelianisation

Theorem (Adelman '73)

If \mathscr{C} is an additive category, then $\widehat{\mathscr{C}}$ is an abelian category. Any additive functor $F: \mathscr{C} \to \mathscr{D}$, where \mathscr{D} is an abelian category, extends uniquely to an exact functor $\widehat{F}: \widehat{\mathscr{C}} \to \mathscr{D}$.

- We can extend the definition of abelianisation to locally wide finitary 2-categories and 2-representations.
- However, it turns out we need to do more.

—To Infinity And Beyond

L The Full Envelope

The Problem

- Reminder: in finitary case, we construct the coalgebra 1-morphism using the left adjoint of the (abelian) evaluation functor $\underline{\operatorname{ev}}_X : \underline{\mathscr{C}}_{\underline{i}} \to \underline{\mathscr{M}}$.
- But in the wide finitary case, we have no guarantee that $\widehat{\operatorname{ev}_X}: \widehat{\mathscr{C}}_{\mathbf{i}} \to \widehat{\mathscr{M}}$ has such an adjoint.
- There is a solution: pro-(2-)categories.

—To Infinity And Beyond

└─ The Full Envelope

Pro-2-Categories

- Pro-categories (and their dual, ind-categories) were first introduced by Grothendieck and Verdier in the depths of SGA (specifically [GV72]).
- Roughly, the pro-category Pro(C) of a category C is the free completion of C under cofiltered limits.
- Can (carefully) generalise the definition to 2-categories (taking pro-categories of the hom-categories).
- Important result from SGA:

Proposition (Grothendieck, Verdier '72)

A functor $F : \mathscr{C} \to \mathscr{D}$ is right exact if and only if $\operatorname{Pro}(F) : \operatorname{Pro}(\mathscr{C}) \to \operatorname{Pro}(\mathscr{D})$ has a left adjoint.

— To Infinity And Beyond

L The Full Envelope

The Final Big Result

- It follows that $\operatorname{Pro}(\widehat{\operatorname{ev}_X}) : \operatorname{Pro}(\widehat{\mathscr{C}}_i) \to \operatorname{Pro}(\widehat{\mathscr{M}})$ has a left adjoint, which we denote [X, -].
- The image of *M* under [*X*, −] has the structure of a 2-representation of *C*, which we notate as [*X*, **M**].

Theorem (M '22)

There is an equivalence of 2-representations of $\mathscr C$ between ${\bf M}$ and $[X, {\bf M}]$.

To Infinity And Beyond

└─ The Full Envelope

Murray Adelman.

Abelian categories over additive ones.

Journal of Pure and Applied Algebra, 3(2):103–117, 1973.

A Grothendieck and JL Verdier.

Expose 1: Prefaisceaux.

In *Théorie des topos et cohomologie étale des schémas*. Springer, 1972.

Mikhail Khovanov.

A categorification of the Jones polynomial. *Duke Mathematical Journal*, 101(3):359 – 426, 2000.