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Goal

Find models that exhibit characteristic properties of “real world networks/complex
networks”

Example of networks: Power grid
Internet
Social networks
Biological interaction networks
...

Typical properties: Sparse
Heterogeneous
Locally dense (exhibit clustering phenomena)
Small world
Navigable
Scale free (with exponent between 2 and 3)
...

Also, we want models that are susceptible to mathematical analysis!
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First model: random geometric graphs

Define G = (V ,E) as follows:

I Choose location of each v ∈ V uniformly and independently in [0, 1]2 (or Poisson
process with intensity n).

I Let uv ∈ E iff Euclidean distance between u and v is at most r .

Note: No power law degree distribution, no small diameter in general ...
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Example of random geometric graphs

r = 0.09
n = 500 points
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Alternative model: Random hyperbolic graphs (RHGs)

Introduced by Krioukov, Papadopoulos, Kitsak, Vahdat, Boguñá [Phys. Rev. ’10]

Like random geometric graphs but where the underlying space instead of being
Euclidean is Hyperbolic.

Euclidean plane R2

Hyperbolic plane H2
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Poincaré disk model of H2

[Rendered with KaleidoTile by J. Weeks]

I H2 is represented as an open disk D.

I Blue curves are geodesics (arcs of circles
perpendicularly incident to D).

I Each heptagon has the same area.

I Points in ∂D are at infinite distance from X .

I Points at (Euclidean) distance y from X are at
hyperbolic distance r from X where

r = ln
1 + y
1− y

.

Space expands at exponential rate!

Continuous analogue of regular trees
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Native representation of H2

O

rp
R

φp

p

BO(R): Ball of radius R centered
at origin O with perimeter

2π sinh R = Θ(eR).

I H2 is represented as R2.

I A point p is represented in polar coordinates.

I rp is the hyperbolic distance between p and O
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Poincaré vs native representation of H2

y

O

Poincaré model

ln 1+y
1−y

O

Native representation
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Formal definition of RHG model: Gα,ν(n)
(Gugelmann, Panagiotou, Peter [ICALP’12])

Model parameters:
α, ν ∈ R+, n ∈ N

Set R := 2 ln n
ν

. O

R

B0(R)

Choose an n-node graph G = (V ,E) as follows (or Poisson model with intensity n):
I Each v ∈ V uniformly and independently in BO(R).
I uv ∈ E iff u ∈ Bv (R).

Each
f (r) := α

Cα,R
sinh(αr) ≈ αe−α(R−r) if

(Here, ).
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Model parameters:
α, ν ∈ R+, n ∈ N

Set R := 2 ln n
ν

. O

R

B0(R)

Choose an n-node graph G = (V ,E) as follows (or Poisson model with intensity n):
I Each v ∈ V so φv ∼ Unif[0, 2π) independent of rv with density:

f (r) := α
Cα,R

sinh(αr) ≈ αe−α(R−r) if 0 ≤ r < R and 0 otherwise.

(Here, Cα,R is a normalizing constant).
I uv ∈ E iff u ∈ Bv (R).
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Soft version

Incorporates a temperature T and a probability of connecting u and v :

p(d) :=
1

1 + e
1

2T (d−R)

where d := dH2 (u, v) is the (hyperbolic) distance between u, v ∈ H2.
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R = 3.0.
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Pdf of (rv , φv ) and its heat plot
(Colder colors correspond to smaller density)

O O O

α = 1
2 α = 3

4 α = 1
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Calculating distances

Hyperbolic distance from v to origin O, ... easy! Just rv .

In general, use hyperbolic law of cosines

cosh(d) = cosh(ru) cosh(rv )− sinh(ru) sinh(rv ) cos(φu,v ).

R

u

v
O

ru

rv

θu,v

Lemma: φu,v ≤ θR(ru, rv ) ⇐⇒ dH2 (u, v) ≤ R.
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Examples of RHGs
(ν = 1 fixed, n = 500)

α = 0.60 α = 0.75 α = 0.90
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Examples of RHGs
(α = 3

4 fixed, n = 500)

ν = 0.50 ν = 0.75 ν = 1.00
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What drew attention...
Mapping of Internet’s Autonomous Systems (ASs, 2009)

[From Boguña, Papadopoulus, Krioukov (Nat. Comm. ’10)]

Data set:
I 23, 752 ASs
I 58, 416 links
I Average degree 4.92

“Maximum Likelihood” fit:
I α = 0.55
I R = 27
I Temperature T = 0.69
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Analysis of RHGs - vertices per layer
(measure centered balls)

1

i

Layer Li := BO(i)\BO(i−1)

O

Calculations yield[GPP’12]

µ(Li ) ∼=
µ(BO(i))

1−e−α
.

µ(BO(i)) ∼= e−α(R−i).

Most vertices close to the boundary of
BO(i)
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Vertex degrees
(measure of non-centered balls)

Calculations yield

µ(BP(R)) = Cαe−
rP
2 (1 + o(e−(α− 1

2 )rP )).

Thus,

deg(P) =



O(ln n) (no concentration),
if rP ≥ R−2 ln R+O(1),

Θ(ne−
rP
2 ) (concentrated),

otherwise.
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Location of neighbors of a vertex

Li

O

P

Calculations yield

µ(BP(R) ∩ Li ) = Θ(e−(α− 1
2 )(R−i)e−

1
2 (R−rP ))

= (1− e−(α− 1
2 ))(1 + o(1))µ(BP(R) ∩ BO(i − 1)).

As a function of i grows like e−αi .

So, P has:
I more neighbors towards ∂BO(R)

I const. fraction of neighbors “near” ∂BO(R)
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Consequences/known results

I Power law degree distribution with exponent 2α + 1 ∈ (2, 3).

I Average degree constant

I Θ(n) isolated vertices

I There is a giant component Θ(n)[BFM, EJC’15; FM, AAP’17]

I and much more ... !
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The dynamic RHG model
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The dynamic RHG model

I Vertices move, maintaining spatial distribution invariant

Our choice: Every vertex moves independently in BO(R) according to a diffusion
process with angular and radial component

∆h :=
1
2
∂2

∂r 2 +
α

2
1

tanh(αr)

∂

∂r
+

1
2
σ2
θ(r)

∂2

∂θ2

with reflecting boundary at ∂BO(R).

For a fixed time t , the edge utvt is there iff
d(ut , vt ) ≤ R.
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Choice of generator

∆h :=
1
2
∂2

∂r 2 +
α

2
1

tanh(αr)

∂

∂r
+

1
2

1
sinh2(βr)

∂2

∂θ2

with β > 0 being a new parameter

I For larger α, stronger drift towards ∂BO(R)

I For larger β, less angular speed

I Far from the origin we use

∆h :≈ 1
2
∂2

∂r 2 +
α

2
∂

∂r
+ 2e−2βr ∂

2

∂θ2
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Inspiration/related work

Peres, Sinclair, Sousi, Stauffer (2012) consider mobile geometric graphs in Rd with
Brownian motion for each vertex.

I Detection time Tdet : Given an artificial vertex Q (outside all neighborhoods or
not), when does the first vertex connect to Q?
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Tdet in mobile random geometric graphs
Idea: Vertices detecting by time t define thinned Poisson process with point measure

Px0 (Tdet ≤ t)dx0

and thus

P(Tdet > t) = exp

(
−
∫
Rd

Px0 (Tdet ≤ t)dx0

)
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Tdet in mobile random geometric graphs

x0 detects Q with the same probability as Q detects x0

Thus ∫
Rd

Px0 (Tdet ≤ t)dx0 = E (volW (t)) =


Θ(
√

t) if d = 1
Θ( t

log t ) if d = 2
Θ(t) if d ≥ 3

with W (t) the Wiener sausage at time t
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Our result: tail bounds of detection time for RHGs

Theorem (Kiwi, Linker, M. ’22+:)

Let α ∈ ( 1
2 , 1], β > 0, t := t(n), and assume that particles move according to the

generator ∆h. Then, the following hold:
(i) For β ≤ 1

2 , if t = Ω((eβR/n)2) ∩O(1), then P(Tdet ≥ t) = exp
(
−Θ(ne−βR√t)

)
.

(ii) For β ≤ 1
2 and t = Ω(1) the tail exponent depends on the relation between α and

2β as follows:

1 For α < 2β, if t = O(eαR), then P(Tdet ≥ t) = exp
(
−Θ(ne−βR t

β
α )
)
.

2 For α = 2β, if t = O(eαR/(αR)), then P(Tdet ≥ t) = exp
(
−Θ(ne−βR

√
t log t)

)
.

3 For α > 2β, if t = O(e2βR), then P(Tdet ≥ t) = exp
(
−Θ(ne−βR

√
t)
)
.

(iii) For β > 1
2 , if t = Ω(1) ∩O(eαR), then P(Tdet ≥ t) = exp

(
−Θ(t

1
2α )
)
.

(lower bounds on t correspond to expectation, upper bounds on t are s.t. for larger t
same probability to have empty graph)
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Angular movement only

To understand the proof, consider first angular movement only or radial movement
only

∆ang :=
1
2

1
sinh2(βr)

∂2

∂θ2 ≈ 2e−2βr ∂
2

∂θ2

In t time units a vertex in layer r moves (in expectation) Θ(
√

te−βr ) radians.
Define then

Dt = {x0 ∈ BO(R), |θ0| ≤
√

te−βr}

⊇ BO( 1
2β log t)

the set of points detecting Q by time t
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the detecting set Dt

O

x0

rt =r0
xt

r̂

θt

Q

O

Since in Dt the detection probability is Ω(1), we have∫
Dt

Px0 (Tdet > t)dµ(x0) = Ω(µ(Dt ))

Theorem: this is the exponent of P(Tdet > t) in the angular movement
only case!
(Need to control the integral over Dt )
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Radial movement only

∆rad :=
1
2
∂2

∂r 2 +
α

2
1

tanh(αr)

∂

∂r
≈ 1

2
∂2

∂r 2 +
α

2
∂

∂r

In t time units a vertex reaches (in expectation) radius R − 1
α

log t .

At ∂BQ(R) this
corresponds to an angle 1

n t
1

2α
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Radial movement only
Defining a new set

Dt = {x0 ∈ BO(R), |θ0| ≤ 1
n t

1
2α }

of points that detect Q by time t we have∫
Dt

Px0 (Tdet > t)dµ(x0) = Ω(µ(Dt )) = Ω(t
1

2α )

xt

x0

A0B0

θt =θ0

Q

O

Figure: The set Dt

Theorem: This is the right exponent of P(Tdet > t) in the radial
movement only case!!
(Need to control again the integral over Dt )
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Back to mixed movement - where are detecting points?

xtx0

θ̂0
1
2 θ̂0θ0

φ(R)+φ(t)

r0

r ′′

r ′r̂0

Q

O
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Back to the mixed movement - where are detecting points?

I ∆ang ≈ 2e−2βr ∂2

∂θ2 =⇒ in every layer we know angular variance

I By stationarity, how much time (before t) roughly one spends in each layer

In t time units spend te−α(R−r) time in layer r

⇓
The contribution to the angular variance is te−α(R−r)e−2βr

I If α > 2β main contribution from the boundary

I If α < 2β main contribution from smallest radius reached

I If α = 2β all layers contribute

32/39



Back to the mixed movement - where are detecting points?

I ∆ang ≈ 2e−2βr ∂2

∂θ2 =⇒ in every layer we know angular variance

I By stationarity, how much time (before t) roughly one spends in each layer

In t time units spend te−α(R−r) time in layer r

⇓
The contribution to the angular variance is te−α(R−r)e−2βr

I If α > 2β main contribution from the boundary

I If α < 2β main contribution from smallest radius reached

I If α = 2β all layers contribute

32/39



Back to the mixed movement - where are detecting points?

I ∆ang ≈ 2e−2βr ∂2

∂θ2 =⇒ in every layer we know angular variance

I By stationarity, how much time (before t) roughly one spends in each layer

In t time units spend te−α(R−r) time in layer r

⇓
The contribution to the angular variance is te−α(R−r)e−2βr

I If α > 2β main contribution from the boundary

I If α < 2β main contribution from smallest radius reached

I If α = 2β all layers contribute

32/39



Back to the mixed movement - where are detecting points?

I ∆ang ≈ 2e−2βr ∂2

∂θ2 =⇒ in every layer we know angular variance

I By stationarity, how much time (before t) roughly one spends in each layer

In t time units spend te−α(R−r) time in layer r

⇓
The contribution to the angular variance is te−α(R−r)e−2βr

I If α > 2β main contribution from the boundary

I If α < 2β main contribution from smallest radius reached

I If α = 2β all layers contribute

32/39



Points that detect

I Case α > 2β: Angular variance = Θ(te−2βR), thus angular movement is
Θ(
√

tn−2β)

Dt = {x0 ∈ BO(R), |θ0| ≤
√

tn−2β}
⇓∫

Dt

Px0 (Tdet > t)dµ(x0) = Ω(µ(Dt )) = Ω(n1−2β√t)

I Caso α = 2β: If we spend expected time in each layer,

total angular variance = Θ(te−2βR log t)

Then
Dt = {x0 ∈ BO(R), |θ0| ≤

√
t log tn−2β}

⇓∫
Dt

Px0 (Tdet > t)dµ(x0) = Ω(µ(Dt )) = Ω(n1−2β
√

t log t)
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Proof idea for the case α = 2β

Ingredients:

I (easy) Eµ
(∫ t

0
1[0,k ](rs)ds

)
≈ te−α(R−k)

I Second moment method: show Pµ
( ∫ t

0 1[0,k ](rs)ds > γte−α(R−k)
)
≥ η by coupling

with discrete integer-valued process (typically not too close to the origin in the
beginning, and typically many jumps)
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Points that detect

I Case α < 2β: As in the radial case, a vertex typically reaches radius
r0 = R − 1

α
log t and spends Θ(1) time units in this layer.

Angular variance there Θ(e−2βr0 ) = Θ(n−4β t
2β
α ). Then

Dt = {x0 ∈ BO(R), |θ0| ≤ t
β
α n−2β}

⇓∫
Dt

Px0 (Tdet > t)dµ(x0) = Ω(µ(Dt )) = Ω(n1−2β t
β
α )

Note: If β ≥ 1
2 we may detect only by radial movement

Dt = {x0 ∈ BO(R), |θ0| ≤ t
1

2α n−1}

⇓∫
Dt

Px0 (Tdet > t)dµ(x0) = Ω(µ(Dt )) = Ω(t
1

2α )
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2β
α ). Then

Dt = {x0 ∈ BO(R), |θ0| ≤ t
β
α n−2β}

⇓∫
Dt

Px0 (Tdet > t)dµ(x0) = Ω(µ(Dt )) = Ω(n1−2β t
β
α )

Note: If β ≥ 1
2 we may detect only by radial movement

Dt = {x0 ∈ BO(R), |θ0| ≤ t
1

2α n−1}

⇓∫
Dt

Px0 (Tdet > t)dµ(x0) = Ω(µ(Dt )) = Ω(t
1

2α )
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Control of Dt

Idea: Instead of detecting Q points only try to exit a ”box” around current position

I We control the probability to exit from above by radial movement
I How to control exit from the sides of the box?

36/39



Control of Dt

Idea: Instead of detecting Q points only try to exit a ”box” around current position

I We control the probability to exit from above by radial movement

I How to control exit from the sides of the box?

36/39



Control of Dt

Idea: Instead of detecting Q points only try to exit a ”box” around current position

I We control the probability to exit from above by radial movement
I How to control exit from the sides of the box?

36/39



Control of Dt

∆h :≈ 1
2
∂2

∂r 2 +
α

2
∂

∂r
+ 2e−2βr ∂

2

∂θ2

I Conditional under radial movement, the angular movement follows a Brownian
motion BI(t) where

I(t) ≈
∫ t

0
e−2βrs ds

I known fact (Dufresne): if Xu is Brownian motion with drift α/2,∫ ∞
0

e−2βXu du = We−2βX0

where W follows an inverse Gamma distribution

fW (x) =
(2β2)

α
2β

Γ( α2β )
x−

α
2β−1e−

2β2
x
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How to bound I(t)?

I Split the radial trajectory into excursions

I I(t) ≈
∫ t

0
e−2βrs ds ≈ W0e−2βr0 + C

ct∑
i=1

Wie−2βR

I We control the sum by large deviation for heavy tails
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Thank you!
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