Tail bounds for detection times in dynamic hyperbolic graphs

Dieter Mitsche (Joint work with Marcos Kiwi and Amitai Linker)

Instituto Superior Técnico, Lisboa

February 20, 2023

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 - のへぐ

1/1

Goal

Find models that exhibit characteristic properties of "real world networks/complex networks"

Example of networks:	Power grid Internet Social networks Biological interaction networks
Typical properties:	Sparse Heterogeneous Locally dense (exhibit clustering phenomena) Small world Navigable Scale free (with exponent between 2 and 3)

Goal

Find models that exhibit characteristic properties of "real world networks/complex networks"

Example of networks:	Power grid Internet Social networks Biological interaction networks
Typical properties:	Sparse Heterogeneous Locally dense (exhibit clustering phenomena) Small world Navigable Scale free (with exponent between 2 and 3)

Also, we want models that are susceptible to mathematical analysis!

First model: random geometric graphs

Define G = (V, E) as follows:

- Choose location of each $v \in V$ uniformly and independently in $[0, 1]^2$ (or Poisson process with intensity *n*).
- Let $uv \in E$ iff Euclidean distance between u and v is at most r.

Note: No power law degree distribution, no small diameter in general ...

Example of random geometric graphs

r = 0.09n = 500 points

Alternative model: Random hyperbolic graphs (RHGs)

Introduced by Krioukov, Papadopoulos, Kitsak, Vahdat, Boguñá^[Phys. Rev. '10] Like random geometric graphs but where the underlying space instead of being Euclidean is Hyperbolic.

Poincaré disk model of \mathbb{H}^2

[Rendered with KaleidoTile by J. Weeks]

- \mathbb{H}^2 is represented as an open disk *D*.
- Blue curves are geodesics (arcs of circles perpendicularly incident to D).
- Each heptagon has the same area.
- Points in ∂D are at infinite distance from X.
- Points at (Euclidean) distance y from X are at hyperbolic distance r from X where

$$r = \ln \frac{1+y}{1-y}$$

Space expands at exponential rate! Continuous analogue of regular trees

Native representation of \mathbb{H}^2

- ▶ \mathbb{H}^2 is represented as \mathbb{R}^2 .
- A point *p* is represented in polar coordinates.
- *r_p* is the hyperbolic distance between *p* and *O*

 $B_O(R)$: Ball of radius *R* centered at origin *O* with perimeter $2\pi \sinh R = \Theta(e^R)$.

Poincaré vs native representation of \mathbb{H}^2

Native representation

Choose an *n*-node graph G = (V, E) as follows (or Poisson model with intensity *n*):

- Each $v \in V$ uniformly and independently in $B_O(R)$.
- $uv \in E$ iff $u \in B_v(R)$.

Choose an *n*-node graph G = (V, E) as follows (or Poisson model with intensity *n*):

Each $v \in V$ so $\phi_v \sim \text{Unif}[0, 2\pi)$ independent of r_v with density:

 $f(r) := \frac{\alpha}{C_{\alpha,R}} \sinh(\alpha r) \approx \alpha e^{-\alpha(R-r)} \quad \text{if } 0 \le r < R \text{ and } 0 \text{ otherwise.}$

(Here, $C_{\alpha,R}$ is a normalizing constant).

• $uv \in E$ iff $u \in B_v(R)$.

Soft version

Incorporates a temperature T and a probability of connecting u and v:

where $d := d_{\mathbb{H}^2}(u, v)$ is the (hyperbolic) distance between $u, v \in \mathbb{H}^2$.

R = 3.0.

Pdf of (r_v, ϕ_v) and its heat plot

(Colder colors correspond to smaller density)

Calculating distances

Hyperbolic distance from v to origin O, ... easy! Just r_v .

Calculating distances

Hyperbolic distance from v to origin O, ... easy! Just r_v .

In general, use hyperbolic law of cosines

 $\cosh(d) = \cosh(r_u) \cosh(r_v) - \sinh(r_u) \sinh(r_v) \cos(\phi_{u,v}).$

Lemma: $\phi_{u,v} \leq \theta_R(r_u, r_v) \iff d_{\mathbb{H}^2}(u, v) \leq R.$

Examples of RHGs $(\nu = 1 \text{ fixed}, n = 500)$

 $\alpha = 0.60$

 $\alpha = 0.75$

 $\alpha = 0.90$

Examples of RHGs ($\alpha = \frac{3}{4}$ fixed, n = 500)

 $\nu = 0.50$

 $\nu = 0.75$

 $\nu = 1.00$

What drew attention...

Mapping of Internet's Autonomous Systems (ASs, 2009)

[From Boguña, Papadopoulus, Krioukov (Nat. Comm. '10)]

Data set:

- 23, 752 ASs
- ▶ 58, 416 links
- Average degree 4.92

"Maximum Likelihood" fit:

- α = 0.55
- ► *R* = 27
- Temperature T = 0.69

Analysis of RHGs - vertices per layer

(measure centered balls)

Calculations yield[GPP'12]

$$\mu(L_i) \cong \frac{\mu(B_O(i))}{1 - e^{-\alpha}}.$$
$$\mu(B_O(i)) \cong e^{-\alpha(R-i)}.$$

Most vertices close to the boundary of $B_O(i)$

Analysis of RHGs - vertices per layer

(measure centered balls)

Calculations yield[GPP'12]

$$\mu(L_i) \cong \frac{\mu(B_O(i))}{1 - e^{-\alpha}}.$$
$$\mu(B_O(i)) \cong e^{-\alpha(R-i)}.$$

Most vertices close to the boundary of $B_O(i)$

Vertex degrees (measure of non-centered balls)

Calculations yield

$$\mu(B_{P}(R)) = C_{\alpha} e^{-\frac{r_{P}}{2}} (1 + o(e^{-(\alpha - \frac{1}{2})r_{P}})).$$

Vertex degrees (measure of non-centered balls)

Calculations yield

$$\mu(B_{P}(R)) = C_{\alpha} e^{-\frac{r_{P}}{2}} (1 + o(e^{-(\alpha - \frac{1}{2})r_{P}})).$$

Thus,

 $\deg(P) = \begin{cases} O(\ln n) \text{ (no concentration),} \\ \text{if } r_P \ge R - 2 \ln R + O(1), \\ \Theta(ne^{-\frac{r_P}{2}}) \text{ (concentrated),} \\ \text{otherwise.} \end{cases}$

Location of neighbors of a vertex

Calculations yield

 $\mu(B_P(R)\cap L_i)=\Theta(e^{-(\alpha-\frac{1}{2})(R-i)}e^{-\frac{1}{2}(R-r_P)})$

Location of neighbors of a vertex

Calculations yield

 $\mu(B_P(R) \cap L_i) = \Theta(e^{-(\alpha - \frac{1}{2})(R-i)}e^{-\frac{1}{2}(R-r_P)})$ = $(1 - e^{-(\alpha - \frac{1}{2})})(1 + o(1))\mu(B_P(R) \cap B_O(i-1)).$

As a function of *i* grows like $e^{-\alpha i}$.

So, P has:

- more neighbors towards $\partial B_O(R)$
- const. fraction of neighbors "near" $\partial B_O(R)$

Consequences/known results

- Power law degree distribution with exponent $2\alpha + 1 \in (2,3)$.
- Average degree constant
- $\triangleright \Theta(n)$ isolated vertices
- ► There is a giant component Θ(n)^[BFM, EJC'15; FM, AAP'17]
- and much more ... !

The dynamic RHG model

The dynamic RHG model

Vertices move, maintaining spatial distribution invariant

Our choice: Every vertex moves independently in $B_O(R)$ according to a diffusion process with angular and radial component

$$\Delta_h := \frac{1}{2} \frac{\partial^2}{\partial r^2} + \frac{\alpha}{2} \frac{1}{\tanh(\alpha r)} \frac{\partial}{\partial r} + \frac{1}{2} \sigma_{\theta}^2(r) \frac{\partial^2}{\partial \theta^2}$$

with reflecting boundary at $\partial B_O(R)$.

The dynamic RHG model

Vertices move, maintaining spatial distribution invariant

Our choice: Every vertex moves independently in $B_O(R)$ according to a diffusion process with angular and radial component

$$\Delta_h := \frac{1}{2} \frac{\partial^2}{\partial r^2} + \frac{\alpha}{2} \frac{1}{\tanh(\alpha r)} \frac{\partial}{\partial r} + \frac{1}{2} \sigma_{\theta}^2(r) \frac{\partial^2}{\partial \theta^2}$$

◆□▶ ◆□▶ ◆ □▶ ◆ □ ▶ ● □ ● ● ●

with **reflecting boundary** at $\partial B_O(R)$. For a fixed time *t*, the edge $u_t v_t$ is there iff $d(u_t, v_t) \leq R$.

Choice of generator

$$\Delta_h := \frac{1}{2} \frac{\partial^2}{\partial r^2} + \frac{\alpha}{2} \frac{1}{\tanh(\alpha r)} \frac{\partial}{\partial r} + \frac{1}{2} \frac{1}{\sinh^2(\beta r)} \frac{\partial^2}{\partial \theta^2}$$

with $\beta > 0$ being a new parameter

Choice of generator

$$\Delta_h := \frac{1}{2} \frac{\partial^2}{\partial r^2} + \frac{\alpha}{2} \frac{1}{\tanh(\alpha r)} \frac{\partial}{\partial r} + \frac{1}{2} \frac{1}{\sinh^2(\beta r)} \frac{\partial^2}{\partial \theta^2}$$

with $\beta > 0$ being a new parameter

- For larger α , stronger drift towards $\partial B_O(R)$
- For larger β , less angular speed

Choice of generator

$$\Delta_h := \frac{1}{2} \frac{\partial^2}{\partial r^2} + \frac{\alpha}{2} \frac{1}{\tanh(\alpha r)} \frac{\partial}{\partial r} + \frac{1}{2} \frac{1}{\sinh^2(\beta r)} \frac{\partial^2}{\partial \theta^2}$$

with $\beta > 0$ being a new parameter

- For larger α , stronger drift towards $\partial B_O(R)$
- For larger β , less angular speed
- Far from the origin we use

$$\Delta_h :\approx \frac{1}{2} \frac{\partial^2}{\partial r^2} + \frac{\alpha}{2} \frac{\partial}{\partial r} + 2e^{-2\beta r} \frac{\partial^2}{\partial \theta^2}$$

Peres, Sinclair, Sousi, Stauffer (2012) consider mobile geometric graphs in \mathbb{R}^d with Brownian motion for each vertex.

Peres, Sinclair, Sousi, Stauffer (2012) consider mobile geometric graphs in \mathbb{R}^d with Brownian motion for each vertex.

Detection time T_{det}: Given an artificial vertex Q (outside all neighborhoods or not), when does the first vertex connect to Q?

Peres, Sinclair, Sousi, Stauffer (2012) consider mobile geometric graphs in \mathbb{R}^d with Brownian motion for each vertex.

Detection time T_{det}: Given an artificial vertex Q (outside all neighborhoods or not), when does the first vertex connect to Q?

T_{det} in mobile random geometric graphs

Idea: Vertices detecting by time t define thinned Poisson process with point measure

 $\mathbb{P}_{x_0}(T_{det} \leq t)dx_0$

T_{det} in mobile random geometric graphs

Idea: Vertices detecting by time t define thinned Poisson process with point measure

 $\mathbb{P}_{x_0}(T_{det} \leq t)dx_0$

and thus

$$\mathbb{P}(T_{det} > t) = \exp\left(-\int_{\mathbb{R}^d} \mathbb{P}_{x_0}(T_{det} \le t) dx_0\right)$$

T_{det} in mobile random geometric graphs

 x_0 detects Q with the same probability as Q detects x_0

Thus

$$\int_{\mathbb{R}^d} \mathbb{P}_{x_0}(T_{det} \le t) dx_0 = \mathbb{E}\left(\operatorname{vol} W(t)\right) = \begin{cases} \Theta(\sqrt{t}) & \text{if } d = 1\\ \Theta(\frac{t}{\log t}) & \text{if } d = 2\\ \Theta(t) & \text{if } d \ge 3 \end{cases}$$

with W(t) the Wiener sausage at time t

Our result: tail bounds of detection time for RHGs

Theorem (Kiwi, Linker, M. '22+:)

Let $\alpha \in (\frac{1}{2}, 1]$, $\beta > 0$, t := t(n), and assume that particles move according to the generator Δ_h . Then, the following hold:

() For $\beta \leq \frac{1}{2}$, if $t = \Omega((e^{\beta R}/n)^2) \cap O(1)$, then $\mathbb{P}(T_{det} \geq t) = \exp\left(-\Theta(ne^{-\beta R}\sqrt{t})\right)$.

- **(**) For $\beta \leq \frac{1}{2}$ and $t = \Omega(1)$ the tail exponent depends on the relation between α and 2β as follows:
 - For $\alpha < 2\beta$, if $t = O(e^{\alpha R})$, then $\mathbb{P}(T_{det} \ge t) = \exp\left(-\Theta(ne^{-\beta R}t^{\frac{\beta}{\alpha}})\right)$.

2 For $\alpha = 2\beta$, if $t = O(e^{\alpha R}/(\alpha R))$, then $\mathbb{P}(T_{det} \ge t) = \exp\left(-\Theta(ne^{-\beta R}\sqrt{t\log t})\right)$.

• For $\alpha > 2\beta$, if $t = O(e^{2\beta R})$, then $\mathbb{P}(T_{det} \ge t) = \exp\left(-\Theta(ne^{-\beta R}\sqrt{t})\right)$.

(lower bounds on t correspond to expectation, upper bounds on t are s.t. for larger t same probability to have empty graph)

To understand the proof, consider first **angular** movement only or **radial** movement only

$$\Delta_{ang} := \frac{1}{2} \frac{1}{\sinh^2(\beta r)} \frac{\partial^2}{\partial \theta^2} \approx 2e^{-2\beta r} \frac{\partial^2}{\partial \theta^2}$$

To understand the proof, consider first **angular** movement only or **radial** movement only

$$\Delta_{ang} := \frac{1}{2} \frac{1}{\sinh^2(\beta r)} \frac{\partial^2}{\partial \theta^2} \approx 2e^{-2\beta r} \frac{\partial^2}{\partial \theta^2}$$

In *t* time units a vertex in layer *r* moves (in expectation) $\Theta(\sqrt{t}e^{-\beta r})$ radians.

To understand the proof, consider first **angular** movement only or **radial** movement only

$$\Delta_{ang} := \frac{1}{2} \frac{1}{\sinh^2(\beta r)} \frac{\partial^2}{\partial \theta^2} \approx 2e^{-2\beta r} \frac{\partial^2}{\partial \theta^2}$$

In *t* time units a vertex in layer *r* moves (in expectation) $\Theta(\sqrt{t}e^{-\beta r})$ radians. Define then

$$\mathcal{D}_t = \{ x_0 \in B_O(\mathbf{R}), |\theta_0| \le \sqrt{t} e^{-\beta t} \}$$

the set of points detecting Q by time t

To understand the proof, consider first **angular** movement only or **radial** movement only

$$\Delta_{ang} := \frac{1}{2} \frac{1}{\sinh^2(\beta r)} \frac{\partial^2}{\partial \theta^2} \approx 2e^{-2\beta r} \frac{\partial^2}{\partial \theta^2}$$

In *t* time units a vertex in layer *r* moves (in expectation) $\Theta(\sqrt{t}e^{-\beta r})$ radians. Define then

$$\mathcal{D}_t = \{ x_0 \in \mathcal{B}_O(\mathcal{R}), |\theta_0| \le \sqrt{t} e^{-\beta t} \} \supseteq \mathcal{B}_O(\frac{1}{2\beta} \log t)$$

the set of points detecting Q by time t

Radial movement only

$$\Delta_{rad} := \frac{1}{2} \frac{\partial^2}{\partial r^2} + \frac{\alpha}{2} \frac{1}{\tanh(\alpha r)} \frac{\partial}{\partial r} \approx \frac{1}{2} \frac{\partial^2}{\partial r^2} + \frac{\alpha}{2} \frac{\partial}{\partial r}$$

In *t* time units a vertex reaches (in expectation) radius $R - \frac{1}{\alpha} \log t$.

Radial movement only

$$\Delta_{rad} := \frac{1}{2} \frac{\partial^2}{\partial r^2} + \frac{\alpha}{2} \frac{1}{\tanh(\alpha r)} \frac{\partial}{\partial r} \approx \frac{1}{2} \frac{\partial^2}{\partial r^2} + \frac{\alpha}{2} \frac{\partial}{\partial r}$$

In *t* time units a vertex reaches (in expectation) radius $R - \frac{1}{\alpha} \log t$. At $\partial B_Q(R)$ this corresponds to an angle $\frac{1}{n} t^{\frac{1}{2\alpha}}$

Radial movement only

Defining a new set

$$\mathcal{D}_t = \{ \mathbf{x}_0 \in \mathbf{B}_O(\mathbf{R}), |\theta_0| \le \frac{1}{n} t^{\frac{1}{2\alpha}} \}$$

of points that detect Q by time t we have

$$\int_{\mathcal{D}_t} \mathbb{P}_{x_0}(T_{det} > t) d\mu(x_0) = \Omega(\mu(\mathcal{D}_t)) = \Omega(t^{\frac{1}{2\alpha}})$$

Figure: The set \mathcal{D}_t

э

<□▶ <□▶ < □▶ < □▶ < □▶ < □ > ○ ○ ○

• $\Delta_{ang} \approx 2e^{-2\beta r} \frac{\partial^2}{\partial \theta^2} \implies$ in every layer we know angular variance

• $\Delta_{ang} \approx 2e^{-2\beta r} \frac{\partial^2}{\partial \theta^2} \implies$ in every layer we know angular variance

► By stationarity, how much time (before *t*) roughly one spends in each layer In *t* time units spend $te^{-\alpha(R-r)}$ time in layer *r*

The contribution to the angular variance is $te^{-\alpha(R-r)}e^{-2\beta r}$

• $\Delta_{ang} \approx 2e^{-2\beta r} \frac{\partial^2}{\partial \theta^2} \implies$ in every layer we know angular variance

► By stationarity, how much time (before *t*) roughly one spends in each layer In *t* time units spend $te^{-\alpha(R-r)}$ time in layer *r*

The contribution to the angular variance is $te^{-\alpha(R-r)}e^{-2\beta r}$

- If $\alpha > 2\beta$ main contribution from the boundary
- If $\alpha < 2\beta$ main contribution from smallest radius reached
- If $\alpha = 2\beta$ all layers contribute

• Case $\alpha > 2\beta$: Angular variance = $\Theta(te^{-2\beta R})$, thus angular movement is $\Theta(\sqrt{t}n^{-2\beta})$

• Case $\alpha > 2\beta$: Angular variance = $\Theta(te^{-2\beta R})$, thus angular movement is $\Theta(\sqrt{t}n^{-2\beta})$

Caso $\alpha = 2\beta$: If we spend expected time in each layer,

total angular variance = $\Theta(te^{-2\beta R} \log t)$

• Case $\alpha > 2\beta$: Angular variance = $\Theta(te^{-2\beta R})$, thus angular movement is $\Theta(\sqrt{t}n^{-2\beta})$

Caso $\alpha = 2\beta$: If we spend expected time in each layer,

total angular variance = $\Theta(te^{-2\beta R} \log t)$

Then

Proof idea for the case $\alpha = 2\beta$

Ingredients:

- (easy) $\mathbb{E}_{\mu}\left(\int_{0}^{t} \mathbf{1}_{[0,k]}(r_{s}) ds\right) \approx t e^{-\alpha(R-k)}$
- Second moment method: show P_μ (∫₀^t 1_[0,k](r_s)ds > γte^{-α(R-k)}) ≥ η by coupling with discrete integer-valued process (typically not too close to the origin in the beginning, and typically many jumps)

• Case $\alpha < 2\beta$: As in the radial case, a vertex typically reaches radius $r_0 = R - \frac{1}{\alpha} \log t$ and spends $\Theta(1)$ time units in this layer.

• **Case** $\alpha < 2\beta$: As in the radial case, a vertex typically reaches radius $r_0 = R - \frac{1}{\alpha} \log t$ and spends $\Theta(1)$ time units in this layer.

Angular variance there $\Theta(e^{-2\beta t_0}) = \Theta(n^{-4\beta}t^{\frac{2\beta}{\alpha}})$. Then

• **Case** $\alpha < 2\beta$: As in the radial case, a vertex typically reaches radius $r_0 = R - \frac{1}{\alpha} \log t$ and spends $\Theta(1)$ time units in this layer.

Angular variance there $\Theta(e^{-2\beta r_0}) = \Theta(n^{-4\beta}t^{\frac{2\beta}{\alpha}})$. Then

Note: If $\beta \geq \frac{1}{2}$ we may detect only by radial movement

Control of $\overline{\mathcal{D}}_t$

Idea: Instead of detecting Q points only try to exit a "box" around current position

Control of $\overline{\mathcal{D}}_t$

Idea: Instead of detecting Q points only try to exit a "box" around current position

We control the probability to exit from above by radial movement

Control of $\overline{\mathcal{D}}_t$

Idea: Instead of detecting Q points only try to exit a "box" around current position

- We control the probability to exit from above by radial movement
- How to control exit from the sides of the box?

$$\Delta_h :\approx \frac{1}{2} \frac{\partial^2}{\partial r^2} + \frac{\alpha}{2} \frac{\partial}{\partial r} + 2e^{-2\beta r} \frac{\partial^2}{\partial \theta^2} \qquad$$

Conditional under radial movement, the angular movement follows a Brownian motion B_{I(t)} where

$$I(t) pprox \int_0^t e^{-2eta r_s} ds$$

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ □ のへで

$$\Delta_h :\approx \frac{1}{2} \frac{\partial^2}{\partial r^2} + \frac{\alpha}{2} \frac{\partial}{\partial r} + 2e^{-2\beta r} \frac{\partial^2}{\partial \theta^2}$$

Conditional under radial movement, the angular movement follows a Brownian motion B_{I(t)} where

$$I(t) pprox \int_0^t e^{-2eta r_s} ds$$

known fact (Dufresne): if X_u is Brownian motion with drift $\alpha/2$,

$$\int_0^\infty e^{-2\beta X_u} du = W e^{-2\beta X_0}$$

where W follows an inverse Gamma distribution

$$f_W(x) = \frac{(2\beta^2)^{\frac{\alpha}{2\beta}}}{\Gamma(\frac{\alpha}{2\beta})} x^{-\frac{\alpha}{2\beta}-1} e^{-\frac{2\beta^2}{x}}$$

How to bound I(t)?

Split the radial trajectory into excursions

How to bound I(t)?

Split the radial trajectory into excursions

$$\blacktriangleright I(t) \approx \int_0^t e^{-2\beta r_s} ds \approx W_0 e^{-2\beta r_0} + C \sum_{i=1}^{ct} W_i e^{-2\beta R}$$

How to bound I(t)?

Split the radial trajectory into excursions

・ロト ・ 四ト ・ ヨト ・ ヨト

э

$$\blacktriangleright I(t) \approx \int_0^t e^{-2\beta r_s} ds \approx W_0 e^{-2\beta r_0} + C \sum_{i=1}^{ct} W_i e^{-2\beta R}$$

We control the sum by large deviation for heavy tails

Thank you!