Tail bounds for detection times in dynamic hyperbolic graphs

Dieter Mitsche
(Joint work with Marcos Kiwi and Amitai Linker)

Instituto Superior Técnico, Lisboa

February 20, 2023

Goal

Find models that exhibit characteristic properties of "real world networks/complex networks"

```
Example of networks: Power grid
Internet
Social networks
Biological interaction networks
Typical properties: Sparse
Heterogeneous
Locally dense (exhibit clustering phenomena)
Small world
Navigable
Scale free (with exponent between 2 and 3)
```


Goal

Find models that exhibit characteristic properties of "real world networks/complex networks"

```
Example of networks: Power grid
Internet
Social networks
Biological interaction networks
Typical properties: Sparse
Heterogeneous
Locally dense (exhibit clustering phenomena)
Small world
Navigable
Scale free (with exponent between 2 and 3)
```

Also, we want models that are susceptible to mathematical analysis!

First model: random geometric graphs

Define $G=(V, E)$ as follows:

- Choose location of each $v \in V$ uniformly and independently in $[0,1]^{2}$ (or Poisson process with intensity n).
- Let $u v \in E$ iff Euclidean distance between u and v is at most r.

Note: No power law degree distribution, no small diameter in general ...

Example of random geometric graphs

$$
\begin{gathered}
r=0.09 \\
n=500 \text { points }
\end{gathered}
$$

Alternative model: Random hyperbolic graphs (RHGs)

Introduced by Krioukov, Papadopoulos, Kitsak, Vahdat, Boguñá ${ }^{[P h y s .}$ Rev. '10]
Like random geometric graphs but where the underlying space instead of being Euclidean is Hyperbolic.

Hyperbolic plane \mathbb{H}^{2}
Euclidean plane \mathbb{R}^{2}

Poincaré disk model of \mathbb{H}^{2}

- \mathbb{H}^{2} is represented as an open disk D.
- Blue curves are geodesics (arcs of circles perpendicularly incident to D).
- Each heptagon has the same area.
- Points in ∂D are at infinite distance from X.
- Points at (Euclidean) distance y from X are at hyperbolic distance r from X where

$$
r=\ln \frac{1+y}{1-y}
$$

Space expands at exponential rate!

Continuous analogue of regular trees

Native representation of \mathbb{H}^{2}

- \mathbb{H}^{2} is represented as \mathbb{R}^{2}.
- A point p is represented in polar coordinates.
- r_{p} is the hyperbolic distance between p and O
$B_{O}(R)$: Ball of radius R centered at origin O with perimeter $2 \pi \sinh R=\Theta\left(e^{R}\right)$.

Poincaré vs native representation of \mathbb{H}^{2}

Poincaré model

Native representation

Formal definition of RHG model: $G_{\alpha, \nu}(n)$

(Gugelmann, Panagiotou, Peter ${ }^{[\text {[ICALP'12] })}$

Model parameters:
$\alpha, \nu \in \mathbb{R}_{+}, n \in \mathbb{N}$

Set $R:=2 \ln \frac{n}{\nu}$.

Choose an n-node graph $G=(V, E)$ as follows (or Poisson model with intensity n):

- Each $v \in V$ uniformly and independently in $B_{O}(R)$.
- $u v \in E$ iff $u \in B_{v}(R)$.

Formal definition of RHG model: $G_{\alpha, \nu}(n)$

(Gugelmann, Panagiotou, Peter ${ }^{[\text {[CALP'12] }}$)

Model parameters:
$\alpha, \nu \in \mathbb{R}_{+}, n \in \mathbb{N}$

Set $R:=2 \ln \frac{n}{\nu}$.

Choose an n-node graph $G=(V, E)$ as follows (or Poisson model with intensity n):

- Each $v \in V$ so $\phi_{v} \sim \operatorname{Unif}[0,2 \pi)$ independent of r_{v} with density:

$$
f(r):=\frac{\alpha}{C_{\alpha, R}} \sinh (\alpha r) \approx \alpha e^{-\alpha(R-r)} \quad \text { if } 0 \leq r<R \text { and } 0 \text { otherwise. }
$$

(Here, $C_{\alpha, R}$ is a normalizing constant).

- $u v \in E$ iff $u \in B_{v}(R)$.

Soft version

Incorporates a temperature T and a probability of connecting u and v :

$$
p(d):=\frac{1}{1+e^{\frac{1}{2 T}(d-R)}}
$$

where $d:=d_{\mathbb{H}^{2}}(u, v)$ is the (hyperbolic) distance between $u, v \in \mathbb{H}^{2}$.

Pdf of $\left(r_{v}, \phi_{v}\right)$ and its heat plot

(Colder colors correspond to smaller density)

$$
\alpha=\frac{1}{2}
$$

$\alpha=\frac{3}{4}$

Calculating distances

Hyperbolic distance from v to origin O, \ldots easy! Just r_{v}.

Calculating distances

Hyperbolic distance from v to origin O, \ldots easy! Just r_{v}.

In general, use hyperbolic law of cosines

$$
\cosh (d)=\cosh \left(r_{u}\right) \cosh \left(r_{v}\right)-\sinh \left(r_{u}\right) \sinh \left(r_{v}\right) \cos \left(\phi_{u, v}\right)
$$

Lemma: $\phi_{u, v} \leq \theta_{R}\left(r_{u}, r_{v}\right) \Longleftrightarrow d_{\mathbb{H}^{2}}(u, v) \leq R$.

Examples of RHGs

$$
(\nu=1 \text { fixed, } n=500)
$$

$\alpha=0.60$

$\alpha=0.75$

$$
\alpha=0.90
$$

Examples of RHGs

 ($\alpha=\frac{3}{4}$ fixed, $n=500$)

$\nu=0.75$

$\nu=1.00$

What drew attention...

Mapping of Internet's Autonomous Systems (ASs, 2009)

Data set:

- 23, 752 ASs
- 58, 416 links
- Average degree 4.92

"Maximum Likelihood" fit:

- $\alpha=0.55$
- $R=27$
- Temperature $T=0.69$

Analysis of RHGs - vertices per layer

(measure centered balls)

Calculations yield ${ }^{[\text {GPP'12] }}$

$$
\begin{aligned}
\mu\left(L_{i}\right) & \cong \frac{\mu\left(B_{O}(i)\right)}{1-e^{-\alpha}} . \\
\mu\left(B_{O}(i)\right) & \cong e^{-\alpha(R-i)} .
\end{aligned}
$$

Most vertices close to the boundary of $B_{O}(i)$

Analysis of RHGs - vertices per layer

(measure centered balls)

Calculations yield ${ }^{\left[G P P^{1} 12\right]}$

$$
\begin{aligned}
\mu\left(L_{i}\right) & \cong \frac{\mu\left(B_{O}(i)\right)}{1-e^{-\alpha}} . \\
\mu\left(B_{O}(i)\right) & \cong e^{-\alpha(R-i)} .
\end{aligned}
$$

Most vertices close to the boundary of
$B_{0}(i)$

Vertex degrees

(measure of non-centered balls)

Calculations yield

$$
\mu\left(B_{P}(R)\right)=C_{\alpha} e^{-\frac{r_{P}}{2}}\left(1+o\left(e^{-\left(\alpha-\frac{1}{2}\right) r_{P}}\right)\right) .
$$

K

Vertex degrees

(measure of non-centered balls)

Calculations yield

$$
\mu\left(B_{P}(R)\right)=C_{\alpha} e^{-\frac{r_{P}}{2}}\left(1+o\left(e^{-\left(\alpha-\frac{1}{2}\right) r_{P}}\right)\right) .
$$

Thus,

Location of neighbors of a vertex

Calculations yield

$$
\mu\left(B_{P}(R) \cap L_{i}\right)=\Theta\left(e^{-\left(\alpha-\frac{1}{2}\right)(R-i)} e^{-\frac{1}{2}\left(R-r_{P}\right)}\right)
$$

Location of neighbors of a vertex

Calculations yield

$$
\begin{aligned}
& \mu\left(B_{P}(R) \cap L_{i}\right)=\Theta\left(e^{-\left(\alpha-\frac{1}{2}\right)(R-i)} e^{-\frac{1}{2}\left(R-r_{P}\right)}\right) \\
& \quad=\left(1-e^{-\left(\alpha-\frac{1}{2}\right)}\right)(1+o(1)) \mu\left(B_{P}(R) \cap B_{O}(i-1)\right) .
\end{aligned}
$$

As a function of i grows like $e^{-\alpha i}$.

So, P has:

- more neighbors towards $\partial B_{O}(R)$
- const. fraction of neighbors "near" $\partial B_{O}(R)$

Consequences/known results

- Power law degree distribution with exponent $2 \alpha+1 \in(2,3)$.
- Average degree constant
- $\Theta(n)$ isolated vertices
- There is a giant component $\Theta(n)^{[B F M, ~ E E C ' 15 ; ~ F M, ~ A P P 17] ~}$
- and much more ... !

The dynamic RHG model

The dynamic RHG model

- Vertices move, maintaining spatial distribution invariant

Our choice: Every vertex moves independently in $B_{O}(R)$ according to a diffusion process with angular and radial component

$$
\Delta_{h}:=\frac{1}{2} \frac{\partial^{2}}{\partial r^{2}}+\frac{\alpha}{2} \frac{1}{\tanh (\alpha r)} \frac{\partial}{\partial r}+\frac{1}{2} \sigma_{\theta}^{2}(r) \frac{\partial^{2}}{\partial \theta^{2}}
$$

with reflecting boundary at $\partial B_{O}(R)$.

The dynamic RHG model

- Vertices move, maintaining spatial distribution invariant

Our choice: Every vertex moves independently in $B_{O}(R)$ according to a diffusion process with angular and radial component

$$
\Delta_{h}:=\frac{1}{2} \frac{\partial^{2}}{\partial r^{2}}+\frac{\alpha}{2} \frac{1}{\tanh (\alpha r)} \frac{\partial}{\partial r}+\frac{1}{2} \sigma_{\theta}^{2}(r) \frac{\partial^{2}}{\partial \theta^{2}}
$$

with reflecting boundary at $\partial B_{O}(R)$. For a fixed time t, the edge $u_{t} v_{t}$ is there iff $d\left(u_{t}, v_{t}\right) \leq R$.

Choice of generator

$$
\Delta_{h}:=\frac{1}{2} \frac{\partial^{2}}{\partial r^{2}}+\frac{\alpha}{2} \frac{1}{\tanh (\alpha r)} \frac{\partial}{\partial r}+\frac{1}{2} \frac{1}{\sinh ^{2}(\beta r)} \frac{\partial^{2}}{\partial \theta^{2}}
$$

with $\beta>0$ being a new parameter

Choice of generator

$$
\Delta_{h}:=\frac{1}{2} \frac{\partial^{2}}{\partial r^{2}}+\frac{\alpha}{2} \frac{1}{\tanh (\alpha r)} \frac{\partial}{\partial r}+\frac{1}{2} \frac{1}{\sinh ^{2}(\beta r)} \frac{\partial^{2}}{\partial \theta^{2}}
$$

with $\beta>0$ being a new parameter

- For larger α, stronger drift towards $\partial B_{O}(R)$
- For larger β, less angular speed

Choice of generator

$$
\Delta_{h}:=\frac{1}{2} \frac{\partial^{2}}{\partial r^{2}}+\frac{\alpha}{2} \frac{1}{\tanh (\alpha r)} \frac{\partial}{\partial r}+\frac{1}{2} \frac{1}{\sinh ^{2}(\beta r)} \frac{\partial^{2}}{\partial \theta^{2}}
$$

with $\beta>0$ being a new parameter

- For larger α, stronger drift towards $\partial B_{O}(R)$
- For larger β, less angular speed
- Far from the origin we use

$$
\Delta_{h}: \approx \frac{1}{2} \frac{\partial^{2}}{\partial r^{2}}+\frac{\alpha}{2} \frac{\partial}{\partial r}+2 e^{-2 \beta r} \frac{\partial^{2}}{\partial \theta^{2}}
$$

Inspiration/related work

Peres, Sinclair, Sousi, Stauffer (2012) consider mobile geometric graphs in \mathbb{R}^{d} with Brownian motion for each vertex.

Inspiration/related work

Peres, Sinclair, Sousi, Stauffer (2012) consider mobile geometric graphs in \mathbb{R}^{d} with Brownian motion for each vertex.

- Detection time $T_{\text {det }}$: Given an artificial vertex Q (outside all neighborhoods or not), when does the first vertex connect to Q ?

Inspiration/related work

Peres, Sinclair, Sousi, Stauffer (2012) consider mobile geometric graphs in \mathbb{R}^{d} with Brownian motion for each vertex.

- Detection time $T_{\text {det }}$: Given an artificial vertex Q (outside all neighborhoods or not), when does the first vertex connect to Q ?

$T_{\text {det }}$ in mobile random geometric graphs

Idea: Vertices detecting by time t define thinned Poisson process with point measure

$$
\mathbb{P}_{x_{0}}\left(T_{\text {det }} \leq t\right) d x_{0}
$$

$T_{\text {det }}$ in mobile random geometric graphs

Idea: Vertices detecting by time t define thinned Poisson process with point measure

$$
\mathbb{P}_{x_{0}}\left(T_{\text {det }} \leq t\right) d x_{0}
$$

and thus

$$
\mathbb{P}\left(T_{d e t}>t\right)=\exp \left(-\int_{\mathbb{R}^{d}} \mathbb{P}_{x_{0}}\left(T_{d e t} \leq t\right) d x_{0}\right)
$$

$T_{\text {det }}$ in mobile random geometric graphs

x_{0} detects Q with the same probability as Q detects x_{0}

Thus

$$
\int_{\mathbb{R}^{d}} \mathbb{P}_{x_{0}}\left(T_{\text {det }} \leq t\right) d x_{0}=\mathbb{E}(\operatorname{vol} W(t))= \begin{cases}\Theta(\sqrt{t}) & \text { if } d=1 \\ \Theta\left(\frac{t}{\log t}\right) & \text { if } d=2 \\ \Theta(t) & \text { if } d \geq 3\end{cases}
$$

with $W(t)$ the Wiener sausage at time t

Our result: tail bounds of detection time for RHGs

Theorem (Kiwi, Linker, M. '22+:)
Let $\alpha \in\left(\frac{1}{2}, 1\right], \beta>0, t:=t(n)$, and assume that particles move according to the generator Δ_{h}. Then, the following hold:
(1) For $\beta \leq \frac{1}{2}$, if $t=\Omega\left(\left(e^{\beta R} / n\right)^{2}\right) \cap O(1)$, then $\mathbb{P}\left(T_{\text {det }} \geq t\right)=\exp \left(-\Theta\left(n e^{-\beta R} \sqrt{t}\right)\right)$.
(1) For $\beta \leq \frac{1}{2}$ and $t=\Omega(1)$ the tail exponent depends on the relation between α and 2β as follows:
(1) For $\alpha<2 \beta$, if $t=O\left(e^{\alpha R}\right)$, then $\mathbb{P}\left(T_{\text {det }} \geq t\right)=\exp \left(-\Theta\left(n e^{-\beta R} t^{\frac{\beta}{\alpha}}\right)\right)$.
(2) For $\alpha=2 \beta$, if $t=O\left(e^{\alpha R} /(\alpha R)\right)$, then $\mathbb{P}\left(T_{\text {det }} \geq t\right)=\exp \left(-\Theta\left(n e^{-\beta R} \sqrt{t \log t}\right)\right)$.
(3) For $\alpha>2 \beta$, if $t=O\left(e^{2 \beta R}\right)$, then $\mathbb{P}\left(T_{\text {det }} \geq t\right)=\exp \left(-\Theta\left(n e^{-\beta R} \sqrt{t}\right)\right)$.
(Ii) For $\beta>\frac{1}{2}$, if $t=\Omega(1) \cap O\left(e^{\alpha R}\right)$, then $\mathbb{P}\left(T_{\text {det }} \geq t\right)=\exp \left(-\Theta\left(t^{\frac{1}{2 \alpha}}\right)\right)$.
(lower bounds on t correspond to expectation, upper bounds on t are s.t. for larger t same probability to have empty graph)

Angular movement only

To understand the proof, consider first angular movement only or radial movement only

$$
\Delta_{\text {ang }}:=\frac{1}{2} \frac{1}{\sinh ^{2}(\beta r)} \frac{\partial^{2}}{\partial \theta^{2}} \approx 2 e^{-2 \beta r} \frac{\partial^{2}}{\partial \theta^{2}}
$$

Angular movement only

To understand the proof, consider first angular movement only or radial movement only

$$
\Delta_{\text {ang }}:=\frac{1}{2} \frac{1}{\sinh ^{2}(\beta r)} \frac{\partial^{2}}{\partial \theta^{2}} \approx 2 e^{-2 \beta r} \frac{\partial^{2}}{\partial \theta^{2}}
$$

In t time units a vertex in layer r moves (in expectation) $\Theta\left(\sqrt{t} e^{-\beta r}\right)$ radians.

Angular movement only

To understand the proof, consider first angular movement only or radial movement only

$$
\Delta_{\text {ang }}:=\frac{1}{2} \frac{1}{\sinh ^{2}(\beta r)} \frac{\partial^{2}}{\partial \theta^{2}} \approx 2 e^{-2 \beta r} \frac{\partial^{2}}{\partial \theta^{2}}
$$

In t time units a vertex in layer r moves (in expectation) $\Theta\left(\sqrt{t} e^{-\beta r}\right)$ radians. Define then

$$
\mathcal{D}_{t}=\left\{x_{0} \in B_{0}(R),\left|\theta_{0}\right| \leq \sqrt{t} e^{-\beta r}\right\}
$$

the set of points detecting Q by time t

Angular movement only

To understand the proof, consider first angular movement only or radial movement only

$$
\Delta_{\text {ang }}:=\frac{1}{2} \frac{1}{\sinh ^{2}(\beta r)} \frac{\partial^{2}}{\partial \theta^{2}} \approx 2 e^{-2 \beta r} \frac{\partial^{2}}{\partial \theta^{2}}
$$

In t time units a vertex in layer r moves (in expectation) $\Theta\left(\sqrt{t} e^{-\beta r}\right)$ radians.
Define then

$$
\mathcal{D}_{t}=\left\{x_{0} \in B_{O}(R),\left|\theta_{0}\right| \leq \sqrt{t} e^{-\beta r}\right\} \supseteq B_{O}\left(\frac{1}{2 \beta} \log t\right)
$$

the set of points detecting Q by time t
the detecting set \mathcal{D}_{t}

Since in \mathcal{D}_{t} the detection probability is $\Omega(1)$, we have

$$
\int_{\mathcal{D}_{t}} \mathbb{P}_{x_{0}}\left(T_{\text {det }}>t\right) d \mu\left(x_{0}\right)=\Omega\left(\mu\left(\mathcal{D}_{t}\right)\right)
$$

the detecting set \mathcal{D}_{t}

Since in \mathcal{D}_{t} the detection probability is $\Omega(1)$, we have

$$
\int_{\mathcal{D}_{t}} \mathbb{P}_{x_{0}}\left(T_{\text {det }}>t\right) d \mu\left(x_{0}\right)=\Omega\left(\mu\left(\mathcal{D}_{t}\right)\right)
$$

Radial movement only

$$
\Delta_{r a d}:=\frac{1}{2} \frac{\partial^{2}}{\partial r^{2}}+\frac{\alpha}{2} \frac{1}{\tanh (\alpha r)} \frac{\partial}{\partial r} \approx \frac{1}{2} \frac{\partial^{2}}{\partial r^{2}}+\frac{\alpha}{2} \frac{\partial}{\partial r}
$$

In t time units a vertex reaches (in expectation) radius $R-\frac{1}{\alpha} \log t$.

Radial movement only

$$
\Delta_{r a d}:=\frac{1}{2} \frac{\partial^{2}}{\partial r^{2}}+\frac{\alpha}{2} \frac{1}{\tanh (\alpha r)} \frac{\partial}{\partial r} \approx \frac{1}{2} \frac{\partial^{2}}{\partial r^{2}}+\frac{\alpha}{2} \frac{\partial}{\partial r}
$$

In t time units a vertex reaches (in expectation) radius $R-\frac{1}{\alpha} \log t$. At $\partial B_{Q}(R)$ this corresponds to an angle $\frac{1}{n} t^{\frac{1}{2 \alpha}}$

Radial movement only Defining a new set

$$
\mathcal{D}_{t}=\left\{x_{0} \in B_{O}(R),\left|\theta_{0}\right| \leq \frac{1}{n} t^{\frac{1}{2 \alpha}}\right\}
$$

of points that detect Q by time t we have

$$
\int_{\mathcal{D}_{t}} \mathbb{P}_{x_{0}}\left(T_{\text {det }}>t\right) d \mu\left(x_{0}\right)=\Omega\left(\mu\left(\mathcal{D}_{t}\right)\right)=\Omega\left(t^{\frac{1}{2 \alpha}}\right)
$$

Figure: The set \mathcal{D}_{t}

Back to mixed movement - where are detecting points?

Back to the mixed movement - where are detecting points?

Back to the mixed movement - where are detecting points?

- $\Delta_{\text {ang }} \approx 2 e^{-2 \beta r} \frac{\partial^{2}}{\partial \theta^{2}} \Longrightarrow$ in every layer we know angular variance

Back to the mixed movement - where are detecting points?

- $\Delta_{\text {ang }} \approx 2 e^{-2 \beta r} \frac{\partial^{2}}{\partial \theta^{2}} \Longrightarrow$ in every layer we know angular variance
- By stationarity, how much time (before t) roughly one spends in each layer In t time units spend $t e^{-\alpha(R-r)}$ time in layer r \Downarrow
The contribution to the angular variance is $t e^{-\alpha(R-r)} e^{-2 \beta r}$

Back to the mixed movement - where are detecting points?

- $\Delta_{\text {ang }} \approx 2 e^{-2 \beta r} \frac{\partial^{2}}{\partial \theta^{2}} \Longrightarrow$ in every layer we know angular variance
- By stationarity, how much time (before t) roughly one spends in each layer In t time units spend $t e^{-\alpha(R-r)}$ time in layer r \Downarrow
The contribution to the angular variance is $t e^{-\alpha(R-r)} e^{-2 \beta r}$
- If $\alpha>2 \beta$ main contribution from the boundary
- If $\alpha<2 \beta$ main contribution from smallest radius reached
- If $\alpha=2 \beta$ all layers contribute

Points that detect

- Case $\alpha>2 \beta$: Angular variance $=\Theta\left(t^{-2 \beta R}\right)$, thus angular movement is $\Theta\left(\sqrt{t} n^{-2 \beta}\right)$

Points that detect

- Case $\alpha>2 \beta$: Angular variance $=\Theta\left(t e^{-2 \beta R}\right)$, thus angular movement is $\Theta\left(\sqrt{t} n^{-2 \beta}\right)$

$$
\begin{gathered}
\mathcal{D}_{t}=\left\{x_{0} \in B_{0}(R),\left|\theta_{0}\right| \leq \sqrt{t} n^{-2 \beta}\right\} \\
\Downarrow \\
\int_{\mathcal{D}_{t}} \mathbb{P}_{x_{0}}\left(T_{\text {det }}>t\right) d \mu\left(x_{0}\right)=\Omega\left(\mu\left(\mathcal{D}_{t}\right)\right)=\Omega\left(n^{1-2 \beta} \sqrt{t}\right)
\end{gathered}
$$

- Caso $\alpha=2 \beta$: If we spend expected time in each layer,

$$
\text { total angular variance }=\Theta\left(t e^{-2 \beta R} \log t\right)
$$

Points that detect

- Case $\alpha>2 \beta$: Angular variance $=\Theta\left(t e^{-2 \beta R}\right)$, thus angular movement is $\Theta\left(\sqrt{t} n^{-2 \beta}\right)$

$$
\begin{gathered}
\mathcal{D}_{t}=\left\{x_{0} \in B_{0}(R),\left|\theta_{0}\right| \leq \sqrt{t} n^{-2 \beta}\right\} \\
\Downarrow \\
\int_{\mathcal{D}_{t}} \mathbb{P}_{x_{0}}\left(T_{\text {det }}>t\right) d \mu\left(x_{0}\right)=\Omega\left(\mu\left(\mathcal{D}_{t}\right)\right)=\Omega\left(n^{1-2 \beta} \sqrt{t}\right)
\end{gathered}
$$

- Caso $\alpha=2 \beta$: If we spend expected time in each layer,

$$
\text { total angular variance }=\Theta\left(t e^{-2 \beta R} \log t\right)
$$

Then

$$
\begin{gathered}
\mathcal{D}_{t}=\left\{x_{0} \in B_{0}(R),\left|\theta_{0}\right| \leq \sqrt{t \log t n^{-2 \beta}}\right\} \\
\\
\Downarrow \\
\int_{\mathcal{D}_{t}} \mathbb{P}_{x_{0}}\left(T_{\text {det }}>t\right) d \mu\left(x_{0}\right)=\Omega\left(\mu\left(\mathcal{D}_{t}\right)\right)=\Omega\left(n^{1-2 \beta} \sqrt{t \log t}\right)
\end{gathered}
$$

Proof idea for the case $\alpha=2 \beta$

Ingredients:

- (easy) $\mathbb{E}_{\mu}\left(\int_{0}^{t} \mathbf{1}_{[0, k]}\left(r_{s}\right) d s\right) \approx t e^{-\alpha(R-k)}$
- Second moment method: show $\mathbb{P}_{\mu}\left(\int_{0}^{t} \mathbf{1}_{[0, k]}\left(r_{s}\right) d s>\gamma t e^{-\alpha(R-k)}\right) \geq \eta$ by coupling with discrete integer-valued process (typically not too close to the origin in the beginning, and typically many jumps)

Points that detect

- Case $\alpha<2 \beta$: As in the radial case, a vertex typically reaches radius $r_{0}=R-\frac{1}{\alpha} \log t$ and spends $\Theta(1)$ time units in this layer.

Points that detect

- Case $\alpha<2 \beta$: As in the radial case, a vertex typically reaches radius $r_{0}=R-\frac{1}{\alpha} \log t$ and spends $\Theta(1)$ time units in this layer.

Angular variance there $\Theta\left(e^{-2 \beta r_{0}}\right)=\Theta\left(n^{-4 \beta} t^{\frac{2 \beta}{\alpha}}\right)$. Then

$$
\begin{gathered}
\mathcal{D}_{t}=\left\{x_{0} \in B_{0}(R),\left|\theta_{0}\right| \leq t^{\frac{\beta}{\alpha}} n^{-2 \beta}\right\} \\
\Downarrow \\
\int_{\mathcal{D}_{t}} \mathbb{P}_{x_{0}}\left(T_{\text {det }}>t\right) d \mu\left(x_{0}\right)=\Omega\left(\mu\left(\mathcal{D}_{t}\right)\right)=\Omega\left(n^{1-2 \beta} t^{\frac{\beta}{\alpha}}\right)
\end{gathered}
$$

Points that detect

- Case $\alpha<2 \beta$: As in the radial case, a vertex typically reaches radius $r_{0}=R-\frac{1}{\alpha} \log t$ and spends $\Theta(1)$ time units in this layer.

Angular variance there $\Theta\left(e^{-2 \beta r_{0}}\right)=\Theta\left(n^{-4 \beta} t^{\frac{2 \beta}{\alpha}}\right)$. Then

$$
\begin{gathered}
\mathcal{D}_{t}=\left\{x_{0} \in B_{0}(R),\left|\theta_{0}\right| \leq t^{\frac{\beta}{\alpha}} n^{-2 \beta}\right\} \\
\Downarrow \\
\int_{\mathcal{D}_{t}} \mathbb{P}_{x_{0}}\left(T_{\text {det }}>t\right) d \mu\left(x_{0}\right)=\Omega\left(\mu\left(\mathcal{D}_{t}\right)\right)=\Omega\left(n^{1-2 \beta} t^{\frac{\beta}{\alpha}}\right)
\end{gathered}
$$

Note: If $\beta \geq \frac{1}{2}$ we may detect only by radial movement

$$
\begin{gathered}
\mathcal{D}_{t}=\left\{x_{0} \in B_{0}(R),\left|\theta_{0}\right| \leq t^{\frac{1}{2 \alpha}} n^{-1}\right\} \\
\Downarrow \\
\int_{\mathcal{D}_{t}} \mathbb{P}_{x_{0}}\left(T_{\text {det }}>t\right) d \mu\left(x_{0}\right)=\Omega\left(\mu\left(\mathcal{D}_{t}\right)\right)=\Omega\left(t^{\frac{1}{2 \alpha}}\right)
\end{gathered}
$$

Control of $\overline{\mathcal{D}}_{t}$

Idea: Instead of detecting Q points only try to exit a "box" around current position

Control of $\overline{\mathcal{D}}_{t}$

Idea: Instead of detecting Q points only try to exit a "box" around current position

- We control the probability to exit from above by radial movement

Control of $\overline{\mathcal{D}}_{t}$

Idea: Instead of detecting Q points only try to exit a "box" around current position

- We control the probability to exit from above by radial movement
- How to control exit from the sides of the box?

Control of $\overline{\mathcal{D}}_{t}$

$$
\Delta_{h}: \approx \frac{1}{2} \frac{\partial^{2}}{\partial r^{2}}+\frac{\alpha}{2} \frac{\partial}{\partial r}+2 e^{-2 \beta r} \frac{\partial^{2}}{\partial \theta^{2}}
$$

- Conditional under radial movement, the angular movement follows a Brownian motion $B_{I(t)}$ where

$$
I(t) \approx \int_{0}^{t} e^{-2 \beta r_{s}} d s
$$

Control of $\overline{\mathcal{D}}_{t}$

$$
\Delta_{h}: \approx \frac{1}{2} \frac{\partial^{2}}{\partial r^{2}}+\frac{\alpha}{2} \frac{\partial}{\partial r}+2 e^{-2 \beta r} \frac{\partial^{2}}{\partial \theta^{2}}
$$

- Conditional under radial movement, the angular movement follows a Brownian motion $B_{l(t)}$ where

$$
I(t) \approx \int_{0}^{t} e^{-2 \beta r_{s}} d s
$$

- known fact (Dufresne): if X_{u} is Brownian motion with drift $\alpha / 2$,

$$
\int_{0}^{\infty} e^{-2 \beta X_{u}} d u=W e^{-2 \beta X_{0}}
$$

where W follows an inverse Gamma distribution

$$
f_{W}(x)=\frac{\left(2 \beta^{2}\right)^{\frac{\alpha}{2 \beta}}}{\Gamma\left(\frac{\alpha}{2 \beta}\right)} x^{-\frac{\alpha}{2 \beta}-1} e^{-\frac{2 \beta^{2}}{x}}
$$

How to bound $I(t)$?

- Split the radial trajectory into excursions

How to bound $I(t)$?

- Split the radial trajectory into excursions

- $I(t) \approx \int_{0}^{t} e^{-2 \beta r_{s}} d s \approx W_{0} e^{-2 \beta r_{0}}+C \sum_{i=1}^{c t} W_{i} e^{-2 \beta R}$

How to bound $I(t)$?

- Split the radial trajectory into excursions

- $I(t) \approx \int_{0}^{t} e^{-2 \beta r_{s}} d s \approx W_{0} e^{-2 \beta r_{0}}+C \sum_{i=1}^{c t} W_{i} e^{-2 \beta R}$
- We control the sum by large deviation for heavy tails

Thank you!

