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Goal

Find models that exhibit characteristic properties of “real world networks/complex
networks”

Example of networks: Power grid
Internet
Social networks
Biological interaction networks

Typical properties: Sparse
Heterogeneous
Locally dense (exhibit clustering phenomena)
Small world
Navigable
Scale free (with exponent between 2 and 3)
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Goal

Find models that exhibit characteristic properties of “real world networks/complex
networks”

Example of networks: Power grid
Internet
Social networks
Biological interaction networks

Typical properties: Sparse
Heterogeneous
Locally dense (exhibit clustering phenomena)
Small world
Navigable
Scale free (with exponent between 2 and 3)

Also, we want models that are susceptible to mathematical analysis!
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First model: random geometric graphs

Define G = (V, E) as follows:

> Choose location of each v € V uniformly and independently in [0, 1]? (or Poisson
process with intensity n).

» Let uv € E iff Euclidean distance between u and v is at most r.

Note: No power law degree distribution, no small diameter in general ...
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Example of random geom

etric graphs

e A
W
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r=0.09
n = 500 points



Alternative model: Random hyperbolic graphs (RHGs)

Introduced by Krioukov, Papadopoulos, Kitsak, Vahdat, Boguiig " i ™
Like random geometric graphs but where the underlying space instead of being
Euclidean is Hyperbolic.

Hyperbolic plane H?
Euclidean plane R?

5/39



Poincaré disk model of H?

> 2 is represented as an open disk D.

» Blue curves are geodesics (arcs of circles
perpendicularly incident to D).

» Each heptagon has the same area.
» Points in &D are at infinite distance from X.

» Points at (Euclidean) distance y from X are at
hyperbolic distance r from X where

_|n1+y

[Rendered with KaleidoTile by J. Weeks] 1 - y

Space expands at exponential rate!

Continuous analogue of regular trees

6/39



Native representation of H?

> H2 is represented as R2.

» A point p is represented in polar coordinates.

> 1, is the hyperbolic distance between p and O
Bo(R): Ball of radius R centered

at origin O with perimeter
27 sinh R = ©(e).
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Poincaré vs native representation of H?

Poincaré model
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Formal definition of RHG model: G, (n)
(Gugelmann, Panagiotou, Peter IGALP 12])

Model parameters:
a,veRy,neN

R
Set R:=2In2.

Bo(R)

Choose an n-node graph G = (V, E) as follows (or Poisson model with intensity n)
» Each v € V uniformly and independently in Bo(R).
» uv e Eiff u € B/(R).
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Formal definition of RHG model: G, (n)

(Gugelmann, Panagiotou, Peter [ICALP 12])

Model parameters:
a,veRy,neN

SetR:=2In". o
Bo(R)

Choose an n-node graph G = (V, E) as follows (or Poisson model with intensity n):
» Each v € V so ¢, ~ Unif[0, 27) independent of r, with density:

—a(R—r)

f(r) = o sinh(ar) = ae if 0 < r < Rand 0 otherwise.

(Here, C, g is a normalizing constant).
> uv e Eiffue By(R).
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Soft version

Incorporates a temperature T and a probability of connecting u and v:

1

p(d) = 71 ppeRTEy

where d := d..2(u, v) is the (hyperbolic) distance between u, v € HZ.
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and its heat plot
(Colder colors correspond to smaller density)

)

Pdf of (ry, ¢v
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Calculating distances
Hyperbolic distance from v to origin O, ... easy! Just r, .
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Calculating distances
Hyperbolic distance from v to origin O, ... easy! Just r, .

In general, use hyperbolic law of cosines

cosh(d) = cosh(ry) cosh(r,) — sinh(ry) sinh(r,) cos(pu,v)

Lemma: ¢u,v < 0g(ru, 1v) < dy2(u,v) < R.
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Examples of RHGs
(v = 1 fixed, n = 500)
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Examples of RHGs

a = 3 fixed, n = 500)
7

o = = E T 9Dac
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What drew attention...
Mapping of Internet’s Autonomous Systems (ASs, 2009)
Y {
%{ L

Data set:

» 23,752 ASs
» 58,416 links

iﬁ"‘h Korea

ALeeiew Zesang
Greece

> Average degree 4.92

“Maximum Likelihood” fit:

> o =055
> R=27
» Temperature T = 0.69
[From Bogufa, Papadopoulus, Krioukov (Nat. Comm. '10)]
15/39
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Analysis of RHGs - vertices per layer
(measure centered balls)

Calculations yield“"" "

u(Ly = H(Bo(i)

1—e— "
n(Bo(i) = e~

Most vertices close to the boundary of
Bo(1)
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Analysis of RHGs - vertices per layer
(measure centered balls)

Calculations yield“™" "

\ ~ #(Bo(i))
/‘I’(L’) - 1—e—o .
n(Bo(i) = e~

Most vertices close to the boundary of
Bo(i)
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Vertex degrees
(measure of non-centered balls)

Calculations yield

1(Bp(R)) = Cae™ % (14 o(e™ (=~ 2)),

X

(=]
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Vertex degrees
(measure of non-centered balls)

Calculations yield

1(Bp(R)) = Cae™ % (14 o(e™ (=~ 2)),

Thus,
O(In n) (no concentration),
if e > R—2In R+0O(1),
X deg(P) =
e(ne‘r?P) (concentrated),
otherwise.
(=J6e(+)
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Location of neighbors of a vertex

Calculations yield

1(Br(R) N L)) = ©(e~*~2) A= g3 (R-1r))
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Location of neighbors of a vertex

Calculations yield

=(1-

w(Br(RYN L) = e(eﬁaf%)(n—f)ef;mfrp))

e "2))(1 + o(1))u(Bp(R) N Bo(i — 1))
As a function of i grows like e~

So, P has:

> more neighbors towards 9Bo(R)
» const. fraction of neighbors “near” 9B (R)
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Consequences/known results

> Power law degree distribution with exponent 2a + 1 € (2, 3)
> Average degree constant

» O(n) isolated vertices

» There is a giant component ©(n)

[BFM, EJC'15; FM, AAP’17]
» and much more ... !
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The dynamic RHG model

o = = E T 9Dac
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The dynamic RHG model

> Vertices move, maintaining spatial distribution invariant

Our choice: Every vertex moves independently in Bo(R) according to a diffusion
process with angular and radial component

1 a1 0 1,
An = 552+ 2tantan ar T 27°0)

02
002

with reflecting boundary at 9Bo(R).
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The dynamic RHG model

> Vertices move, maintaining spatial distribution invariant

Our choice: Every vertex moves independently in Bo(R) according to a diffusion
process with angular and radial component

Ay = 1i2+g 1 24_12(,—)872
"7 282 T 2tanh(ar)or T 277V 92

with reflecting boundary at 9B(R). For a fixed time ¢, the edge u;Vv; is there iff
d(Ut, Vt) < R.
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Choice of generator

R N A NS B
"7 20r2 " 2tanh(ar) dr | 2sinh?(gr) 962
with 8 > 0 being a new parameter
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Choice of generator

R N A NS B
"7 20r2 " 2tanh(ar) dr | 2sinh?(gr) 962
with 8 > 0 being a new parameter

» For larger «, stronger drift towards 9Bo(R)

» For larger 3, less angular speed

29/29



Choice of generator

PR I N N B
209r?  2tanh(ar) or = 2sinh?(8r) 062
with 8 > 0 being a new parameter
» For larger «, stronger drift towards 9Bo(R)
» For larger 3, less angular speed
» Far from the origin we use
Ap = %5—:2 + %% + 272" &
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Inspiration/related work

Peres, Sinclair, Sousi, Stauffer (2012) consider mobile geometric graphs in R? with
Brownian motion for each vertex.
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» Detection time T,: Given an artificial vertex Q (outside all neighborhoods or
not), when does the first vertex connect to Q?
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Tget in mobile random geometric graphs

Py (Taer < t)dXo

Idea: Vertices detecting by time t define thinned Poisson process with point measure




Tget in mobile random geometric graphs

Py (Taer < t)dXo

Idea: Vertices detecting by time t define thinned Poisson process with point measure

and thus

P(Tdet > t) = exp (— /d IPXO(TdeI < t)dXo)
R
54/29

[m]



Tget in mobile random geometric graphs

Xp detects Q with the same probability as Q detects xp

AL

% >

Thus
oW1 ifd=1
/ Py, (Taet < t)dxo = E(volW(1)) = { O(557) ifd =2
we o) ifd>3

with W(t) the Wiener sausage at time ¢
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Our result: tail bounds of detection time for RHGs

Theorem (Kiwi, Linker, M. '22+:)

Leta € (3,1], B> 0, t := t(n), and assume that particles move according to the
generator Ay. Then, the following hold:

@ Forp <1, ift=0((e’/n)?)NO1), thenP(Tee > t) = exp (—O(ne *FV1)).

@ Forp< % and t = Q(1) the tail exponent depends on the relation between o and
20 as follows:
Q Fora <28, ift = O(e™R), then P(Tye; > 1) = exp (—O(nePFt%)).
@ Fora =28, ift = O(e*R/(aR)), thenP(Tye > t) = exp (—O(ne~ R /tlogt)).
© Fora > 28, ift = O(e?#R), then P(Tyer > t) = exp (—O(ne~?AV1)).

@ Forp > 1, ift =Q(1) N O(e*F), then P(Tyer > ) = exp (—O(17+)).

(lower bounds on ¢ correspond to expectation, upper bounds on t are s.t. for larger ¢
same probability to have empty graph)
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Angular movement only

only

To understand the proof, consider first angular movement only or radial movement

1 1 o2 _opr 02
Bang = 5 Gun2(pr) 002 2 oo
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Angular movement only

only

1 1
Aang —

To understand the proof, consider first angular movement only or radial movement
82

sy P
2 snhe(ar) 9 " 2¢ " aee

In t time units a vertex in layer r moves (in expectation) ©(v/te~?") radians.
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Angular movement only

To understand the proof, consider first angular movement only or radial movement
only
11 ? _opr O°

o ~ 2e zﬁ'a—

Barg = 3 Gon2(r) 062 o2

In t time units a vertex in layer r moves (in expectation) ©(v/te~?") radians.
Define then

Di = {x0 € Bo(R), |o| < Vte "}
the set of points detecting Q by time ¢
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Angular movement only

To understand the proof, consider first angular movement only or radial movement
only
11 ? _opr O°

o ~ 2e zﬁ'a—

Barg = 3 Gon2(r) 062 o2

In t time units a vertex in layer r moves (in expectation) ©(v/te~?") radians.
Define then

Di = {X € Bo(R), || < vte"""} D Bo(5; log 1)
the set of points detecting Q by time ¢
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the detecting set D;
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Since in D; the detection probability is (1), we have

[ Ex(Taa > )
Dt

(D))
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the detecting set D;

28/329

Since in D; the detection probability is (1), we have

[ Ex(Taa > )
Dt

(D))
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Radial movement only

1 0
Apag =

« 1
20, "

1
2 tanh(ar)

10 e
T 202 " 2

9 b
or ar
In t time units a vertex reaches (in expectation) radius R — é log t.
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Radial movement only

1 0
Apag =

« 1
20, "

1
2 tanh(ar)

ar ~2ar2 " 20r
In t time units a vertex reaches (in expectation) radius R — é log t. At 9Bg(R) this
corresponds to an angle ‘;ti
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Radial movement only
Defining a new set

of points that detect Q by time t we have

Js

Dy = {x0 € Bo(R), |f0| < 1tz=}

A

<)

Py (Taer > t)du(xo) = Q(u(Dr)) = Q(t2

Figure: The set Dy
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Back to mixed movement - where are detecting points?




Back to the mixed movement - where are detecting points?
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Back to the mixed movement - where are detecting points?
> Agng ~ 2€

= in every layer we know angular variance
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—28r 9

Back to the mixed movement - where are detecting points?
> Agng ~ 2€

962

= in every layer we know angular variance

In t time units spend te

» By stationarity, how much time (before t) roughly one spends in each layer
—a(R—r

) time in layer r
4
The contribution to the angular variance is te

—a(R—r) e—Z,Br
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Back to the mixed movement - where are detecting points?

v

2 . .
Dang ~ 272772 — in every layer we know angular variance

v

By stationarity, how much time (before t) roughly one spends in each layer

—a(R—r

In t time units spend te ) time in layer r

4

The contribution to the angular variance is te~*(f =" g2

v

If @« > 23 main contribution from the boundary

v

If &« < 23 main contribution from smallest radius reached

> If o = 273 all layers contribute
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Points that detect
o(vtn2)

> Case o > 24: Angular variance = ©(te~2%f), thus angular movement is
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Points that detect
> Case o > 24: Angular variance = ©(te~2%f), thus angular movement is
o(Vin %)

(%0 € Bo(R). [6o] < v/in 2}
(2
[ Bal(Toa > t1dlut0)

t

(u(Dr)) = Q(n"~*V1)
» Caso a = 273: If we spend expected time in each layer,

total angular variance

o(te *Flogt)
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Points that detect
> Case o > 24: Angular variance = ©(te~2%f), thus angular movement is
o(Vin %)

(%0 € Bo(R). [6o] < v/in 2}
(2
[ Bal(Toa > t1dlut0)

t

(1(Dr)) = Q(n' V1)

» Caso a = 273: If we spend expected time in each layer,
Then

total angular variance

o(te *Flogt)

{xo € Bo(R),|00| < /tlogtn~?
(3

/ Py (Toer > 1)dpu(x0) = Qu(Dr)) = Qn'~2*/Tiog 1)

D¢
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Proof idea for the case o = 283

Ingredients:
(easy) E / 110,41 rs)ds o~ o(R—K)

» Second moment method: show PP, (fot 1}0,4(rs)ds > wte“*(”‘k)) > 1 by coupling

with discrete integer-valued process (typically not too close to the origin in the
beginning, and typically many jumps)
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Points that detect

> Case o < 23: As in the radial case, a vertex typically reaches radius
n=R- é log t and spends ©(1) time units in this layer.

25/29



Points that detect

> Case o < 23: As in the radial case, a vertex typically reaches radius
n=R- é log t and spends ©(1) time units in this layer.

Angular variance there ©(e~2%0) = ©(n~**t% ). Then

Dy = {x € Bo(R), |6o] < ton2°}

I
/ IPXO(Tdet > t)du(xo) = Q(/'L(,Dt)) _ Q(n1_2gtg)
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Points that detect

> Case o < 23: As in the radial case, a vertex typically reaches radius
rn=R- é log t and spends ©(1) time units in this layer.

Angular variance there ©(e~2%0) = ©(n~**t% ). Then

Dt = {XO S BO(F)))7 |00| S tgn_zﬁ}
3
/ IPXO(Tdet > t)du(xo) — Q(N(Dt)) _ Q(n1_23t§)
Dt

Note: If 3 > J we may detect only by radial movement

Dt = {xo € Bo(R), |6o] < tinq}
y
|| (T > t1uto0) = (D) = (1)
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Control of D;

Idea: Instead of detecting Q points only try to exit a "box” around current position
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Idea: Instead of detecting Q points only try to exit a "box” around current position

» We control the probability to exit from above by radial movement
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Control of D;

Idea: Instead of detecting Q points only try to exit a "box” around current position

» We control the probability to exit from above by radial movement
» How to control exit from the sides of the box?
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Control of D;

10 _opr 0P
An ™ 5or Taar T2 o
motion Bj) where

» Conditional under radial movement, the angular movement follows a Brownian

t
I(t)w/ e ? s ds
0
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Control of D;

1 a0 _opr 0P
A~ 5ort o T2 G

» Conditional under radial movement, the angular movement follows a Brownian
motion Bj) where

t
I(t)z/ e ? s ds
0

» known fact (Dufresne): if X, is Brownian motion with drift «/2,
/ e gy = We 2%
0

where W follows an inverse Gamma distribution

(28T a2

fw(X) M) X 27 e x
28
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How to bound /(t)?

» Split the radial trajectory into excursions

M//V[/qﬂwv/r’/wﬁ/wrvf
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How to bound /(t)?

» Split the radial trajectory into excursions

M//V[/qﬂwv/r’/wﬁ/wrvf

t ct
> I(t)z/ e ¥rds ~ Woe 2+ CY  We
0

i=1
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How to bound /(t)?

» Split the radial trajectory into excursions

/VA,HWV/F,/WA/WrV,/

t ct
> I(t)z/ e ¥rds ~ Woe 2+ CY  We
0

i=1
» We control the sum by large deviation for heavy tails
28/29



Thank you!

o = = E T 9Dac
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