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Themes

• What drives feature learning in modern and classic architectures?
• Understanding capacity & expressivity & optimization

• Approach: focus on idealized synthetic tasks. Specifically, running 
theme of sparse functions
• Implicit theme: can we understand representation learning as circuit 

learning?
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Part 2: Parities & Emergence
Joint work with Boaz Barak, Surbhi 
Goel, Sham Kakade, Eran Malach, 
& Cyril Zhang

Part 1: Self-Attention & Transformers
Joint work with Surbhi Goel, Sham 
Kakade, & Cyril Zhang
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Part 1
Inductive Biases and Variable Creation in 
Self-Attention Mechanisms, ICML ‘22
with Surbhi Goel, Sham Kakade, & Cyril 
Zhang
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The Self-Attention Revolution

Computer vision

Reinforcement learning
Language

Computational biology

Mathematics
Automated programming

etc.

Automated programming
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Add & Normalize
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networks

Q K VW (2) ,W (2) ,W (2)
Q K VW (3) ,W (3) ,W (3)

Q K VW (1) ,W (1) ,W (1)

Transformer

18



Add & Normalize

Add & Normalize

Identical Fully-connected 
networks

Q K VW (2) ,W (2) ,W (2)
Q K VW (3) ,W (3) ,W (3)

Q K VW (1) ,W (1) ,W (1)

Transformer

19



Add & Normalize

Add & Normalize

Identical Fully-connected
networks

Q K VW (2) ,W (2) ,W (2)
Q K VW (3) ,W (3) ,W (3)

Q K VW (1) ,W (1) ,W (1)

Transformer

}One
Transformer
Layer

20



Transformer

Add & Normalize

Add & Normalize
Fully-connected networks

Self-attention heads
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Transformer

I know you are but what am [mask]

Add & Normalize

Add & Normalize
Fully-connected networks

Self-attention heads

Add & Normalize

Add & Normalize
Fully-connected networks

Self-attention heads

Add & Normalize

Add & Normalize
Fully-connected networks

Self-attention heads

24



Inductive biases of attention

Source: “What Does BERT Look At? An Analysis of 
BERT’s Attention”
Clark, Khandelwal, Levy, Manning, 2019

Attention weights are sparse
(or close to uniform)
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Inductive biases of attention

Source: “Offline Reinforcement Learning as One Big
Sequence Modeling Problem”
Janner, Li, Levine

Attention weights are sparse
(or close to uniform)
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Main result: Sparse variable creation

The class of s-sparse functions of length-T inputs
can be learned by

the class of Transformers layers with weight norms 2O(s)

with sample complexity scaling as log(T)

MLP

optimal
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MAIN RESULT - CAPACITY

Error Sequence lengthNorm bound on weights
∥ 𝑊! ∥", ∥ 𝑊! ∥",$,
∥ 𝑊%𝑊&

' ∥",$≤ 𝐶

Generalization error

Using covering numbers as the capacity measure

Result for one-layer Transformers below.
For multi-layer case, there is an exp(spectral norms) factor
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MAIN RESULT - CAPACITY

Using Pseudo-dimension as the capacity measure

4 points that are shattered for 𝑇 = 16



Main result - Expressivity

Any s-sparse Boolean function f can be exactly represented by a 
Transformer layer with weight norms 2O(s).

If f is symmetric, only poly(s) weight norms are required.

MLPIntuition
- Softmax allows sparse variable 
selection
- MLP allows arbitrary function to be 
applied
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Optimization (sparse conjunctions)

Train a one-layer 
Transformer

- As input length T grows, 
how large does the 
training set need to be to 
avoid overfitting?

- Consistent with log(T) 
dependence in 
generalization bound!

𝑥⃗ ∼ unif 0,1 "

𝑦 = 𝑥#!𝑥#"𝑥##



Part 1 Recap

• Loose ends

• capacity upper/lower bounds aren’t tight

• Don’t know how to handle trainable positional encodings

• Low-norm Transformers ≈ simple circuits

• What is the right circuit class for capturing the inductive bias 
of Transformers?

• Optimization!
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Part 2
Hidden Progress in Deep Learning: SGD 
Learns Parities Near the Computational 
Limit, NeurIPS ‘22
with Boaz Barak, Surbhi Goel, Sham 
Kakade, Eran Malach, & Cyril Zhang
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"People really enjoying a machine learning 
seminar", painting by Pablo Picasso



Mysteries of contemporary deep learning

1. How do neural networks learn to construct useful features?
2. How do neural networks learn to “reason” / compute 

“combinatorial” functions?
3. Why are there sometimes emergent breakthroughs in capabilities 

as resources are scaled up?



3. Emergence

Scaling Laws for Neural Language Models
Kaplan et al. 2020

Emergent Abilities of Large Language Models
Wei et al. 2022



3. Emergence

Beyond the Imitation Game: 
Quantifying and extrapolating the 
capabilities of language models

435 authors 2022



3. Emergence

Grokking: Generalization Beyond Overfitting on Small Algorithmic Datasets
Power et al., 2022



Mysteries of contemporary deep learning

1. How do neural networks learn to construct useful features?
2. How do neural networks learn to “reason” / compute 

“combinatorial” functions?
3. Why are there sometimes emergent breakthroughs in capabilities 

as resources are scaled up?



Our approach

Hidden Progress in Deep Learning: SGD Learns Parities Near the 
Computational Limit
Joint work with Boaz Barak, Surbhi Goel, Sham Kakade, Eran Malach, and 
Cyril Zhang

Analyze a single synthetic task that exhibits these mysteries



Learning sparse parities

𝜒" 𝑥 = ∑#∈"𝑥#mod 2
𝑘-way Boolean XOR

1

Parity function 𝜒$ ∶ 0,1 % → {0,1}:

𝑘-sparse parity learning problem: given samples 𝑥, 𝑦 ~ 𝒟$, 
recover 𝑘 indices 𝑆

𝒟":

𝑥 ~ Unif 0,1 %

…

[ 0  1  0  0  1  1  0  1] , 0
[ 0  1  1  0  1  0  1  1] , 1
[ 1  0  0  0  0  0  1  0] , 1

𝑦 = 𝜒$(𝑥)

0



How many samples are needed to learn?

Key fact:
Parity functions are uncorrelated.
For 𝑆 ≠ 𝑆&,

Proof: First show for 𝑆 ∩ 𝑆& = ∅

Pr
'
[𝜒$ 𝑥 = 𝜒$((𝑥)] = 1/2

Theorem: 𝑂(𝑘 log 𝑛) samples are needed.
Proof:
Suppose we draw a training set of 𝑚 samples labeled by 𝜒$. Consider any 𝑆′ ≠ 𝑆.
Q: What’s the probability that 𝜒$& is consistent with the training set?

A: (
)

*

Q: What’s the probability that there exists any 𝑘 –sparse parity function besides 𝜒$ that is consistent with 
the training set?

A: 𝑂 𝑛+ (
)

*

𝜒" 𝑥 = ∑#∈"𝑥#mod 2

𝒟": 𝑥 ~ Unif 0,1 % 𝑦 = 𝜒$(𝑥)

𝑘 –sparse parity function 𝑆 = 𝑘, 𝜒$ ∶ 0,1 % → 0,1



How efficiently can we learn?

Theorem: 𝑂(𝑘 log 𝑛) samples are needed.

That’s pretty sample-efficient!

But what about computational efficiency? 

𝜒" 𝑥 = ∑#∈"𝑥#mod 2

𝒟": 𝑥 ~ Unif 0,1 % 𝑦 = 𝜒$(𝑥)

𝑘 –sparse parity function 𝑆 = 𝑘, 𝜒$ ∶ 0,1 % → 0,1

Computational barriers

- Fastest-known algorithm for learning sparse parities using 𝑂(𝑘 log 𝑛) samples: 𝑛+/) running time (credited to 
Spielman in Klivans & Servedio 2006)

- Regardless of # samples, gradient descent on any neural network requires 𝑛-(+) batch size or iterations (Abbe, 
Kamath, Malach, Sandon, Srebro 2021). Based on statistical query lower bound

- An important cryptography conjecture states: if training set labels are flipped with small constant probability, any 
algorithm requires 𝑛-(+) running time (originally due to Alekhnovich 2003)



What happens when we throw deep learning 
at the problem?

: 𝑛 = 15, 𝑘 = 3

- Train a one layer Transformer with online 
SGD

Inductive Biases and Variable Creation in Self-Attention Mechanisms
E, Surbhi Goel, Sham Kakade, and Cyril Zhang 2022

Note: prior works show neural networks can learn 
parities under assumptions on input distribution 
(Daniely and Malach, 2020, Frei et al., 2022, Malach et 
al., 2021, Shi et al., 2021) 



What happens when we throw deep learning 
at the problem?

: 𝑛 = 50, 𝑘 = 3

• One hidden-layer (width= 100) ReLU MLP
• One hidden-layer (width= 100) 𝑎 ↦ 𝑎' MLP
• Sinusoidal neuron 𝑥 ↦ sin(𝑤(𝑥)
• One layer Transformer

• PolyNet: 𝑥 ↦ ∏
)*+

'
(𝑤)(𝑥)



What happens when we throw deep learning 
at the problem?

• Across a wide range of architectures/initializations/batch sizes, SGD on neural networks learns sparse 
parities; for small instances, # iterations looks like 𝑛,(')



What’s the mechanism behind the breakthrough:
Implicit random search?
(or hidden progress???)

58

Note: the network does need to learn 
features---if we used linear classification 
on fixed features (i.e. kernel methods), 
the number of features would need to be 
𝑛-(+).



• Hypothesis: randomness of SGD implements random search (à la Langevin)
• …how does the network adapt to the sparsity 𝑘?

How does SGD learn sparse parities?

number of bits 𝑛

median convergence time

same architecture
same algorithm
different behavior for each 𝑘



• Hypothesis: randomness of SGD implements random search (à la Langevin)
• …how does the network adapt to the sparsity 𝑘?
• …why does it mysteriously get worse for larger 𝑛, 𝑘 ?

number of bits 𝑛

median convergence time

power la
w worsensnumber of bits 𝑛

median convergence time

How does SGD learn sparse parities?



• Hypothesis: randomness of SGD implements random search (à la Langevin)
• …how does the network adapt to the sparsity 𝑘?
• …why does it mysteriously get worse for larger 𝑛, 𝑘 ?

• …why does it never succeed significantly earlier?

no early
convergence

How does SGD learn sparse parities?



• Hypothesis: randomness of SGD implements random search (à la Langevin)
• …how does the network adapt to the sparsity 𝑘?
• …why does it mysteriously get worse for larger 𝑛, 𝑘 ?
• …why does it never succeed significantly earlier?
• …why does its trajectory depend heavily on initialization?

smaller effect of
SGD’s randomness

larger effect of
random initialization

How does SGD learn sparse parities?



• Hypothesis: randomness of SGD implements random search (à la Langevin)
• …how does the network adapt to the sparsity 𝑘?
• …why does it mysteriously get worse for larger 𝑛, 𝑘 ?
• …why does it never succeed significantly earlier?
• …why does its trajectory depend heavily on initialization?

smaller effect of
SGD’s randomness

larger effect of
random initialization

How does SGD learn sparse parities?



It’s hidden progress
Hidden progress measure: a function of the 
training algorithm’s state which is predictive of 
the time to convergence and continuously 
improves throughout training



Learning sparse parities

𝜒" 𝑥 = ∑#∈"𝑥#mod 2
𝑘-way Boolean XOR

1

Parity function 𝜒$ ∶ 0,1 % → {0,1}:

Parity learning problem: given samples 𝑥, 𝑦 ~ 𝒟$, recover 𝑘
indices 𝑆

𝒟":

𝑥 ~ Unif 0,1 %

…

[ 0  1  0  0  1  1  0  1] , 0
[ 0  1  1  0  1  0  1  1] , 1
[ 1  0  0  0  0  0  1  0] , 1

𝑦 = 𝜒$(𝑥)

0



Learning sparse parities

𝜒" 𝑥 = Π#∈"𝑥#
𝑘-way Boolean XOR / degree-
𝑘 monomial

−1

+1

Parity function 𝜒$ ∶ ±1 % → ±1:

Parity learning problem: given samples 𝑥, 𝑦 ~ 𝒟$, recover 𝑘
indices 𝑆

𝒟":

𝑥 ~ Unif ±1 %

…

[+1 -1 +1 +1 -1 -1 +1 -1] , +1
[+1 -1 -1 +1 -1 +1 -1 -1] , -1
[-1 +1 +1 +1 +1 +1 -1 +1] , -1

𝑦 = 𝜒$(𝑥)



KEY IDEA - INFORMATION IN THE GRADIENT AT STEP 1

Assume single ReLU with correlation loss 𝔼 −𝑦𝜎 𝑤N𝑥 , and initialize 𝑤 = [1,… , 1]

Population gradient for 𝑖th coordinate of weight vector is 𝔼 −𝑦𝜎O 𝑤N𝑥 𝑥#

For 𝑖 ∈ 𝑆, this is the (𝑘 − 1)th order Fourier coefficient 𝑆\{𝑖} of 𝑥 → 𝜎O(𝑤N𝑥)

For 𝑖 ∉ 𝑆, this is the (𝑘 + 1)th order Fourier coefficient 𝑆 ∪ {𝑖} of 𝑥 → 𝜎O(𝑤N𝑥)

At initialization: 𝜎O(𝑤N𝑥) = 𝗌𝗂𝗀𝗇(T#U)VT
W

(shifted majority function)

This information is (potentially) accumulated over samples in the small batch setting

(additive)



THEORETICAL RESULT - HIDDEN INFORMATION

(NTK requires at least 𝑛X(Y) hidden units)

Large batch: First gradient step has enough information for hidden units to pick out correct 
parity indices.

Caveat: doesn’t work with standard learning rate schedule (Standard schedule results in elbow curves!)



THEORETICAL RESULT - GF/SGD
∏
#ZT

Y
𝑤#N𝑥# for 𝑥 = [𝑥T, … , 𝑥Y]Disjoint PolyNet:

Explains phase transition in the gradient flow regime, can be extended to SGD

Small batch: Random walk with bias towards relevant coordinates

PolyNet 𝑥 ↦ ∏
#ZT

Y
(𝑤#N𝑥)



Mysteries of contemporary deep learning

1. How do neural networks learn to construct useful features?
2. How do neural networks learn to “reason” / compute 

“combinatorial” functions?
3. Why are there sometimes emergent breakthroughs in capabilities 

as resources are scaled up?

In some “combinatorial” tasks, like learning sparse parities, features are only useful when they are learned 

together, and to a sufficient extent. In other words: the network needs to learn from scratch to compute a 

certain circuit. In these situations, we may see a “phase transition” in the loss curve, even though there is 

hidden progress inside the black box.



Still mysteries

1. How do neural networks learn to hierarchically construct useful 
features?

2. How do neural networks learn to “reason” / compute complex 
“combinatorial” functions?

3. Why are there sometimes emergent breakthroughs in capabilities 
as resources like network size are scaled up?

In some “combinatorial” tasks, like learning sparse parities, features are only useful when they are learned 

together, and to a sufficient extent. In other words: the network needs to learn from scratch to compute a 

certain circuit. In these situations, we may see a “phase transition” in the loss curve, even though there is 

hidden progress inside the black box.



Thank you!

1. Inductive Biases and Variable Creation in Self-Attention Mechanisms, ICML 
‘22
with Surbhi Goel, Sham Kakade, & Cyril Zhang

2. Hidden Progress in Deep Learning: SGD Learns Parities Near the 
Computational Limit, NeurIPS ‘22
With Boaz Barak, Surbhi Goel, Sham Kakade, Eran Malach, Cyril Zhang, NeurIPS
2022

Questions??

benjaminedelman.com

bedelman@g.harvard.edu


