Studies in feature learning
through the lens of
sparse Boolean functions

Ben Edelman (Harvard)
mlfoundations.org
Seminar in Mathematics, Physics & Machine Learning
IST

Themes

* What drives feature learning in modern and classic architectures?
* Understanding capacity & expressivity & optimization

* Approach: focus on idealized synthetic tasks. Specifically, running
theme of sparse functions

* Implicit theme: can we understand representation learning as circuit
learning?

[.’132/\:174/\277]

Z1 Up) Z3 T4 T T idd x

[‘]

Part 1: Self-Attention & Transformers

Joint work with Surbhi Goel, Sham
Kakade, & Cyril Zhang

MLP

= Vscalar

1 » Y1 Y[cLs] =

/ e
f/ - |

Part 2: Parities & Emergence

Joint work with Boaz Barak, Surbhi
Goel, Sham Kakade, Eran Malach,

& Cyril Zhang

PolyNet (k=3) convergence time distributions

n=10
n=20
n=30
n=40

cy

normalized frequen

iterations to convergence

Part 1

Inductive Biases and Variable Creation in
Self-Attention Mechanisms, ICML 22

with Surbhi Goel, Sham Kakade, & Cyril
Zhang

The Self-Attention Revolution

Computational blology Reinforcement learning

D o O WIS e o V. e DS o e .

Language

T1037 / 6vr4 T1049 / 6yaf
90.7 GDT 93.3 GDT
(RNA polymerase domain) (adhesin tip)

Experimental result

@ Computational prediction

Computer vision Automated programming

Mathematics

Vision Transformer (ViT)

AlphaCode A X . . .
Question: A line parallel to y = 4z + 6 passes through (5, 10). What is the y-coordinate of the point

where this line crosses the y-axis?

Model output: The line is parallel to y = 4x + 6, which means that it has the same slope as y = 42 +-6.

Transformer Encoder Since the line passes through (5, 10), we can use the point-slope form of a line to find the equation of

‘ ’ the line:
Patch + Positon __ ‘ mﬁl 615 ‘ @ @[5 y— 18 = i(z 72?))
i Lmear ijecuon of Flattened Patches y- - 4.1) - 10
I LT 1] I y=r-
= @ n . 0 m W E - Now that we have the equation of the line, we can find the y-coordinate of the point where the line
q P!
OpenAI COdeX crosses the y-axis by substituting = = 0 into the equation:

y=4-0—10=[-10]

etc. 5

%
X4

wizards

9
X5

jump

é
X6

quickly

%ieRd

- - -
X4 X5 X6

The five boxing wizards jump quickly

xeR?

WyeR - .
Red = optimized with SGD

¢ (X)=WyXx

xeR’

Wy, Wo, WgeR . .
Red = optimized with SGD

¢Cx)=WV3c

cXp (Vz')

2 exp (v;)

softmax (v)=

score (X;, X;) score(X,,X;) score(xs;,x;) score(X;,x;) score(Xs,X;) [score (X, x3) score(x, =W X W, 7)

99 ¢¢

“key” “query”

The five boxing wizards jump quickly .

%ERd

Wy, Wo, WrgeR . .
Red = optimized with SGD

¢ (x)=Wy,x

exp (vi)

2 exp (vj)

softmax (v)=

score (X, X4) score (X,,%;) score(X;,%,) score (X, %) score(Xs,%;) score (X, %) score(x, D= ¥ W, 7)

99 ¢¢

“key query’,

The five boxing wizards jump quickly "

%ERd

eER d xd
Wy, Wo, Wk Red = optimized with SGD

¢ (X)=Wy X

exp (vi)

2 exp (v;)

softmax (v)=

score (X, X4) score(X,,%;) score(X;,%,) score (X, %) score(Xs,%,) score (X, %) score(x, D)= X W,)

99 ¢¢

Gékey query”

... Token embeddings

=The =five =boxing —wizards =jump =anCk1y 11

xeR’

Wy Wy, WgeR . .
Red = optimized with SGD

¢ (X)=W,x

exp (vi)

Z exp (v;)

softmax (v)=

score (X, X4) score(X,,%;) score(X;,%,) score (X, %) score(Xs,%,) score (X, %) score(x, D)= X W,)

99 ¢¢

‘ery query”

.. . I e Token embeddlngs,
X5 Xg positional embeddings

=The+p, =five + p, :Boxing+f93 =_)WiZElI'dS+7?4 =J?ump+??s :anCkly+776 12

xeR’

eER d xd
Wy, Wo, Wk Red = optimized with SGD

¢ (X)=W,x

exp (vi)

Z exp (v;)

softmax (v)=

score (x;, x,) score (X,,x,) score (X, x4) |score (x, =W « x, Wy z)

99 ¢¢

‘ery query”

.. 5 e oS Rt = = = = o s A e e a e nmmEEsEsEEEsEEEEEEERRERENEL Ly Token embeddlngs,
x6 positional embeddings

=How +, =§/)exingly + D, =zebras + ps :j)ump +Ps 13

One
Attention
Head

- - - - -
X1 X2 X3 X4 X5 X6

=How+p, =vexingly+p, =quick +p, =daft+p, =zebras+ps =jump+ps

Transformer

@)) (2)
e, we, we

®) ©) ®)
we, we, we

K

Transformer

Transformer

Add & Normalize

wO) o
QJ

K’ vV

17

Transformer

% @ @ @ @ Identical Fully-connected
networks

Add & Normalize

wO O o WQ),W@,W(Z) we we W)
Q)

K’ v 0 K V 0’ K’ V

Transformer

Add & Normalize

@ @ @ @ @ Identical Fully-connected
networks

Add & Normalize

O O o W@),W@),W@) we we i)
Q B

K’ v 0 K V 0’ K’ V

Transformer

4 Add & Normalize

@ @ @ @ @ Identical Fully-connected
networks

Add & Normalize

One
Transformer

Layer

1 1 1 @) @) 2 G) () G)
WO, WO, wo W, we, w W, W, we

K’ v 0 K v 0’ K

20

Transformer

OO O® ® @ |conmectednetworks

Add & Normalize

Self-attention heads

21

Transformer

L X X B B X 4

Add & Normalize

L X 2 B R X

Add & Normalize

Fully-connected networks

Self-attention heads

Fully-connected networks

Self-attention heads

22

Add & Normalize

Add & Normalize
| Add & Normalize |

Add & Normalize

Add & Normalize

Add & Normalize

L X B B X
L X X B X 4
L X B B X

Fully-connected networks

Self-attention heads

Fully-connected networks

Self-attention heads

Fully-connected networks

Self-attention heads

23

Add & Normalize
Add & Normalize

Add & Normalize

Add & Normalize

L X & B R X
L A 2 A B X
L X & B R X

Add & Normalize

Fully-connected networks

Self-attention heads

Fully-connected networks

Self-attention heads

Fully-connected networks

Self-attention heads

Transformer

| know

you

arc

but

what

am

24

[mask]

Inductive biases of attention

Head 8-10
- Direct objects attend to their verbs

- 86.8% accuracy at the dobj relation

Head 8-11

- Noun modifiers (e.g., determiners) attend
to their noun

- 94.3% accuracy at the det relation

[CLS] [CLS] [CLS] [CLS]
It It It It [CLS], [CLS]
.) The,| The
goes -goes declined declined [CLS) [CLS] 45-year-old,) 45-year-old
on -on to to The The ‘
complicated complicated former Tormer
to ‘to discuss< discuss Ia?\ = e' < jan Ea 5 General General
plug: plug it its 9 gm i ag Electric Electric
a~\y a plans -plans the the t_co‘ - Co. "
e fac foreX A fitige huge executive executive
A \)) figures, figures
diversified | diversified upgrading _-upgrading ”Ie:”"' [“e‘” it it
Fidelity '\l Fidelity its N\ its haas :a"; will will
O el {
funds \\‘ funds current<\\'} current muddied O\ muddied be be
by by product product the — the ea:;‘e'r\ f:smr
) A : is is
name name line line fight fight time time
(SEP] (SEP] [SEP] [SEP] [SEP) (SEP) [SEP] [SEP]
Head 7-6 Head 4-10
- Possessive pronouns and apostrophes - Passive auxiliary verbs attend to the
attend to the head of the corresponding NP verb they modify
- 80.5% accuracy at the poss relation - 82.5% accuracy at the auxpass relation
[CLS) [CLs)
many- many But- But
employees employees in in
[CLS], [CLS] are are [CLS] [CLS] the the
Not. Not working working This This absence- absence
R\ % market market of - of
his his at at
\] X has- has panicky panicky
autograph o autograph .'ts |t.s been ~—been trading trading
. ; J glant\ giant very very : 5
power-hitter power-hitter Renton, \ Renton badly badly its its
McGwire - - McGwire - damaged damaged presence presence
‘s Wash Wash. : was Lo
) " N never< never
g g [SEP] \[SEP] overtly overtly
[SEP] plant plant felt felt
[SEP] : [SEP] [SEP] \[SEP]

'_‘k_\ _5
- s
s — =
e <
S S
——/

Attention weights are sparse
(or close to uniform)

Source: “What Does BERT Look At? An Analysis of
BERT’s Attention”

Clark, Khandelwal, Levy, Manning, 2019
25

Inductive biases of attention

Attention weights are sparse
(or close to uniform)

Source: “Offline Reinforcement Learning as One Big
Sequence Modeling Problem”
Janner, Li, Levine

26

Main result: Sparse variable creation

The class of s-sparse functions of length-T inputs

can be learned by

with sample complexity scaling as log(T)

the class of Transformers layers with weight norms 29

optimal

.’132/\5(34/\377

SN (

MLP

1 2 Yr YcLs] =

= Vscalar

1

i) I3 T4 Iy

Le L7 Ty

MAIN RESULT - CAPACITY

Result for one-layer Transformers below.
For multi-layer case, there is an exp(spectral norms) factor

Theorem [informal]: Using covering numbers as the capacity measure

~ (poly(C)

#samples needed to guarantee uniform convergence < O

o €2
Generalization error / \

Norm bound on weights Error Sequence length
I Wy iz, Il Wy 21,
I WeWg llp1< C

Sample complexity like sparse/£’; regression = functions not rich in the sequence

Handle “attention mechanisms™ in general: extends to various choices of ® and score

29

MAIN RESULT - CAPACITY

Theorem [informal]: Using Pseudo-dimension as the capacity measure

Even for d = 3, unbounded norm attention heads require €(log T') samples to

guarantee uniform convergence.

Capacity larger than the number of parameters O(d?)

4 points that are shattered forT = 16 30

Main result - Expressivity

Any s-sparse Boolean function f can be exactly represented by a
Transformer layer with weight norms 296,

If fis symmetric, only poly(s) weight norms are required.

Intuition
- Softmax allows sparse variable
selection
- MLP allows arbitrary function to be
applied

i n

MLP

Y1 Y[cLS] =

= Vscalar

X1 X

AT X[cLs]

Optimization (sparse conjunctions)

x ~ unif({0,1}1)
y = Xi Xi, Xi,

Train a one-layer
Transformer

- As input length T grows,
how large does the
training set need to be to
avoid overfitting?

- Consistent with log(T)
dependence in
generalization bound!

critical sample size

|
o
o

90 A

80

70 -

60 A

50 -

empirical sample complexity

102

context length T

103

attention weight

Per-example attention weights

10 20 30 40 50
Boolean input index t

Part 1 Recap

* Loose ends

e capacity upper/lower bounds aren’t tight

 Don’t know how to handle trainable positional encodings
 Low-norm Transformers = simple circuits

 What is the right circuit class for capturing the inductive bias
of Transformers?

* Optimization!

siange Mmaeshimg »

) Po- annm\
= rebeuIren

Part 2

Hidden Progress in Deep Learning: SGD
Learns Parities Near the Computational

. . (o
Limit, NeurlPS 22 "People really enjoying a machine learning

with Boaz Barak, Surbhi Goel, Sham seminar”, painting by Pablo Picasso
Kakade, Eran Malach, & Cyril Zhang

35

Mysteries of contemporary deep learning

1. How do neural networks learn to construct useful features?

2. How do neural networks learn to “reason” / compute
“combinatorial” functions?

3. Why are there sometimes emergent breakthroughs in capabilities
as resources are scaled up?

Test Loss

3. Emergence

—e— LaMDA —=— GPT-3 —— Gopher —#A— Chinchilla —@— PaLM - -- Random
7 4.2
— L= 4-1013)-0095 | 56 —— L =(N/8.8-101!3)-0076 .
6 39 L=(D/5.4-107) (A) Mod. arithmetic (B) IPA transliterate (C) Word unscramble (D) Persian QA
5 4.8 50 50 50 50
3.6 4.0 — =
4 : S 40 40 X 40 X 40
3.3 3.2 30 SE B30 S 30f
3 g) 5 - N -
3.0 g 20 & 20 8 20 g 20
' 2.4 3 2 g g
L= (Cpin/2.3 - 108)=0.050 ' < 10 10 £ 10 g 10
2 : : : 2.7 : : A =
i0-® 1077 10 103 10-! 10! 108 10° 10° 107 10° 0Ff- - - of- - - - - 0f -—ememn®® __. 0
Compute Dataset Size Parameters 1018 1020 1022 1024 1018 1020 1022 1024 1018 1020 1022 1024 1018 1020 1022 1024
PF-days, non-embedding tokens non-embedding
(E) TruthfulQA (F) Grounded mappings (G) Multi-task NLU (H) Word in context
70 70 70 70
1 60 60 60 60
Scaling Laws for Neural Language Models ~ _ _ _
X 50 X 50 X 50 X 50 - -
Kaplan et al. 2020
£ 30 £ 30 £ 30 £ 30
=] R =] =] - =]
<8 20 <8 20 <8 20 <8 20
10 10 10 10
0 0 0 0

102 1022 10 1020 1022 10% 1020 1022 10% 1020 102 10%

Model scale (training FLOPs)

Emergent Abilities of Large Language Models
Wei et al. 2022

Normalized score

70

60

50

40

30

20

10

(a)

3. Emergence

Highest linearity tasks

—e— mult_data_wrangling
—e— ga_wikidata

—e— linguistic_mappings
—e— date_understanding
—e— conlang_translation
—e— unit_conversion

107 108 10° 10%° 10!
Effective parameter count

25
o 20
|
o
(&)
wn
© 15
Q
N
©
§ 10
o
=2
5
0

(b)

Highest breakthroughness tasks

—e— international_phonetic_alphabet_transliterate
—e— periodic_elements

—e— modified_arithmetic

—e— repeat_copy_logic

—e— word_unscrambling

—e— figure_of speech_detection /

10/ 108 10° 101° 10!
Effective parameter count

Beyond the Imitation Game:
Quantifying and extrapolating the
capabilities of language models

435 authors 2022

3. Emergence

Modular Division (training on 50% of data)

100 —— train
— val

80

[e)]
o

Accuracy
H
o

N
o

10! 102 103 104 10° 106
Optimization Steps

Grokking: Generalization Beyond Overfitting on Small Algorithmic Datasets
Power et al., 2022

Mysteries of contemporary deep learning

1. How do neural networks learn to construct useful features?

2. How do neural networks learn to “reason” / compute
“combinatorial” functions?

3. Why are there sometimes emergent breakthroughs in capabilities
as resources are scaled up?

Our approach

Analyze a single synthetic task that exhibits these mysteries

Hidden Progress in Deep Learning: SGD Learns Parities Near the
Computational Limit

Joint work with Boaz Barak, Surbhi Goel, Sham Kakade, Eran Malach, and
Cyril Zhang

Learning sparse parities

Parity function y : {0,1}" — {0,1}:

1

& W (x) = Yiesx; mod 2
OUHUUHHUH '?)(sx $X; MO

k-way Boolean XOR

k-sparse parity learning problem: given samples (x, y) ~ D,
recover k indices S

De: [Of I O O 1} 1| O 1] 0
S [Op Ik 1 O 1} O 1} 1] 1
[1L_LO0 O OoLO oL Y O] 1

x ~ Unif({0,1}") y = xs(x)

How many samples are needed to learn?

Key fact:
Parity functions are uncorrelated.
ForS + S’,

Prixs(v) = s ()] = 1/2
Proof: First showforSNS' = @

k —sparse parity function |S| = k, ys:{0,1}" - {0,1}
Xs(x) = Yiesx; mod 2

DS: x ~ Unif({0,1}") vy = xs(x)

Proof:

A: (l)m
2
the training set?

w o (n ())

Theorem: O (k logn) samples are needed.

Suppose we draw a training set of m samples labeled by ys. Consider any S’ # S.
Q: What's the probability that yg, is consistent with the training set?

Q: What's the probability that there exists any k —sparse parity function besides ys that is consistent with

How efficiently can we |learn?

Theorem: O (k logn) samples are needed. k —sparse parity function |S| = k, x: {0,1}" - {0,1}
That’s pretty sample-efficient! XS(X) — ZiESxi mod 2
But what about computational efficiency? DS: x ~ Unif({0,1}") vy = xs(x)

Computational barriers

- Fastest-known algorithm for learning sparse parities using O (k logn) samples: nk/2 running time (credited to
Spielman in Klivans & Servedio 2006)

- Regardless of # samples, gradient descent on any neural network requires n*¥) batch size or iterations (Abbe,
Kamath, Malach, Sandon, Srebro 2021). Based on statistical query lower bound

- An important cryptography conjecture states: if training set labels are flipped with small constant probability, any
algorithm requires n*®) running time (originally due to Alekhnovich 2003)

What happens when we throw deep learning

at the problem?

0.7 s
0.6 -
—_— —_— n
>
- Train a one layer Transformer with online £ 041
C
SGD ES
n
o
Note: prior works show neural networks can learn ~ 0.21
parities under assumptions on input distribution
(Daniely and Malach, 2020, Frei et al., 2022, Malach et 0-11
al., 2021, Shi et al., 2021) 00

0 200 400 600 800 1000 1200 1400

Inductive Biases and Variable Creation in Self-Attention Mechanisms e :
training iterations

E, Surbhi Goel, Sham Kakade, and Cyril Zhang 2022

What happens when we throw deep learning

at the problem?

n=>50k=3

¢ One hidden-layer (width= 100) ReLU MLP

« One hidden-layer (width= 100) a ~ a* MLP
- Sinusoidal neuron x = sin(w " x)

e One layer Transformer

validation error over 5 runs

k
o PolyNet: x = [] (w; x)
i=1

0.5 -

0.4 -

0.3 A

0.2 A

0.1 -

0.0 -

0.5 -

0.4 -

0.3 -

0.2 A

0.1 -

0.0 -

xk activation MLP

width-1 sin(w - x + b) Transformer

0 2 4 6 8 0.0 0.5 1.0 1.5 2.0 0.0 0.5 1.0 1.5 2.0
1le6 led led

...........................

0 2 4 6 0 1 2 3 4 0.0 0.5 1.0 1.5 2.0

led led

online training examples

led

What happens when we throw deep learning
at the problem?

(i) ReLU MLP, r=10 (ii) ReLU MLP, r=100 (iii) ReLU MLP, r=1000 (iv) X MLP, r=10 (v) xK MLP, r=100 (vi) x* MLP, r=1000
104 € : E 6 5 3 = 3 /’b <) 6 5 E b 2
4 : / i / 4 4
10° 4 - u 4 4 / _
k=2 k=2
- - / =
glo2 E 3 / 3 :/// 3 3 / J k=2
g k=2 k=2 k=2 /
S 10 20 30 40 10 20 30 40 10 20 30 40 10 20 30 40 10 20 30 40 10 20 30 40
5 (vii) poly MLP, r=1 (xiv) sinusoidal neuron (*iii) Transformer (xv) PolyNet (ii) MLP, larger n (xv) PolyNet, larger n
4:‘::‘!103 E ’//////4 - //j// ; %f - /) i/ E / k=2
—_ 4
:ﬁ: / /
107 M/j 3 /"”’J E =2 3 3
k=2 / //3
imp]| k=2
e R
10! < T
10 20 30 40 10 20 30 40 10 20 30 40 10 20 30 40 10! 102 10! 102 10°

parity dimension n

» Across a wide range of architectures/initializations/batch sizes, SGD on neural networks learns sparse
parities; for small instances, # iterations looks like n9®)

What’s the mechanism behind the breakthrough:
Implicit random search?
(or hidden progress???)

cross entropy loss

0.7 L————T--—m Note: the network does need to learn

| features---if we used linear classification
on fixed features (i.e. kernel methods),

| the number of features would need to be
nQ)

200 400 600 800 1000 1200 1400
training iterations

58

error

How does SGD learn sparse parities?

median convergence time
104 4 6
0.5 4
103 4 .
same architecture
0.41 . / same algorithm
% .| | different behavior for each k
| —— |
0.3 10t L [v
20 30 40
j number of bits n
0.2
0.11
0.0
0 500 1000 1500 2000 2500 3000

iterations

* Hypothesis: randomness of SGD implements random search (a la Langevin)

* ...how does the network adapt to the sparsity k?

error

How does SGD learn sparse parities?

median convergence time
0.5
0.4
0.31
j number of bits n
0.2
0.1
0.0
0 500 1000 1500 2000 2500 3000
iterations

104 4

103 i

102 i

10!

median convergence time

————

10! 102
number of bits n

* Hypothesis: randomness of SGD implements random search (a la Langevin)

» ..how does the network adapt to the sparsity k?

 ...why does it mysteriously get worse for larger (n, k)?

How does SGD learn sparse parities?

0.5
0.4 >
=
Q
=
(o
_ 0.3 £
e @}
o Q
o N
02 | . Om'IESIS ranaomness of H"ﬂH Ngprancon, g
: 5
| @z

0.1

0.0

500 1000 1500 2000 2500 3000
iterations

* Hypothesis: randomness of SGD implements random search (a la Langevin)

» ..how does the network adapt to the sparsity k?
 ...why does it mysteriously get worse for larger (n, k)?

e ...why does it never succeed significantly earlier?

0

no early n=10
n=20
convergence n=30
n=40

250 500 750 1000 1250 1500 1750 2000
iterations to convergence

error

0.5

0.4

0.3

0.2

0.1

0.0

How does SGD learn sparse parities?

4

0

1500 2000 2500 3000

iterations

500 1000

validation error

o
N

0.5

o
S
1

o
w

=
=

0.0 -

\ larger effect of
\ random initialization

0

500

1000 1500 2000 2500 3000
SGD iteration t

smaller effect of
SGD’s randomness

* Hypothesis: randomness of SGD implements random search (a la Langevin)

...how does the network adapt to the sparsity k?

...Why does it never succeed significantly earlier?

...why does it mysteriously get worse for larger (n, k)?

...why does its trajectory depend heavily on initialization?

error

How does SGD learn sparse parities?

N T

RS
R

larger effect of

.

| random initialization

na A W
noy | w—

0.5 0.5 -
0.41 0.4 1
S
0.31 T 0.3 -
(==
S
+
3
0.2 .(_‘—3 0.2
>
0.1+ 0.1 -
0.0 0.0 -
0 500 1000 1500 2000 2500 3000
iterations
— . v v = — — e v v
® ViU - e« | C of0 - () | () 1C -

...how does the network adapt to the sparsity k?
...why does it mysteriously get worse for larger (n, k)?
...Why does it never succeed significantly earlier?

* ...why does its trajectory depend heavily on initialization?

500

1000
SGD iteration t

1500

2000 2500

AN

3000

smaller effect of
SGD’s randomness

JNEEVin)

Hidden progress measure: a function of the

|t’S h | d d e n p rog ress training algorithm’s state which is predictive of

the time to convergence and continuously
improves throughout training

sinusoidal neuron weights

sinusoidal neuron: n=50. k=3. B = 32 sinusoidal neuron; n =50, k=3, B=1024 B=1024, parity vs. noise
’ ’ ’ 0.6
g 1.00 + : : ‘ %
2 ®
3 0.75 - %
5 o
o put
‘ch 0.50 é
b @
o 0.25 batch t loss batch t error o
0.00 4 —— Pop. loss —— pop. error : : : : : . | : :
0 200 400 600 800 1000 1200 © 500 1000 1500 2000 2500 3000 0 1000 2000 3000
i 0.6
030 T —wjies — biasb’vf 1.0- A ven
wi, léS i ’Clj
0251 3 0.81 - 0.4
: ' . <
0.00 1 : = Sl
9 0.4 - 0.2
%)
-0.25 8 0.2 4 —— prog. measure p
—0.50 1 !]] | ! i i i i 1 0.0 13] 1 =+ 0.0
0 200 400 600 800 1000 1200 O 500 1000 1500 2000 2500 3000 0 1000 2000 3000
iteration t iteration t iteration t

Progress measure based on drift term ||[w® — wO||

Learning sparse parities

Parity function y : {0,1}" — {0,1}:
1

(x) = Yiesx; mod 2
0 5 ﬂ g & [T B) Xs(X $X; MO

k-way Boolean XOR

Parity learning problem: given samples (x,y) ~ D, recover k
indices S

De: [Of I O O 1} 1| O 1] 0
S [Op Ik 1 O 1} O 1} 1] 1
[1L_LO0 O OoLO oL Y O] 1

x ~ Unif({0,1}") y = xs(x)

Learning sparse parities

Parity function yg : {+1}" - +1:

S0 E W T T e

Parity learning problem: given samples (x,y) ~ D, recover k
indices S

Xs(x) = Mjesx;

De: [+1|-1 +1 +1|-1f -1|+1 -1] ,
S [+1|-1 -1 +1|-1 +1|-1] -17] ,
[-1(+1] +1 +1|+1 +1(-1 +1] ,

+1
-1
-1

x ~ Unif({£1}")

y = Xs(x)

k-way Boolean XOR / degree-
k monomial

KEY IDEA - INFORMATION IN THE GRADIENT AT STEP 1

Assume single ReLU with correlation loss E[—ya(w "x)], and initialize w = [1, ..., 1]

Population gradient for ith coordinate of weight vector is E[—yo’(w "x)x;]

Fori € S, this is the (k — 1)th order Fourier coefficient S\{i} of x = o' (w "x)

Fori & S, this is the (k + 1)th order Fourier coefficient S U {i} of x = o' (w "x)

e e, . . ; 1T 1
At initialization: o' (wTx) = sign(1_x)+

(shifted majority function)

T;hgdliou)rier gap IS ~ n~* =12 [O'Donnell'14] and can be detected with ~ n*=1 samples
aaditve

This information is (potentially) accumulated over samples in the small batch setting

THEORETICAL RESULT - HIDDEN INFORMATION

Theorem [informal];
One hidden-layer MLPs with ReLU activation and 2°%® hidden units learn
k-sparse parities using large batch SGD with compute time (batch-size x

run-time) scaling as n%®) .

(NTK requires at least n%) hidden units)

Large batch: First gradient step has enough information for hidden units to pick out correct
parity indices.

Caveat: doesn’t work with standard learning rate schedule (Standard schedule results in elbow curves!)

THEORETICAL RESULT - GF/SGD K

T —
Disjoint PolyNet: |1 W; x; for x = [xq, ..., x|
=1

Theorem [informal]:
For PolyNets with k > 3 and € > 0, the fraction of the time it takes for the error to fall

- 1
below 0.49 is at least 1 — O (P fraction of the running time required to
(n/k)™=

k

.
. PolyNet x — W; X
achieve zero error: y il;ll(i X)

Explains phase transition in the gradient flow regime, can be extended to SGD

Small batch: Random walk with bias towards relevant coordinates

Mysteries of contemporary deep learning

1. How do neural networks learn to construct useful features?

2. How do neural networks learn to “reason” / compute
“combinatorial” functions?

3. Why are there sometimes emergent breakthroughs in capabilities
as resources are scaled up?

In some “combinatorial” tasks, like learning sparse parities, features are only useful when they are learned
together, and to a sufficient extent. In other words: the network needs to learn from scratch to compute a

certain circuit. In these situations, we may see a “phase transition” in the loss curve, even though there is

hidden progress inside the black box.

Still mysteries

1. How do neural networks learn to construct useful
features?

2. How do neural networks learn to “reason” / compute
“combinatorial” functions?

3. Why are there sometimes emergent breakthroughs in capabilities
as resources are scaled up?

In some “combinatorial” tasks, like learning sparse parities, features are only useful when they are learned
together, and to a sufficient extent. In other words: the network needs to learn from scratch to compute a

certain circuit. In these situations, we may see a “phase transition” in the loss curve, even though there is

hidden progress inside the black box.

Thank youl!

1. Inductive Biases and Variable Creation in Self-Attention Mechanisms, ICML
‘22

with Surbhi Goel, Sham Kakade, & Cyril Zhang

2. Hidden Progress in Deep Learning: SGD Learns Parities Near the
Computational Limit, NeurlPS ‘22

With Boaz Barak, Surbhi Goel, Sham Kakade, Eran Malach, Cyril Zhang, NeurlPS
2022

Questions??
benjaminedelman.com

bedelman@g.harvard.edu

