2-Representations of affine type A Soergel bimodules: some observations and examples.

Marco Mackaay (jt. with V. Miemietz and P. Vaz)

CAMGSD and Universidade do Algarve

$$
\text { January 25, } 2023
$$

Introduction

- 2-Representations of 2-categories are the categorical analog of representations of algebras/categories.

Introduction

- 2-Representations of 2-categories are the categorical analog of representations of algebras/categories.
- There are three types: additive, abelian and triangulated.

Introduction

- 2-Representations of 2-categories are the categorical analog of representations of algebras/categories.
- There are three types: additive, abelian and triangulated.
- Finitary $=$ additive + finiteness conditions.

Introduction

- 2-Representations of 2-categories are the categorical analog of representations of algebras/categories.
- There are three types: additive, abelian and triangulated.
- Finitary $=$ additive + finiteness conditions.
- 2016-2021: M., Mazorchuk, Miemietz, Tubbenhauer, Zhang studied finitary 2-representation theory of Soergel bimodules of finite Coxeter type.

Introduction

- 2-Representations of 2-categories are the categorical analog of representations of algebras/categories.
- There are three types: additive, abelian and triangulated.
- Finitary $=$ additive + finiteness conditions.
- 2016-2021: M., Mazorchuk, Miemietz, Tubbenhauer, Zhang studied finitary 2-representation theory of Soergel bimodules of finite Coxeter type.
- 2022: M., Miemietz and Vaz started to study finitary, wide finitary and triangulated 2-representations of Soergel bimodules of affine type \mathbf{A}.

Outline

- The decategorified story
- (Affine) symmetric group.
- The Hecke algebra of (affine) type A.
- Evaluation representations.
- The categorified story
- Soergel bimodules in (affine) type A.
- The evaluation functor.
- Evaluation birepresentations.

The decategorified story

The (affine) symmetric Group

The (affine) symmetric group

Definition

- The affine symmetric group \widehat{S}_{d} is the Coxeter group of type \widehat{A}_{d-1}, generated by the simple transpositions $s_{0}, s_{1}, \ldots, s_{d-1}$ (simple reflections), subject to the relations

$$
s_{i}^{2}=e, \quad s_{i} s_{j}=s_{j} s_{i} \quad \text { if }|i-j|>1, \quad s_{i} s_{i+1} s_{i}=s_{i+1} s_{i} s_{i+1}
$$

where the indices have to be taken modulo d.

- The (finite) symmetric group $S_{d} \subset \widehat{S}_{d}$ is the subgroup generated by s_{1}, \ldots, s_{d-1} (where the indices are no longer modulo d).

The permutation representation

Definition

The permutation representation of S_{d} is given by

$$
V:=\mathbb{C}\left\langle x_{1}, \ldots, x_{d}\right\rangle,
$$

where S_{d} acts by permuting the x_{i}.

- This representation is clearly faithful.

The affine permutation representation

Definition

The affine permutation representation of \widehat{S}_{d} is given by

$$
\widehat{V}:=\mathbb{C}\left\langle y, x_{1}, \ldots, x_{d}\right\rangle,
$$

where $S_{d} \subset \widehat{S}_{d}$ acts by permuting the x_{i} and fixing y, and s_{0} fixes y and, furthermore, is determined by

$$
\begin{aligned}
s_{0}\left(x_{d}\right) & :=x_{1}+y \\
s_{0}\left(x_{1}\right) & :=x_{d}-y \\
s_{0}\left(x_{i}\right) & :=x_{i} \quad(i \neq 1, n) .
\end{aligned}
$$

- This representation is also faithful.
- Modding out by $\langle y\rangle$ yields a non-faithful representation of \widehat{S}_{d} on V.

The decategorified story

The (affine) Hecke algebra

Hecke algebras

Definition

The affine Hecke algebra \widehat{H}_{d} is the unital associative $\mathbb{Z}\left[\mathrm{v}, \mathrm{v}^{-1}\right]$-algebra generated by $t_{0}, t_{1}, \ldots, t_{d-1}$, subject to the relations

$$
\begin{gathered}
t_{i}^{2}=\left(\mathrm{v}^{-1}-\mathrm{v}\right) t_{i}+1, \quad t_{i} t_{j}=t_{j} t_{i} \text { if }|i-j|>1 \\
t_{i} t_{i+1} t_{i}=t_{i+1} t_{i} t_{i+1}
\end{gathered}
$$

where the indices are to be taken modulo d.
The (finite type) Hecke algebra $H_{d} \subset \widehat{H}_{d}$ is the unital $\mathbb{Z}\left[\mathrm{v}, \mathrm{v}^{-1}\right]$-subalgebra generated by t_{1}, \ldots, t_{d-1}.

- For $\mathrm{v}=1$, we get $t_{i}^{2}=1$ again.

Hecke algebras: the standard basis

Let $W \in\left\{S_{d}, \widehat{S}_{d}\right\}$ and $H=H(W)$ the corresponding Hecke algebra.

- By Matsumoto's theorem, we can define

$$
t_{w}:=t_{i_{1}} \cdots t_{i_{\ell}} \in H
$$

for any $w \in W$, using any reduced expression (rex) $\left(s_{i_{1}}, \cdots, s_{i_{\ell}}\right)$ for w.

Hecke algebras: the standard basis

Let $W \in\left\{S_{d}, \widehat{S}_{d}\right\}$ and $H=H(W)$ the corresponding Hecke algebra.

- By Matsumoto's theorem, we can define

$$
t_{w}:=t_{i_{1}} \cdots t_{i_{\ell}} \in H
$$

for any $w \in W$, using any reduced expression (rex) $\left(s_{i_{1}}, \cdots, s_{i_{\ell}}\right)$ for w.

Theorem

As a $\mathbb{Z}\left[\mathrm{v}, \mathrm{v}^{-1}\right]$-module, H is freely generated by the standard basis:

$$
\left\{t_{w} \mid w \in W\right\}
$$

- H is a flat deformation of $\mathbb{Z}[W]:\left.H\right|_{\mathrm{v}=1} \cong \mathbb{Z}[W]$.

Hecke algebras: the Kazhdan-Lusztig basis

Theorem (Kazhdan-Lusztig)

There is an alternative basis of H (Kazhdan-Lusztig basis):

$$
\left\{b_{w} \mid w \in W\right\}
$$

Hecke algebras: the Kazhdan-Lusztig basis

Theorem (Kazhdan-Lusztig)

There is an alternative basis of H (Kazhdan-Lusztig basis):

$$
\left\{b_{w} \mid w \in W\right\}
$$

- Define $b_{u} b_{v}=\sum_{w \in W} h_{u, v, w} b_{w}, \quad u, v \in W$.

Theorem (Kazhdan-Lusztig)

The $h_{u, v, w}$ belong to $\mathbb{N}\left[\mathrm{v}, \mathrm{v}^{-1}\right]$. (Positive integrality)

Kazhdan-Lusztig basis: examples

- The change-of-basis matrix is unitriangular, e.g., for all i :

$$
b_{i}:=b_{s_{i}}=t_{i}+\mathrm{v}
$$

Kazhdan-Lusztig basis: examples

- The change-of-basis matrix is unitriangular, e.g., for all i :

$$
b_{i}:=b_{s_{i}}=t_{i}+\mathrm{v}
$$

- For $i \neq j$, we have

$$
\begin{aligned}
b_{i}^{2} & =\left(\mathrm{v}+\mathrm{v}^{-1}\right) b_{i} \\
b_{i} b_{j} & =b_{i j} \\
b_{i} b_{i+1} b_{i} & =b_{i(i+1) i}+b_{i}
\end{aligned}
$$

The decategorified story

Evaluation representations

The evaluation map

Definition

The evaluation map ev: $\widehat{H}_{d} \rightarrow H_{d}$ is the homomorphism of $\mathbb{Z}\left[\mathrm{v}, \mathrm{v}^{-1}\right]$-algebras determined by

$$
\begin{aligned}
\mathrm{ev}\left(t_{i}\right) & :=t_{i}, \quad \text { for } \quad 1 \leq i \leq d-1, \\
\mathrm{ev}_{a}\left(t_{0}\right) & :=t_{\rho} t_{1} t_{\rho}^{-1}
\end{aligned}
$$

where $\rho=s_{d-1} \cdots s_{1}$.
In terms of the Kazhdan-Lusztig generators, we have

$$
\begin{aligned}
\mathrm{ev}_{a}\left(b_{i}\right) & =b_{i}, \quad \text { for } \quad 1 \leq i \leq d-1, \\
\operatorname{ev}_{a}\left(b_{0}\right) & =t_{\rho} b_{1} t_{\rho}^{-1}
\end{aligned}
$$

Evaluation representations: definition

Definition

The evaluation representations of \widehat{H}_{d} are the pull-backs of the irreducible representations of H_{d} through the evaluation map.

- By construction, evaluation representations are finite-dimensional and irreducible.

Evaluation representations: example

Lemma

Take $M_{d}:=\operatorname{span}\left\{m_{1}, \ldots, m_{d-1}\right\}$ over $\mathbb{Z}\left[\mathrm{v}, \mathrm{v}^{-1}\right]$.

- The following defines an H_{d}-action on M_{d} :

$$
b_{i} m_{j}= \begin{cases}{[2] m_{i},} & \text { if } j=i \\ m_{i}, & \text { if } j=i \pm 1 ; \\ 0, & \text { else }\end{cases}
$$

for $i, j=1, \ldots, d-1$. Here $[2]:=\mathrm{v}+\mathrm{v}^{-1}$.

- $M_{d}^{\mathbb{C}(\mathrm{v})}:=M_{d} \otimes_{\mathbb{Z}\left[\mathrm{v}, \mathrm{v}^{-1}\right]} \mathbb{C}(\mathrm{v})$ is irreducible.

Evaluation representations: example

Definition

Let M_{d}^{ev} be the evaluation representation of \widehat{H}_{d} obtained by pulling back M_{d} through ev: $\widehat{H}_{d} \rightarrow H_{d}$.

- In the next slides, we are going to show that M_{d}^{ev} an also be obtained as the irreducible quotient of a Graham-Lehrer cell module.

Graham-Lehrer cell modules: example

Definition (Graham-Lehrer cell module)

Let

$$
\widehat{M}_{d}:=\operatorname{Span}_{\mathbb{Z}\left[\mathrm{v}, \mathrm{v}^{-1}\right]}\left\{m_{i} \mid i=0, \ldots, d-1\right\}
$$

where the indices of the m_{i} have to be taken modulo d by convention, and define an action of \widehat{H}_{d} by

$$
b_{i} m_{j}= \begin{cases}{[2] m_{i},} & \text { if } j \equiv i \bmod d \\ (-\mathrm{v})^{d} m_{1}, & \text { if } i-1 \equiv 0 \equiv j \bmod d \\ (-\mathrm{v})^{-d} m_{0}, & \text { if } i \equiv 0 \equiv j-1 \bmod d \\ m_{j}, & \text { if } i \equiv j \pm 1 \bmod d, \text { but none of the above; } \\ 0, & \text { else. }\end{cases}
$$

Graham-Lehrer cell modules: example

Lemma

\widehat{M}_{d} has a rank-one subrepresentation, generated by (recall $m_{d}:=m_{0}$)

$$
n_{d}:=\sum_{k=1}^{d}(-q)^{-k} m_{k}
$$

and there is a natural isomorphism of \widehat{H}_{d}-representations

$$
\begin{aligned}
\widehat{M}_{d} /\left\langle n_{d}\right\rangle & \cong M_{d}^{\mathrm{ev}} \\
m_{i} & \mapsto m_{i} \quad i=1, \ldots, d-1 .
\end{aligned}
$$

The categorified story

(Affine) Soergel Bimodules

Polynomial algebras

Definition

Define two polynomial algebras

$$
R:=\mathbb{C}\left[x_{1}, \ldots, x_{d}\right] \subset \widehat{R}:=\mathbb{C}\left[y, x_{1}, \ldots, x_{d}\right] .
$$

We define a \mathbb{Z}-grading on \widehat{R} (and R, of course) by

$$
\operatorname{deg}\left(x_{i}\right)=\operatorname{det}(y)=2
$$

and the \widehat{S}_{d}-action on \widehat{V} extends to an \widehat{S}_{d}-action on \widehat{R} by degree-preserving algebra-automorphisms, which restricts to an S_{d}-action on R, of course.

The subalgebra of s_{i}-invariant polynomials

Definition
For any $i=0,1, \ldots, d-1$, define

$$
\widehat{R}^{s_{i}}:=\left\{f \in \widehat{R} \mid s_{i}(f)=f\right\} .
$$

The subalgebra of s_{i}-invariant polynomials

Definition

For any $i=0,1, \ldots, d-1$, define

$$
\widehat{R}^{s_{i}}:=\left\{f \in \widehat{R} \mid s_{i}(f)=f\right\} .
$$

Concretely,

Lemma

For $i=1, \ldots, d-1$, we have

$$
\widehat{R}^{s_{i}}=\mathbb{C}\left[y, x_{1}, \ldots, x_{i}+x_{i+1}, x_{i} x_{i+1}, \ldots, x_{d}\right],
$$

and, for $i=0$, we have

$$
\widehat{R}^{s_{0}}=\mathbb{C}\left[y, x_{1}+x_{d}, x_{1}\left(x_{d}-y\right), x_{2}, \ldots, x_{d-1}\right] .
$$

Note that $\left(x_{1}+y\right) x_{d}=x_{1}\left(x_{d}-y\right)+y\left(x_{1}+x_{d}\right)$.

The subalgebra of s_{i}-invariant polynomials

Lemma

For any $i=0, \ldots, d-1$, there is a degree-preserving isomorphism of graded $R^{S_{i}}$-modules

$$
R \cong R^{s_{i}} \oplus R^{s_{i}}\langle-2\rangle .
$$

Proof: The isomorphism is obtained by splitting any $f \in \widehat{R}$ into its s_{i}-symmetric part and its s_{i}-antisymmetric part. Concretely, for any $i=1, \ldots, d-1$,

$$
f=\frac{1}{2}\left(f+s_{i}(f)\right)+\frac{1}{2}\left(\frac{f-s_{i}(f)}{x_{i}-x_{i+1}}\right)\left(x_{i}-x_{i+1}\right),
$$

and, for $i=0$,

$$
f=\frac{1}{2}\left(f+s_{0}(f)\right)+\frac{1}{2}\left(\frac{f-s_{0}(f)}{x_{d}-x_{1}-y}\right)\left(x_{d}-x_{1}-y\right) .
$$

Bott-Samelson bimodules

Definition

For every $i=0, \ldots, d-1$, define the graded $\widehat{R}-\widehat{R}$ bimodule

$$
\widehat{B}_{i}=\widehat{B}_{s_{i}}:=\widehat{R} \otimes_{\widehat{R}^{s_{i}}} \widehat{R}\langle 1\rangle .
$$

Bott-Samelson bimodules

Definition

For every $i=0, \ldots, d-1$, define the graded \widehat{R} - \widehat{R} bimodule

$$
\widehat{B}_{i}=\widehat{B}_{s_{i}}:=\widehat{R} \otimes_{\widehat{R}^{s_{i}}} \widehat{R}\langle 1\rangle .
$$

For any word $\underline{w}=\left(s_{i_{1}}, \ldots, s_{i_{r}}\right)$ in $\left\{s_{0}, \ldots, s_{d-1}\right\}$, the
Bott-Samelson bimodule $\widehat{B S}(\underline{w})$ is defined as

$$
\begin{aligned}
\widehat{B S}(\underline{w}) & :=\widehat{B}_{i_{1}} \otimes_{\hat{R}} \cdots \otimes_{\hat{R}} \widehat{B}_{i_{r}} \\
& \cong \widehat{R} \otimes_{\widehat{R}^{s_{1}}} \widehat{R} \otimes_{\hat{R}^{s_{2}}} \cdots \otimes_{\hat{R}^{s_{i r}}} \widehat{R}\langle r\rangle .
\end{aligned}
$$

Bott-Samelson bimodules

Definition

For every $i=0, \ldots, d-1$, define the graded $\widehat{R}-\widehat{R}$ bimodule

$$
\widehat{B}_{i}=\widehat{B}_{s_{i}}:=\widehat{R} \otimes_{\widehat{R}^{s_{i}}} \widehat{R}\langle 1\rangle .
$$

For any word $\underline{w}=\left(s_{i_{1}}, \ldots, s_{i_{r}}\right)$ in $\left\{s_{0}, \ldots, s_{d-1}\right\}$, the
Bott-Samelson bimodule $\widehat{B S}(\underline{w})$ is defined as

$$
\begin{aligned}
\widehat{B S}(\underline{w}) & :=\widehat{B}_{i_{1}} \otimes_{\hat{R}} \cdots \otimes_{\hat{R}} \widehat{B}_{i_{r}} \\
& \cong \widehat{R} \otimes_{\widehat{R}^{s_{1}}} \widehat{R} \otimes_{\hat{R}^{s_{2}}} \cdots \otimes_{\hat{R}^{s_{i r}}} \widehat{R}\langle r\rangle .
\end{aligned}
$$

- \widehat{B}_{i} is an indecomposable \widehat{R} - \widehat{R}-bimodule, because it is generated by $1 \otimes 1$ and \widehat{R} is positively graded.

Bott-Samelson bimodules

Definition

For every $i=0, \ldots, d-1$, define the graded $\widehat{R}-\widehat{R}$ bimodule

$$
\widehat{B}_{i}=\widehat{B}_{s_{i}}:=\widehat{R} \otimes_{\widehat{R}^{s_{i}}} \widehat{R}\langle 1\rangle .
$$

For any word $\underline{w}=\left(s_{i_{1}}, \ldots, s_{i_{r}}\right)$ in $\left\{s_{0}, \ldots, s_{d-1}\right\}$, the
Bott-Samelson bimodule $\widehat{B S}(\underline{w})$ is defined as

$$
\begin{aligned}
\widehat{B S}(\underline{w}) & :=\widehat{B}_{i_{1}} \otimes_{\hat{R}} \cdots \otimes_{\hat{R}} \widehat{B}_{i_{r}} \\
& \cong \widehat{R} \otimes_{\widehat{R}^{s_{1}}} \widehat{R} \otimes_{\hat{R}^{s_{2}}} \cdots \otimes_{\hat{R}^{s_{i r}}} \widehat{R}\langle r\rangle .
\end{aligned}
$$

- \widehat{B}_{i} is an indecomposable \widehat{R} - \widehat{R}-bimodule, because it is generated by $1 \otimes 1$ and \widehat{R} is positively graded.
- $\widehat{B S}(\underline{w})$ need not be indecomposable, e.g. next two slides.

Decomposition: examples

- Recall that

$$
b_{i}^{2}=\mathrm{v} b_{i}+\mathrm{v}^{-1} b_{i}
$$

in the Hecke algebra.

Decomposition: examples

- Recall that

$$
b_{i}^{2}=\mathrm{v} b_{i}+\mathrm{v}^{-1} b_{i}
$$

in the Hecke algebra.

- The decomposition $\widehat{R} \cong \widehat{R}^{s_{i}} \oplus \widehat{R}^{s_{i}}\langle-2\rangle$ of graded $\widehat{R}^{s_{i}} \widehat{R}^{s_{i}}$-bimodules implies that

$$
\widehat{B}_{i} \otimes_{\widehat{R}} \widehat{B}_{i}=\left(\widehat{R} \otimes_{\widehat{R}^{s_{i}}} \widehat{R}\right) \otimes_{\hat{R}}\left(\widehat{R} \otimes_{\widehat{R}^{s_{i}}} \widehat{R}\right)\langle 2\rangle
$$

Decomposition: examples

- Recall that

$$
b_{i}^{2}=\mathrm{v} b_{i}+\mathrm{v}^{-1} b_{i}
$$

in the Hecke algebra.

- The decomposition $\widehat{R} \cong \widehat{R}^{s_{i}} \oplus \widehat{R}^{s_{i}}\langle-2\rangle$ of graded $\widehat{R}^{s_{i}} \widehat{R}^{s_{i}}$-bimodules implies that

$$
\begin{aligned}
\widehat{B}_{i} \otimes_{\widehat{R}} \widehat{B}_{i} & =\left(\widehat{R} \otimes_{\widehat{R}^{s_{i}}} \widehat{R}\right) \otimes_{\widehat{R}}\left(\widehat{R} \otimes_{\widehat{R}^{s_{i}}} \widehat{R}\right)\langle 2\rangle \\
& \cong \widehat{R} \otimes_{\widehat{R}^{s_{i}}} \widehat{R} \otimes_{\widehat{R}^{s_{i}}} \widehat{R}\langle 2\rangle
\end{aligned}
$$

Decomposition: examples

- Recall that

$$
b_{i}^{2}=\mathrm{v} b_{i}+\mathrm{v}^{-1} b_{i}
$$

in the Hecke algebra.

- The decomposition $\widehat{R} \cong \widehat{R}^{s_{i}} \oplus \widehat{R}^{s_{i}}\langle-2\rangle$ of graded $\widehat{R}^{s_{i}}-\widehat{R}^{s_{i}}$-bimodules implies that

$$
\begin{aligned}
\widehat{B}_{i} \otimes_{\widehat{R}} \widehat{B}_{i} & =\left(\widehat{R} \otimes_{\widehat{R}^{s_{i}}} \widehat{R}\right) \otimes_{\widehat{R}}\left(\widehat{R} \otimes_{\widehat{R}^{s_{i}}} \widehat{R}\right)\langle 2\rangle \\
& \cong \widehat{R} \otimes_{\widehat{R}^{s_{i}}} \widehat{R} \otimes_{\widehat{R}^{s_{i}}} \widehat{R}\langle 2\rangle \\
& \cong \widehat{R} \otimes_{\widehat{R}^{s_{i}}}\left(\widehat{R}^{s_{i}} \oplus \widehat{R}^{s_{i}}\langle-2\rangle\right) \otimes_{\widehat{R}^{s_{i}}} \widehat{R}\langle 2\rangle
\end{aligned}
$$

Decomposition: examples

- Recall that

$$
b_{i}^{2}=\mathrm{v} b_{i}+\mathrm{v}^{-1} b_{i}
$$

in the Hecke algebra.

- The decomposition $\widehat{R} \cong \widehat{R}^{s_{i}} \oplus \widehat{R}^{s_{i}}\langle-2\rangle$ of graded $\widehat{R}^{s_{i}} \widehat{R}^{s_{i}}$-bimodules implies that

$$
\begin{aligned}
\widehat{B}_{i} \otimes_{\widehat{R}} \widehat{B}_{i} & =\left(\widehat{R} \otimes_{\hat{R}^{s_{i}}} \widehat{R}\right) \otimes_{\hat{R}}\left(\widehat{R} \otimes_{\hat{R}^{s_{i}}} \widehat{R}\right)\langle 2\rangle \\
& \cong \widehat{R} \otimes_{\widehat{R}^{s_{i}}} \widehat{R} \otimes_{\widehat{R}^{s_{i}}} \widehat{R}\langle 2\rangle \\
& \cong \widehat{R} \otimes_{\widehat{R}^{s_{i}}}\left(\widehat{R}^{s_{i}} \oplus \widehat{R}^{s_{i}}\langle-2\rangle\right) \otimes_{\widehat{R}^{s_{i}}} \widehat{R}\langle 2\rangle \\
& \cong\left(\widehat{R} \otimes_{\widehat{R}^{s_{i}}} \widehat{R}^{s_{i}} \otimes_{\hat{R}^{s_{i}}} \widehat{R}\langle 2\rangle\right) \oplus\left(\widehat{R} \otimes_{\widehat{R}^{s_{i}}} \widehat{R}^{s_{i}} \otimes_{\hat{R}^{s_{i}}} \widehat{R}\right)
\end{aligned}
$$

- Recall that

$$
b_{i}^{2}=\mathrm{v} b_{i}+\mathrm{v}^{-1} b_{i}
$$

in the Hecke algebra.

- The decomposition $\widehat{R} \cong \widehat{R}^{s_{i}} \oplus \widehat{R}^{s_{i}}\langle-2\rangle$ of graded $\widehat{R}^{s_{i}} \widehat{R}^{s_{i}}$-bimodules implies that

$$
\begin{aligned}
\widehat{B}_{i} \otimes_{\widehat{R}} \widehat{B}_{i} & =\left(\widehat{R} \otimes_{\hat{R}^{s_{i}}} \widehat{R}\right) \otimes_{\widehat{R}}\left(\widehat{R} \otimes_{\widehat{R}^{s_{i}}} \widehat{R}\right)\langle 2\rangle \\
& \cong \widehat{R} \otimes_{\widehat{R}^{s_{i}}} \widehat{R} \otimes_{\hat{R}^{s_{i}}} \widehat{R}\langle 2\rangle \\
& \cong \widehat{R} \otimes_{\widehat{R}^{s_{i}}}\left(\widehat{R}^{s_{i}} \oplus \widehat{R}^{s_{i}}\langle-2\rangle\right) \otimes_{\widehat{R}^{s_{i}}} \widehat{R}\langle 2\rangle \\
& \cong\left(\widehat{R} \otimes_{\widehat{R}^{s_{i}}} \widehat{R}^{s_{i}} \otimes_{\widehat{R}^{s_{i}}} \widehat{R}\langle 2\rangle\right) \oplus\left(\widehat{R} \otimes_{\widehat{R}^{s_{i}}} \widehat{R}^{s_{i}} \otimes_{\widehat{R}^{s_{i}}} \widehat{R}\right) \\
& \cong\left(\widehat{R} \otimes_{\hat{R}^{s_{i}}} \widehat{R}\langle 2\rangle\right) \oplus\left(\widehat{R} \otimes_{\widehat{R}^{s_{i}}} \widehat{R}\right)
\end{aligned}
$$

- Recall that

$$
b_{i}^{2}=\mathrm{v} b_{i}+\mathrm{v}^{-1} b_{i}
$$

in the Hecke algebra.

- The decomposition $\widehat{R} \cong \widehat{R}^{s_{i}} \oplus \widehat{R}^{s_{i}}\langle-2\rangle$ of graded $\widehat{R}^{s_{i}} \widehat{R}^{s_{i}}$-bimodules implies that

$$
\begin{aligned}
\widehat{B}_{i} \otimes_{\hat{R}} \widehat{B}_{i} & =\left(\widehat{R} \otimes_{\hat{R}^{s_{i}}} \widehat{R}\right) \otimes_{\hat{R}}\left(\widehat{R} \otimes_{\hat{R}^{s_{i}}} \widehat{R}\right)\langle 2\rangle \\
& \cong \widehat{R} \otimes_{\hat{R}^{s_{i}}} \widehat{R} \otimes_{\hat{R}^{s_{i}}} \widehat{R}\langle 2\rangle \\
& \cong \widehat{R} \otimes_{\hat{R}^{s_{i}}}\left(\widehat{R}^{s_{i}} \oplus \widehat{R}^{s_{i}}\langle-2\rangle\right) \otimes_{\widehat{R}^{s_{i}}} \widehat{R}\langle 2\rangle \\
& \cong\left(\widehat{R} \otimes_{\widehat{R}^{s_{i}}} \widehat{R}^{s_{i}} \otimes_{\hat{R}^{s_{i}}} \widehat{R}\langle 2\rangle\right) \oplus\left(\widehat{R} \otimes_{\hat{R}^{s_{i}}} \widehat{R}^{s_{i}} \otimes_{\hat{R}^{s_{i}}} \widehat{R}\right) \\
& \cong\left(\widehat{R} \otimes_{\hat{R}^{s_{i}}} \widehat{R}\langle 2\rangle\right) \oplus\left(\widehat{R} \otimes_{\widehat{R}^{s_{i}}} \widehat{R}\right) \\
& \cong \widehat{B}_{i}\langle 1\rangle \oplus B_{i}\langle-1\rangle .
\end{aligned}
$$

Decomposition: examples

- Recall that, for any $i=0, \ldots, d-1$, we had

$$
b_{i} b_{i+1} b_{i}=b_{i(i+1) i}+b_{i}
$$

Decomposition: examples

- Recall that, for any $i=0, \ldots, d-1$, we had

$$
b_{i} b_{i+1} b_{i}=b_{i(i+1) i}+b_{i}
$$

- Let $\widehat{R}^{s_{i}, s_{i+1}}:=\left\{f \in \widehat{R} \mid s_{i}(f)=f=s_{i+1}(f)\right\}$. Then there is an isomorphism of graded $\widehat{R}-\widehat{R}$-bimodules

$$
\widehat{B}_{i} \otimes_{\widehat{R}} \widehat{B}_{i+1} \otimes_{\widehat{R}} \widehat{B}_{i} \cong \widehat{B}_{i(i+1) i} \oplus \widehat{B}_{i}
$$

where

$$
\widehat{B}_{i(i+1) i} \cong \widehat{R} \otimes_{\hat{R}^{s_{i}, s_{i}+1}} \widehat{R}\langle 3\rangle .
$$

Decomposition: examples

- Recall that, for any $i=0, \ldots, d-1$, we had

$$
b_{i} b_{i+1} b_{i}=b_{i(i+1) i}+b_{i}
$$

- Let $\widehat{R}^{s_{i}, s_{i+1}}:=\left\{f \in \widehat{R} \mid s_{i}(f)=f=s_{i+1}(f)\right\}$. Then there is an isomorphism of graded \widehat{R} - \widehat{R}-bimodules

$$
\widehat{B}_{i} \otimes_{\widehat{R}} \widehat{B}_{i+1} \otimes_{\widehat{R}} \widehat{B}_{i} \cong \widehat{B}_{i(i+1) i} \oplus \widehat{B}_{i}
$$

where

$$
\widehat{B}_{i(i+1) i} \cong \widehat{R} \otimes_{\hat{R}^{s_{i}, s_{i}+1}} \widehat{R}\langle 3\rangle .
$$

- We omit the proof, which is a bit tricky, but note that $\widehat{R} \otimes_{\widehat{R}^{s_{i}}, s_{i+1}} \widehat{R}\langle 3\rangle$ is indecomposable, as it's generated by $1 \otimes 1$.

Soergel bimodules

Definition (Soergel)

Let $\widehat{\mathcal{S}}_{d}$ be the additive closure in \widehat{R} - $\bmod _{\mathrm{gr}}^{\mathrm{fg}}-\widehat{R}$ (only degree-preserving bimodule maps!) of the full, additive, graded, monoidal subcategory generated by $\widehat{B}_{i}\langle t\rangle$, for $i=0, \ldots, d-1$ and $t \in \mathbb{Z}$.

Soergel bimodules

Definition (Soergel)

Let $\widehat{\mathcal{S}}_{d}$ be the additive closure in \widehat{R} - $\bmod _{\mathrm{gr}}^{\mathrm{fg}}-\widehat{R}$ (only degree-preserving bimodule maps!) of the full, additive, graded, monoidal subcategory generated by $\widehat{B}_{i}\langle t\rangle$, for $i=0, \ldots, d-1$ and $t \in \mathbb{Z}$.

- Let $X \in \widehat{R}-\bmod _{\mathrm{gr}}^{\mathrm{fg}}-\widehat{R}$. Then

$$
X \in \widehat{\mathcal{S}}_{d} \Leftrightarrow X \subseteq \subseteq^{\oplus} \bigoplus \widehat{B S}(\underline{w})\left\langle t_{\underline{w}}\right\rangle
$$

for some words \underline{w} in $\left\{s_{0}, \ldots, s_{d-1}\right\}$ and shifts $t_{w} \in \mathbb{Z}$.

Soergel bimodules

Definition (Soergel)

Let $\widehat{\mathcal{S}}_{d}$ be the additive closure in \widehat{R} - $\bmod _{\mathrm{gr}}^{\mathrm{fg}}-\widehat{R}$ (only degree-preserving bimodule maps!) of the full, additive, graded, monoidal subcategory generated by $\widehat{B}_{i}\langle t\rangle$, for $i=0, \ldots, d-1$ and $t \in \mathbb{Z}$.

- Let $X \in \widehat{R}-\bmod _{\mathrm{gr}}^{\mathrm{fg}}-\widehat{R}$. Then

$$
X \in \widehat{\mathcal{S}}_{d} \Leftrightarrow X \subseteq \bigoplus_{\underline{w}} \bigoplus_{\underline{w}} \widehat{B S}(\underline{w})\left\langle t_{\underline{w}}\right\rangle
$$

for some words \underline{w} in $\left\{s_{0}, \ldots, s_{d-1}\right\}$ and shifts $t_{w} \in \mathbb{Z}$.

- $\widehat{\mathcal{S}}_{d}$ is linear and additive but not abelian, e.g. the kernel of

$$
\widehat{B}_{i}\langle-1\rangle=\widehat{R} \otimes_{\widehat{R}^{s_{i}}} \widehat{R} \xrightarrow{a \otimes b \mapsto a b} \widehat{R}
$$

is isomorphic to \widehat{R} as a right \widehat{R}-module but the left \widehat{R}-action is twisted by s_{i}, so it does not belong to $\widehat{\mathcal{S}}_{d}$.

Indecomposable Soergel bimodules

Theorem (Soergel)

$\widehat{\mathcal{S}}_{d}$ is Krull-Schmidt. For every $w \in \widehat{S}_{d}$, there is an indecomposable bimodule $\widehat{B}_{w} \in \widehat{\mathcal{S}}_{d}$, unique up to degree-preserving isomorphism, such that
(1) $\widehat{B}_{w} \subseteq{ }^{\oplus} \widehat{B S}(\underline{w})$ with multiplicity one, for any rex \underline{w} of w;
(2) $\widehat{B}_{w}\langle t\rangle \not \mathbb{I}^{\oplus} \widehat{B S}(\underline{u})$ for any $t \in \mathbb{Z}, u \prec w$ and rex \underline{u} of u.
(3) Every indecomposable Soergel bimodule is isomorphic to $\widehat{B}_{w}\langle t\rangle$, for some $w \in W$ and $t \in \mathbb{Z}$.

Decategorification: split Grothendieck group

Let \mathcal{A} be a Krull-Schmidt category.

Definition

The split Grothendieck group $[\mathcal{A}]_{\oplus}$ is the abelian group generated by the isoclasses [X] of the objects $X \in \mathcal{A}$ modulo the relations

$$
[X \oplus Y]=[X]+[Y]
$$

for all $X, Y \in \mathcal{A}$.

Decategorification: split Grothendieck group

Let \mathcal{A} be a Krull-Schmidt category.

Definition

The split Grothendieck group $[\mathcal{A}]_{\oplus}$ is the abelian group generated by the isoclasses [X] of the objects $X \in \mathcal{A}$ modulo the relations

$$
[X \oplus Y]=[X]+[Y]
$$

for all $X, Y \in \mathcal{A}$.

Lemma

$[\mathcal{A}]_{\oplus}$ is the free abelian group generated by the isoclasses of the indecomposable objects in \mathcal{A}.

Decategorification: split Grothendieck ring

Definition

If \mathcal{A} is a monoidal Krull-Schmidt category, then $[\mathcal{A}]_{\oplus}$ is a \mathbb{Z}-algebra with product defined by

$$
[X][Y]:=[X \otimes Y]
$$

for all $X, Y \in \mathcal{A}$.

Since the objects of $\widehat{\mathcal{S}}_{d}$ can be shifted, the split Grothendieck algebra $\left[\widehat{\mathcal{S}}_{d}\right]_{\oplus}$ is an algebra over $\mathbb{Z}\left[\mathrm{v}, \mathrm{v}^{-1}\right]$:

$$
\mathrm{v}^{t}[X]:=[X\langle t\rangle], \quad X \in \widehat{\mathcal{S}}_{d}, t \in \mathbb{Z}
$$

The categorification theorem

Since the objects of $\widehat{\mathcal{S}}_{d}$ can be shifted, the split Grothendieck algebra $\left[\widehat{\mathcal{S}}_{d}\right]_{\oplus}$ is an algebra over $\mathbb{Z}\left[\mathrm{v}, \mathrm{v}^{-1}\right]$:

$$
\mathrm{v}^{t}[X]:=[X\langle t\rangle], \quad X \in \widehat{\mathcal{S}}_{d}, t \in \mathbb{Z} .
$$

Theorem (Soergel, Fiebig)

The $\mathbb{Z}\left[\mathrm{v}, \mathrm{v}^{-1}\right]$-linear map given by

$$
b_{w} \mapsto\left[B_{w}\right]
$$

defines an algebra isomorphism between \widehat{H}_{d} and $\left[\widehat{\mathcal{S}}_{d}\right]_{\oplus}$.

Finite type Soergel bimodules

- Similarly, one can define the monoidal category \mathcal{S}_{d} of Soergel bimodules of finite type A_{d-1}, which are defined over the ring $R=\mathbb{C}\left[x_{1}, \ldots, x_{d-1}\right]$.

Finite type Soergel bimodules

- Similarly, one can define the monoidal category \mathcal{S}_{d} of Soergel bimodules of finite type A_{d-1}, which are defined over the ring $R=\mathbb{C}\left[x_{1}, \ldots, x_{d-1}\right]$.
- The objects are direct summands of direct sums of shifted tensor products (over R) of the

$$
B_{i}:=R \otimes_{R^{s_{i}}} R\langle 1\rangle, \quad i=1, \ldots, d-1 .
$$

Finite type Soergel bimodules

- Similarly, one can define the monoidal category \mathcal{S}_{d} of Soergel bimodules of finite type A_{d-1}, which are defined over the ring $R=\mathbb{C}\left[x_{1}, \ldots, x_{d-1}\right]$.
- The objects are direct summands of direct sums of shifted tensor products (over R) of the

$$
B_{i}:=R \otimes_{R^{s_{i}}} R\langle 1\rangle, \quad i=1, \ldots, d-1 .
$$

- \mathcal{S}_{d} categorifies the Hecke algebra H_{d}, such that the indecomposables B_{w} correspond to the Kazhdan-Lusztig basis elements b_{w}, for $w \in S_{d}$.

The categorified story

The evaluation functor

Rouquier complexes

- Recall $b_{i}=t_{i}+v$. Therefore $t_{i}=b_{i}-v$.

Rouquier complexes

- Recall $b_{i}=t_{i}+v$. Therefore $t_{i}=b_{i}-v$.
- Integer linear combinations with alternating sign are categorified by complexes.

Rouquier complexes

- Recall $b_{i}=t_{i}+v$. Therefore $t_{i}=b_{i}-v$.
- Integer linear combinations with alternating sign are categorified by complexes.
- Let $K^{b}(\mathcal{A})$ be the homotopy category of bounded complexes in a monoidal Krull-Schmidt category \mathcal{A}, which inherits a monoidal structure from \mathcal{A}.

Rouquier complexes

- Recall $b_{i}=t_{i}+v$. Therefore $t_{i}=b_{i}-v$.
- Integer linear combinations with alternating sign are categorified by complexes.
- Let $K^{b}(\mathcal{A})$ be the homotopy category of bounded complexes in a monoidal Krull-Schmidt category \mathcal{A}, which inherits a monoidal structure from \mathcal{A}.
- Let $A_{0} \rightarrow A_{1} \rightarrow \cdots \rightarrow A_{n} \in K^{b}(\mathcal{A})$. Then the Euler characteristic in the triangulated Grothendieck group $[\mathcal{A}]_{\triangle}$ is defined as

$$
\left[\underline{A_{0}} \rightarrow A_{1} \rightarrow \cdots \rightarrow A_{n}\right]=\left[A_{0}\right]-\left[A_{1}\right]+\cdots+(-1)^{n}\left[A_{n}\right] .
$$

Rouquier complexes

Definition

For any $i=1, \ldots, d-1$, define the complex

$$
T_{i}: \underline{B_{i}}=\underline{R \otimes_{R^{s_{i}}} R\langle 1\rangle} \xrightarrow{a \otimes b \mapsto a b} R\langle 1\rangle .
$$

Rouquier complexes

Definition

For any $i=1, \ldots, d-1$, define the complex

$$
T_{i}: \underline{B_{i}}=\underline{R \otimes R^{s_{i}}} R\langle 1\rangle \xrightarrow{a \otimes b \mapsto a b} R\langle 1\rangle .
$$

Lemma

The T_{i} are invertible in $K^{b}\left(\mathcal{S}_{d}\right)$:

$$
T_{i}^{-1}: R\langle-1\rangle \rightarrow \underline{B_{i}}=\underline{R} \otimes_{R^{s}} R\langle 1\rangle,
$$

with differential given by

$$
1 \mapsto\left(x_{i}-x_{i+1}\right) \otimes 1+1 \otimes\left(x_{i}-x_{i+1}\right)
$$

Rouquier complexes

Theorem (Rouquier)

The T_{i} satisfy the braid relations of type A_{d-1} in $K^{b}\left(\mathcal{S}_{d}\right)$:

$$
\begin{aligned}
T_{i} T_{j} & \cong T_{j} T_{i} \quad \text { if } \quad|i-j|>1 \\
T_{i} T_{i+1} T_{i} & \cong T_{i+1} T_{i} T_{i+1} .
\end{aligned}
$$

Rouquier complexes

Theorem (Rouquier)

The T_{i} satisfy the braid relations of type A_{d-1} in $K^{b}\left(\mathcal{S}_{d}\right)$:

$$
\begin{aligned}
T_{i} T_{j} & \cong T_{j} T_{i} \quad \text { if } \quad|i-j|>1 \\
T_{i} T_{i+1} T_{i} & \cong T_{i+1} T_{i} T_{i+1}
\end{aligned}
$$

By Matsumoto's theorem, the following is well-defined:

Definition

Let $w \in S_{d}$. Choose any rex $\left(s_{i_{1}}, \ldots, s_{i_{\ell}}\right)$ for w and define

$$
T_{w}:=T_{i_{1}} \cdots T_{i_{\ell}} \in K^{b}\left(\mathcal{S}_{d}\right)
$$

The T_{w} categorify the standard basis elements t_{w} in H_{d}.

Theorem (M-Miemietz-Vaz)

There is a linear monoidal functor $\mathcal{E} v: \widehat{\mathcal{S}}_{d} \rightarrow K^{b}\left(\mathcal{S}_{d}\right)$ which on objects is given by

$$
\begin{aligned}
\widehat{B}_{i} & \mapsto B_{i} \quad \text { for } \quad i=1, \ldots, d-1 \\
\widehat{B}_{0} & \mapsto T_{\rho} B_{1} T_{\rho}^{-1}
\end{aligned}
$$

where $\rho=s_{d-1} \cdots s_{1}$.

- To prove this theorem, one needs to define $\mathcal{E} v$ on morphisms as well, which requires an extension of the usual Soergel calculus and 40 pages of diagrammatic calculations.

The categorified story

Evaluation Birepresentations

Linear additive birepresentations of linear additive monoidal categories

Definition

Let \mathcal{A} be a linear additive Krull-Schmidt monoidal category. A linear additive birepresentation M of \mathcal{A} is a linear additive Krull-Schmidt category \mathcal{M} together with a linear monoidal functor

$$
\mathbf{M}: \mathcal{A} \rightarrow \operatorname{END}(\mathcal{M})
$$

By definition, the rank of \mathbf{M} is equal to the rank of $[\mathcal{M}]_{\oplus}$, which is an linear representation of $[\mathcal{A}]_{\oplus}$.

A strict finitary birepresentation of a strict finitary monoidal category is called a 2-representation.

Recall the zigzag algebra

- $A:=\mathrm{ZZ}\left(A_{d-1}\right)$ (Zigzag algebra of type $\left.A_{d-1}\right)$.

Recall the zigzag algebra

- $A:=\mathrm{ZZ}\left(A_{d-1}\right)\left(\right.$ Zigzag algebra of type $\left.A_{d-1}\right)$.
- A is the complex path algebra of the following quiver modulo the relations below

$$
\begin{aligned}
& i|(i+1)| i=i|(i-1)| i, \quad i|(i+1)|(i+2)=0=(i+2)|(i+1)| i .
\end{aligned}
$$

Recall the zigzag algebra

- $A:=\mathrm{ZZ}\left(A_{d-1}\right)$ (Zigzag algebra of type $\left.A_{d-1}\right)$.
- A is the complex path algebra of the following quiver modulo the relations below

$$
\begin{aligned}
& i|(i+1)| i=i|(i-1)| i, \quad i|(i+1)|(i+2)=0=(i+2)|(i+1)| i .
\end{aligned}
$$

- Let e_{i} be the idempotent corresponding to vertex i and $\ell_{i}:=i|(i+1)| i=i|(i-1)| i$ the loop on the same vertex.

Recall the zigzag algebra

- $A:=\mathrm{ZZ}\left(A_{d-1}\right)\left(\right.$ Zigzag algebra of type $\left.A_{d-1}\right)$.
- A is the complex path algebra of the following quiver modulo the relations below

$$
i|(i+1)| i=i|(i-1)| i, \quad i|(i+1)|(i+2)=0=(i+2)|(i+1)| i
$$

- Let e_{i} be the idempotent corresponding to vertex i and $\ell_{i}:=i|(i+1)| i=i|(i-1)| i$ the loop on the same vertex.
- Since

$$
\ell_{i}^{2}=0
$$

we have $e_{i} A e_{i} \cong D=\mathbb{C}[x] /\left\langle x^{2}\right\rangle$ (dual numbers).

Subregular evaluation birepresentation of $\widehat{\mathcal{S}}_{d}$

Theorem

There is a linear additive birepresentation \mathbf{M}_{d} of \mathcal{S}_{d} which on objects is given by

$$
\begin{aligned}
\mathbf{M}_{d}: \mathcal{S}_{d} & \rightarrow \operatorname{END}\left(A-\text { proj }_{\mathrm{gr}}\right) \\
B_{i} & \mapsto A e_{i} \otimes e_{i} A\langle 1\rangle \otimes_{A}-, \quad i=1, \ldots, d-1 .
\end{aligned}
$$

- $\left[\mathbf{M}_{d}\right]_{\oplus} \cong M_{d}$ as modules over $\left[\mathcal{S}_{d}\right]_{\oplus} \cong H_{d}$.

Subregular evaluation birepresentation of $\widehat{\mathcal{S}}_{d}$

Theorem

There is a linear additive birepresentation \mathbf{M}_{d} of \mathcal{S}_{d} which on objects is given by

$$
\begin{aligned}
\mathbf{M}_{d}: \mathcal{S}_{d} & \rightarrow \operatorname{END}\left(A-\text { proj }_{\mathrm{gr}}\right) \\
B_{i} & \mapsto A e_{i} \otimes e_{i} A\langle 1\rangle \otimes_{A}-, \quad i=1, \ldots, d-1 .
\end{aligned}
$$

- $\left[\mathbf{M}_{d}\right]_{\oplus} \cong M_{d}$ as modules over $\left[\mathcal{S}_{d}\right]_{\oplus} \cong H_{d}$.

Definition

Let $\mathbf{M}_{d}^{\mathcal{E} v}$ be the triangulated birepresentation of $\widehat{\mathcal{S}}_{d}$ obtained by pulling back $K^{b}\left(\mathbf{M}_{d}\right)$ through $\mathcal{E} v: \widehat{\mathcal{S}}_{d} \rightarrow K^{b}\left(\mathcal{S}_{d}\right)$

- $\left[\mathbf{M}_{d}^{\mathcal{E} v}\right]_{\triangle} \cong M_{d}^{\mathrm{ev}}$ as modules over $\left[\widehat{\mathcal{S}}_{d}\right]_{\oplus} \cong\left[K^{b}\left(\widehat{\mathcal{S}}_{d}\right)\right]_{\triangle} \cong \widehat{H}_{d}$.

The Graham-Lehrer cell birepresentation of $\widehat{\mathcal{S}}_{d}$

Let $\widehat{A}_{d}:=Z Z\left(\widehat{A}_{d-1}\right)$ be the (signed) zigzag algebra of type \widehat{A}_{d-1}.

Theorem

There is a linear additive birepresentation $\widehat{\mathbf{M}}_{d}$ of $\widehat{\mathcal{S}}_{d}$ which on objects is given by

$$
\begin{aligned}
\widehat{\mathbf{M}}_{d}: \widehat{\mathcal{S}}_{d} & \rightarrow \operatorname{END}\left(\widehat{A}-\text { proj }_{\mathrm{gr}}\right) \\
B_{i} & \mapsto \widehat{A} e_{i} \otimes e_{i} \widehat{A}\langle 1\rangle \otimes_{\hat{A}}-, \quad i=0, \ldots, d-1 .
\end{aligned}
$$

- $\left[\widehat{\mathbf{M}}_{d}\right]_{\oplus} \cong \widehat{M}_{d}$ as modules over $\left[\widehat{\mathcal{S}}_{d}\right]_{\oplus} \cong \widehat{H}_{d}$.

The categorified projection

Theorem

There is a linear morphism of linear additive birepresentations of $\widehat{\mathcal{S}}_{d}$

$$
\phi: \widehat{\mathbf{M}}_{d} \rightarrow K^{b}\left(\mathbf{M}_{d}\right)
$$

which on objects is given by

$$
\begin{aligned}
\widehat{A} e_{i} & \mapsto A e_{i}, \quad i=1, \ldots, d-1 \\
\widehat{A} e_{0} & \mapsto\left[A e_{d-1}\langle 1\rangle \rightarrow A e_{d-2}\langle 2\rangle \rightarrow \cdots \rightarrow A e_{1}\langle d\rangle\right]
\end{aligned}
$$

Moreover, Φ extends to a morphism of triangulated birepresentations

$$
\widehat{\Phi}: K^{b}\left(\widehat{\mathbf{M}}_{d}\right) \rightarrow K^{b}\left(\mathbf{M}_{d}\right)
$$

which is essentially surjective, faithful and epimorphic (not full!).

Open questions

- What are the general definitions of triangulated birepresentations and morphisms between them?

Open questions

- What are the general definitions of triangulated birepresentations and morphisms between them?
- What are simple triangulated birepresentations and is there a Jordan-Hölder theorem for triangulated birepresentations?

Open questions

- What are the general definitions of triangulated birepresentations and morphisms between them?
- What are simple triangulated birepresentations and is there a Jordan-Hölder theorem for triangulated birepresentations?
- Is there any relation with (co)algebra objects in triangulated monoidal categories?

Open questions

- What are the general definitions of triangulated birepresentations and morphisms between them?
- What are simple triangulated birepresentations and is there a Jordan-Hölder theorem for triangulated birepresentations?
- Is there any relation with (co)algebra objects in triangulated monoidal categories?
- Is it possible to categorify parabolic induction in the triangulated setting?

Open questions

- What are the general definitions of triangulated birepresentations and morphisms between them?
- What are simple triangulated birepresentations and is there a Jordan-Hölder theorem for triangulated birepresentations?
- Is there any relation with (co)algebra objects in triangulated monoidal categories?
- Is it possible to categorify parabolic induction in the triangulated setting?
- What about other affine Weyl types?

The End

