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Introduction

• 2-Representations of 2-categories are the categorical analog
of representations of algebras/categories.

• There are three types: additive, abelian and triangulated.

• Finitary = additive + finiteness conditions.

• 2016-2021: M., Mazorchuk, Miemietz, Tubbenhauer, Zhang
studied finitary 2-representation theory of Soergel bimodules
of finite Coxeter type.

• 2022: M., Miemietz and Vaz started to study finitary, wide
finitary and triangulated 2-representations of Soergel
bimodules of affine type A.
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Outline

• The decategorified story

• (Affine) symmetric group.
• The Hecke algebra of (affine) type A.
• Evaluation representations.

• The categorified story

• Soergel bimodules in (affine) type A.
• The evaluation functor.
• Evaluation birepresentations.
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The decategorified story

The (affine) symmetric group
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The (affine) symmetric group

Definition

• The affine symmetric group Ŝd is the Coxeter group of
type Âd−1, generated by the simple transpositions
s0, s1, . . . , sd−1 (simple reflections), subject to the relations

s2
i = e, si sj = sjsi if |i − j | > 1, si si+1si = si+1si si+1,

where the indices have to be taken modulo d .

• The (finite) symmetric group Sd ⊂ Ŝd is the subgroup
generated by s1, . . . , sd−1 (where the indices are no longer
modulo d).
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The permutation representation

Definition

The permutation representation of Sd is given by

V := C〈x1, . . . , xd〉,

where Sd acts by permuting the xi .

• This representation is clearly faithful.
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The affine permutation representation

Definition

The affine permutation representation of Ŝd is given by

V̂ := C〈y , x1, . . . , xd〉,

where Sd ⊂ Ŝd acts by permuting the xi and fixing y , and s0 fixes y
and, furthermore, is determined by

s0(xd) := x1 + y ;

s0(x1) := xd − y ;

s0(xi ) := xi (i 6= 1, n).

• This representation is also faithful.

• Modding out by 〈y〉 yields a non-faithful representation of Ŝd
on V .
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The decategorified story

The (affine) Hecke algebra
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Hecke algebras

Definition

The affine Hecke algebra Ĥd is the unital associative
Z[v, v−1]-algebra generated by t0, t1, . . . , td−1, subject to the
relations

t2
i = (v−1 − v)ti + 1, ti tj = tj ti if |i − j | > 1,

ti ti+1ti = ti+1ti ti+1,

where the indices are to be taken modulo d .
The (finite type) Hecke algebra Hd ⊂ Ĥd is the unital
Z[v, v−1]-subalgebra generated by t1, . . . , td−1.

• For v = 1, we get t2
i = 1 again.
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Hecke algebras: the standard basis

Let W ∈ {Sd , Ŝd} and H = H(W ) the corresponding Hecke
algebra.

• By Matsumoto’s theorem, we can define

tw := ti1 · · · ti` ∈ H,

for any w ∈W , using any reduced expression (rex)
(si1 , · · · , si`) for w .

Theorem

As a Z[v, v−1]-module, H is freely generated by the standard basis:

{tw | w ∈W }.

• H is a flat deformation of Z[W ]: H|v=1
∼= Z[W ].
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Hecke algebras: the Kazhdan-Lusztig basis

Theorem (Kazhdan-Lusztig)

There is an alternative basis of H (Kazhdan-Lusztig basis):

{bw | w ∈W } .

• Define bubv =
∑

w∈W hu,v ,wbw , u, v ∈W .

Theorem (Kazhdan–Lusztig)

The hu,v ,w belong to N[v, v−1]. (Positive integrality)
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Kazhdan-Lusztig basis: examples

• The change-of-basis matrix is unitriangular, e.g., for all i :

bi := bsi = ti + v,

• For i 6= j , we have

b2
i = (v + v−1)bi

bibj = bij

bibi+1bi = bi(i+1)i + bi .
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The decategorified story

Evaluation representations
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The evaluation map

Definition

The evaluation map ev : Ĥd → Hd is the homomorphism of
Z[v, v−1]-algebras determined by

ev(ti ) := ti , for 1 ≤ i ≤ d − 1,

eva(t0) := tρt1t
−1
ρ ,

where ρ = sd−1 · · · s1.

In terms of the Kazhdan–Lusztig generators, we have

eva(bi ) = bi , for 1 ≤ i ≤ d − 1,

eva(b0) = tρb1t
−1
ρ
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Evaluation representations: definition

Definition

The evaluation representations of Ĥd are the pull-backs of the
irreducible representations of Hd through the evaluation map.

• By construction, evaluation representations are
finite-dimensional and irreducible.
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Evaluation representations: example

Lemma

Take Md := span{m1, . . . ,md−1} over Z[v, v−1].

• The following defines an Hd -action on Md :

bimj =


[2]mi , if j = i ;

mi , if j = i ± 1;

0, else,

for i , j = 1, . . . , d − 1. Here [2] := v + v−1.

• MC(v)
d := Md ⊗Z[v,v−1] C(v) is irreducible.
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Evaluation representations: example

Definition

Let Mev
d be the evaluation representation of Ĥd obtained by pulling

back Md through ev : Ĥd → Hd .

• In the next slides, we are going to show that Mev
d an also be

obtained as the irreducible quotient of a Graham-Lehrer cell
module.
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Graham-Lehrer cell modules: example

Definition (Graham-Lehrer cell module)

Let
M̂d := SpanZ[v,v−1] {mi | i = 0, . . . , d − 1} ,

where the indices of the mi have to be taken modulo d by
convention, and define an action of Ĥd by

bimj =



[2]mi , if j ≡ i mod d ;

(−v)dm1, if i − 1 ≡ 0 ≡ j mod d ;

(−v)−dm0, if i ≡ 0 ≡ j − 1 mod d ;

mj , if i ≡ j ± 1 mod d , but none of the above;

0, else.
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Graham-Lehrer cell modules: example

Lemma

M̂d has a rank-one subrepresentation, generated by (recall
md := m0)

nd :=
d∑

k=1

(−q)−kmk ,

and there is a natural isomorphism of Ĥd -representations

M̂d/〈nd〉
∼=−→ Mev

d

mi 7→ mi i = 1, . . . , d − 1.
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The categorified story

(Affine) Soergel bimodules
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Polynomial algebras

Definition

Define two polynomial algebras

R := C[x1, . . . , xd ] ⊂ R̂ := C[y , x1, . . . , xd ].

We define a Z-grading on R̂ (and R, of course) by

deg(xi ) = det(y) = 2

and the Ŝd -action on V̂ extends to an Ŝd -action on R̂ by
degree-preserving algebra-automorphisms, which restricts to an
Sd -action on R, of course.
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The subalgebra of si -invariant polynomials

Definition

For any i = 0, 1, . . . , d − 1, define

R̂si :=
{
f ∈ R̂ | si (f ) = f

}
.

Concretely,

Lemma

For i = 1, . . . , d − 1, we have

R̂si = C[y , x1, . . . , xi + xi+1, xixi+1, . . . , xd ],

and, for i = 0, we have

R̂s0 = C[y , x1 + xd , x1(xd − y), x2, . . . , xd−1].

Note that (x1 + y)xd = x1(xd − y) + y(x1 + xd).
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The subalgebra of si -invariant polynomials

Lemma

For any i = 0, . . . , d − 1, there is a degree-preserving isomorphism
of graded Rsi -modules

R ∼= Rsi ⊕ Rsi 〈−2〉.

Proof: The isomorphism is obtained by splitting any f ∈ R̂ into its
si -symmetric part and its si -antisymmetric part. Concretely, for any
i = 1, . . . , d − 1,

f =
1

2
(f + si (f )) +

1

2

(
f − si (f )

xi − xi+1

)
(xi − xi+1),

and, for i = 0,

f =
1

2
(f + s0(f )) +

1

2

(
f − s0(f )

xd − x1 − y

)
(xd − x1 − y).
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Bott-Samelson bimodules

Definition

For every i = 0, . . . , d − 1, define the graded R̂-R̂ bimodule

B̂i = B̂si := R̂ ⊗
R̂si

R̂〈1〉.

For any word w = (si1 , . . . , sir ) in {s0, . . . , sd−1}, the

Bott-Samelson bimodule B̂S(w) is defined as

B̂S(w) := B̂i1 ⊗R̂
· · · ⊗

R̂
B̂ir

∼= R̂ ⊗
R̂

si1
R̂ ⊗

R̂
si2
· · · ⊗

R̂sir
R̂〈r〉.

• B̂i is an indecomposable R̂-R̂-bimodule, because it is
generated by 1⊗ 1 and R̂ is positively graded.

• B̂S(w) need not be indecomposable, e.g. next two slides.
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Decomposition: examples

• Recall that
b2
i = vbi + v−1bi

in the Hecke algebra.

• The decomposition R̂ ∼= R̂si ⊕ R̂si 〈−2〉 of graded
R̂si -R̂si -bimodules implies that

B̂i ⊗R̂
B̂i = (R̂ ⊗

R̂si
R̂)⊗

R̂
(R̂ ⊗

R̂si
R̂)〈2〉

∼= R̂ ⊗
R̂si

R̂ ⊗
R̂si

R̂〈2〉
∼= R̂ ⊗

R̂si
(R̂si ⊕ R̂si 〈−2〉)⊗

R̂si
R̂〈2〉

∼= (R̂ ⊗
R̂si

R̂si ⊗
R̂si

R̂〈2〉)⊕ (R̂ ⊗
R̂si

R̂si ⊗
R̂si

R̂)

∼= (R̂ ⊗
R̂si

R̂〈2〉)⊕ (R̂ ⊗
R̂si

R̂)

∼= B̂i 〈1〉 ⊕ Bi 〈−1〉.
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Decomposition: examples

• Recall that, for any i = 0, . . . , d − 1, we had

bibi+1bi = bi(i+1)i + bi .

• Let R̂si ,si+1 := {f ∈ R̂ | si (f ) = f = si+1(f )}. Then there is
an isomorphism of graded R̂-R̂-bimodules

B̂i ⊗R̂
B̂i+1 ⊗R̂

B̂i
∼= B̂i(i+1)i ⊕ B̂i ,

where
B̂i(i+1)i

∼= R̂ ⊗
R̂si ,si+1 R̂〈3〉.

• We omit the proof, which is a bit tricky, but note that
R̂ ⊗

R̂si ,si+1 R̂〈3〉 is indecomposable, as it’s generated by 1⊗ 1.
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Soergel bimodules

Definition (Soergel)

Let Ŝd be the additive closure in R̂-modfggr-R̂ (only degree-preserving
bimodule maps!) of the full, additive, graded, monoidal subcategory
generated by B̂i 〈t〉, for i = 0, . . . , d − 1 and t ∈ Z.

• Let X ∈ R̂-modfggr-R̂. Then

X ∈ Ŝd ⇔ X ⊆⊕
⊕
w

B̂S(w)〈tw 〉

for some words w in {s0, . . . , sd−1} and shifts tw ∈ Z.

• Ŝd is linear and additive but not abelian, e.g. the kernel of

B̂i 〈−1〉 = R̂ ⊗
R̂si

R̂
a⊗b 7→ ab−−−−−−→ R̂

is isomorphic to R̂ as a right R̂-module but the left R̂-action is
twisted by si , so it does not belong to Ŝd .
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X ∈ Ŝd ⇔ X ⊆⊕
⊕
w

B̂S(w)〈tw 〉

for some words w in {s0, . . . , sd−1} and shifts tw ∈ Z.
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Indecomposable Soergel bimodules

Theorem (Soergel)

Ŝd is Krull-Schmidt. For every w ∈ Ŝd , there is an
indecomposable bimodule B̂w ∈ Ŝd , unique up to
degree-preserving isomorphism, such that

(1) B̂w ⊆⊕ B̂S(w) with multiplicity one, for any rex w of w;

(2) B̂w 〈t〉 6⊆⊕ B̂S(u) for any t ∈ Z, u ≺ w and rex u of u.

(3) Every indecomposable Soergel bimodule is isomorphic to
B̂w 〈t〉, for some w ∈W and t ∈ Z.
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Decategorification: split Grothendieck group

Let A be a Krull-Schmidt category.

Definition

The split Grothendieck group [A]⊕ is the abelian group generated
by the isoclasses [X ] of the objects X ∈ A modulo the relations

[X ⊕ Y ] = [X ] + [Y ]

for all X ,Y ∈ A.

Lemma

[A]⊕ is the free abelian group generated by the isoclasses of the
indecomposable objects in A.
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Decategorification: split Grothendieck ring

Definition

If A is a monoidal Krull-Schmidt category, then [A]⊕ is a Z-algebra
with product defined by

[X ][Y ] := [X ⊗ Y ]

for all X ,Y ∈ A.
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The categorification theorem

Since the objects of Ŝd can be shifted, the split Grothendieck
algebra [Ŝd ]⊕ is an algebra over Z[v, v−1]:

vt [X ] := [X 〈t〉], X ∈ Ŝd , t ∈ Z.

Theorem (Soergel, Fiebig)

The Z[v, v−1]-linear map given by

bw 7→ [Bw ]

defines an algebra isomorphism between Ĥd and [Ŝd ]⊕.
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Finite type Soergel bimodules

• Similarly, one can define the monoidal category Sd of Soergel
bimodules of finite type Ad−1, which are defined over the ring
R = C[x1, . . . , xd−1].

• The objects are direct summands of direct sums of shifted
tensor products (over R) of the

Bi := R ⊗Rsi R〈1〉, i = 1, . . . , d − 1.

• Sd categorifies the Hecke algebra Hd , such that the
indecomposables Bw correspond to the Kazhdan-Lusztig basis
elements bw , for w ∈ Sd .
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The categorified story

The evaluation functor
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Rouquier complexes

• Recall bi = ti+v . Therefore ti = bi−v .

• Integer linear combinations with alternating sign are
categorified by complexes.

• Let Kb(A) be the homotopy category of bounded complexes
in a monoidal Krull-Schmidt category A, which inherits a
monoidal structure from A.

• Let A0 → A1 → · · · → An ∈ Kb(A). Then the Euler
characteristic in the triangulated Grothendieck group
[A]4 is defined as

[A0 → A1 → · · · → An] = [A0]− [A1] + · · ·+ (−1)n[An].
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Rouquier complexes

Definition

For any i = 1, . . . , d − 1, define the complex

Ti : Bi = R ⊗Rsi R〈1〉 a⊗b 7→ab−−−−−→ R〈1〉.

Lemma

The Ti are invertible in Kb(Sd):

T−1
i : R〈−1〉 → Bi = R ⊗Rsi R〈1〉,

with differential given by

1 7→ (xi − xi+1)⊗ 1 + 1⊗ (xi − xi+1).
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Rouquier complexes

Theorem (Rouquier)

The Ti satisfy the braid relations of type Ad−1 in Kb(Sd):

TiTj
∼= TjTi if |i − j | > 1

TiTi+1Ti
∼= Ti+1TiTi+1.

By Matsumoto’s theorem, the following is well-defined:

Definition

Let w ∈ Sd . Choose any rex (si1 , . . . , si`) for w and define

Tw := Ti1 · · ·Ti` ∈ Kb(Sd).

The Tw categorify the standard basis elements tw in Hd .
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The evaluation functor

Theorem (M–Miemietz-Vaz)

There is a linear monoidal functor Ev : Ŝd → Kb(Sd) which on
objects is given by

B̂i 7→ Bi for i = 1, . . . , d − 1

B̂0 7→ TρB1T
−1
ρ ,

where ρ = sd−1 · · · s1.

• To prove this theorem, one needs to define Ev on morphisms
as well, which requires an extension of the usual Soergel
calculus and 40 pages of diagrammatic calculations.
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The categorified story

Evaluation birepresentations
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Linear additive birepresentations of linear additive
monoidal categories

Definition

Let A be a linear additive Krull-Schmidt monoidal category. A
linear additive birepresentation M of A is a linear additive
Krull-Schmidt category M together with a linear monoidal functor

M : A → END(M).

By definition, the rank of M is equal to the rank of [M]⊕, which is
an linear representation of [A]⊕.

A strict finitary birepresentation of a strict finitary monoidal
category is called a 2-representation.
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Recall the zigzag algebra

• A := ZZ(Ad−1) (Zigzag algebra of type Ad−1).

• A is the complex path algebra of the following quiver
modulo the relations below

• • • • • •
1 2 3 d − 3 d − 2 d − 1

i |(i+1)|i = i |(i−1)|i , i |(i+1)|(i+2) = 0 = (i+2)|(i+1)|i .

• Let ei be the idempotent corresponding to vertex i and
`i := i |(i + 1)|i = i |(i − 1)|i the loop on the same vertex.
• Since

`2
i = 0,

we have eiAei ∼= D = C[x ]/〈x2〉 (dual numbers).
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• Let ei be the idempotent corresponding to vertex i and
`i := i |(i + 1)|i = i |(i − 1)|i the loop on the same vertex.
• Since

`2
i = 0,

we have eiAei ∼= D = C[x ]/〈x2〉 (dual numbers).
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Subregular evaluation birepresentation of Ŝd

Theorem

There is a linear additive birepresentation Md of Sd which on
objects is given by

Md : Sd → END(A-projgr)

Bi 7→ Aei ⊗ eiA〈1〉 ⊗A −, i = 1, . . . , d − 1.

• [Md ]⊕ ∼= Md as modules over [Sd ]⊕ ∼= Hd .

Definition

Let MEvd be the triangulated birepresentation of Ŝd obtained by

pulling back Kb(Md) through Ev : Ŝd → Kb(Sd)

• [MEvd ]4 ∼= Mev
d as modules over [Ŝd ]⊕ ∼= [Kb(Ŝd)]4 ∼= Ĥd .
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The Graham-Lehrer cell birepresentation of Ŝd

Let Âd := ZZ (Âd−1) be the (signed) zigzag algebra of type Âd−1.

Theorem

There is a linear additive birepresentation M̂d of Ŝd which on
objects is given by

M̂d : Ŝd → END(Â-projgr)

Bi 7→ Âei ⊗ ei Â〈1〉 ⊗Â
−, i = 0, . . . , d − 1.

• [M̂d ]⊕ ∼= M̂d as modules over [Ŝd ]⊕ ∼= Ĥd .
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The categorified projection

Theorem

There is a linear morphism of linear additive birepresentations of Ŝd

Φ: M̂d → Kb(Md)

which on objects is given by

Âei 7→ Aei , i = 1, . . . , d − 1

Âe0 7→ [Aed−1〈1〉 → Aed−2〈2〉 → · · · → Ae1〈d〉]

Moreover, Φ extends to a morphism of triangulated birepresentations

Φ̂ : Kb(M̂d)→ Kb(Md),

which is essentially surjective, faithful and epimorphic (not full!).
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Open questions

• What are the general definitions of triangulated
birepresentations and morphisms between them?

• What are simple triangulated birepresentations and is there a
Jordan-Hölder theorem for triangulated birepresentations?

• Is there any relation with (co)algebra objects in triangulated
monoidal categories?

• Is it possible to categorify parabolic induction in the
triangulated setting?

• What about other affine Weyl types?
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The End
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