2-Representations of affine type A Soergel bimodules: some observations and examples.

Marco Mackaay (jt. with V. Miemietz and P. Vaz)

CAMGSD and Universidade do Algarve

January 25, 2023

Marco Mackaay (jt. with V. Miemietz and P. Vaz)

• 2-Representations of 2-categories are the categorical analog of representations of algebras/categories.

- 2-Representations of 2-categories are the categorical analog of representations of algebras/categories.
- There are three types: additive, abelian and triangulated.

- 2-Representations of 2-categories are the categorical analog of representations of algebras/categories.
- There are three types: additive, abelian and triangulated.
- **Finitary** = additive + finiteness conditions.

- 2-Representations of 2-categories are the categorical analog of representations of algebras/categories.
- There are three types: additive, abelian and triangulated.
- **Finitary** = additive + finiteness conditions.

• 2016-2021: M., Mazorchuk, Miemietz, Tubbenhauer, Zhang studied finitary 2-representation theory of Soergel bimodules of finite Coxeter type.

- 2-Representations of 2-categories are the categorical analog of representations of algebras/categories.
- There are three types: additive, abelian and triangulated.
- **Finitary** = additive + finiteness conditions.

• 2016-2021: M., Mazorchuk, Miemietz, Tubbenhauer, Zhang studied finitary 2-representation theory of Soergel bimodules of finite Coxeter type.

• 2022: M., Miemietz and Vaz started to study finitary, wide finitary and triangulated 2-representations of Soergel bimodules of affine type **A**.

- The decategorified story
 - (Affine) symmetric group.
 - The Hecke algebra of (affine) type A.
 - Evaluation representations.
- The categorified story
 - Soergel bimodules in (affine) type A.
 - The evaluation functor.
 - Evaluation birepresentations.

The (affine) symmetric group

▶ **4 등 ▶ 4**

Marco Mackaay (jt. with V. Miemietz and P. Vaz)

• The affine symmetric group \widehat{S}_d is the Coxeter group of type \widehat{A}_{d-1} , generated by the simple transpositions $s_0, s_1, \ldots, s_{d-1}$ (simple reflections), subject to the relations

$$s_i^2 = e, \quad s_i s_j = s_j s_i \quad \text{if } |i - j| > 1, \quad s_i s_{i+1} s_i = s_{i+1} s_i s_{i+1},$$

where the indices have to be taken modulo d.

• The (finite) symmetric group $S_d \subset \widehat{S}_d$ is the subgroup generated by s_1, \ldots, s_{d-1} (where the indices are no longer modulo d).

The **permutation representation** of S_d is given by

$$V:=\mathbb{C}\langle x_1,\ldots,x_d\rangle,$$

where S_d acts by permuting the x_i .

• This representation is clearly faithful.

The affine permutation representation

Definition

The **affine permutation representation** of \widehat{S}_d is given by

$$\widehat{V} := \mathbb{C}\langle y, x_1, \ldots, x_d \rangle,$$

where $S_d \subset \widehat{S}_d$ acts by permuting the x_i and fixing y, and s_0 fixes y and, furthermore, is determined by

$$s_0(x_d) := x_1 + y;$$

 $s_0(x_1) := x_d - y;$
 $s_0(x_i) := x_i \quad (i \neq 1, n).$

- This representation is also faithful.
- Modding out by $\langle y \rangle$ yields a non-faithful representation of \widehat{S}_d on V.

The (affine) Hecke algebra

▶ ▲ 冨 ▶ ▲

Marco Mackaay (jt. with V. Miemietz and P. Vaz)

The **affine Hecke algebra** \widehat{H}_d is the unital associative $\mathbb{Z}[v, v^{-1}]$ -algebra generated by $t_0, t_1, \ldots, t_{d-1}$, subject to the relations

$$t_i^2 = (v^{-1} - v)t_i + 1, \quad t_i t_j = t_j t_i \text{ if } |i - j| > 1, \ t_i t_{i+1} t_i = t_{i+1} t_i t_{i+1},$$

where the indices are to be taken modulo d. The **(finite type) Hecke algebra** $H_d \subset \widehat{H}_d$ is the unital $\mathbb{Z}[v, v^{-1}]$ -subalgebra generated by t_1, \ldots, t_{d-1} .

• For
$$v = 1$$
, we get $t_i^2 = 1$ again.

Hecke algebras: the standard basis

Let $W \in \{S_d, \widehat{S}_d\}$ and H = H(W) the corresponding Hecke algebra.

• By Matsumoto's theorem, we can define

$$t_w := t_{i_1} \cdots t_{i_\ell} \in H,$$

for any $w \in W$, using any reduced expression (rex) $(s_{i_1}, \cdots, s_{i_\ell})$ for w.

Hecke algebras: the standard basis

Let $W \in \{S_d, \widehat{S}_d\}$ and H = H(W) the corresponding Hecke algebra.

• By Matsumoto's theorem, we can define

$$t_w := t_{i_1} \cdots t_{i_\ell} \in H,$$

for any $w \in W$, using any reduced expression (rex) $(s_{i_1}, \cdots, s_{i_\ell})$ for w.

Theorem

As a $\mathbb{Z}[v, v^{-1}]$ -module, H is freely generated by the standard basis:

 $\{t_w \mid w \in W\}.$

• *H* is a flat deformation of $\mathbb{Z}[W]$: $H|_{v=1} \cong \mathbb{Z}[W]$.

Theorem (Kazhdan-Lusztig)

There is an alternative basis of H (Kazhdan-Lusztig basis):

 $\{b_w \mid w \in W\}$.

Theorem (Kazhdan-Lusztig)

There is an alternative basis of H (Kazhdan-Lusztig basis):

 $\{b_w \mid w \in W\}.$

• Define
$$b_u b_v = \sum_{w \in W} h_{u,v,w} b_w$$
, $u, v \in W$.

Theorem (Kazhdan–Lusztig)

The $h_{u,v,w}$ belong to $\mathbb{N}[v, v^{-1}]$. (Positive integrality)

• The change-of-basis matrix is unitriangular, e.g., for all i:

$$b_i := b_{s_i} = t_i + v,$$

• The change-of-basis matrix is unitriangular, e.g., for all i:

$$b_i := b_{s_i} = t_i + v,$$

• For $i \neq j$, we have

$$egin{array}{rcl} b_i^2 &=& ({f v}+{f v}^{-1})b_i\ b_ib_j &=& b_{ij}\ b_ib_{i+1}b_i &=& b_{i(i+1)i}+b_i. \end{array}$$

-< ≣ ► < ≣ ►

Evaluation representations

∃ ►

Marco Mackaay (jt. with V. Miemietz and P. Vaz)

The evaluation map ev: $\widehat{H}_d \to H_d$ is the homomorphism of $\mathbb{Z}[v, v^{-1}]$ -algebras determined by

$$ev(t_i) := t_i, \text{ for } 1 \le i \le d-1,$$

 $ev_a(t_0) := t_\rho t_1 t_\rho^{-1},$

where $\rho = s_{d-1} \cdots s_1$.

In terms of the Kazhdan-Lusztig generators, we have

$$\operatorname{ev}_a(b_i) = b_i, \quad ext{for} \quad 1 \le i \le d-1,$$

 $\operatorname{ev}_a(b_0) = t_\rho b_1 t_\rho^{-1}$

The **evaluation representations** of \hat{H}_d are the pull-backs of the irreducible representations of H_d through the evaluation map.

• By construction, evaluation representations are finite-dimensional and irreducible.

Lemma

Take $M_d := \operatorname{span}\{m_1, \ldots, m_{d-1}\}$ over $\mathbb{Z}[v, v^{-1}]$.

• The following defines an H_d-action on M_d:

$$b_i m_j = \begin{cases} [2]m_i, & \text{if } j = i; \\ m_i, & \text{if } j = i \pm 1; \\ 0, & \text{else}, \end{cases}$$

for i, j = 1, ..., d - 1. Here $[2] := v + v^{-1}$. • $M_d^{\mathbb{C}(v)} := M_d \otimes_{\mathbb{Z}[v, v^{-1}]} \mathbb{C}(v)$ is irreducible.

Let M_d^{ev} be the evaluation representation of \widehat{H}_d obtained by pulling back M_d through ev: $\widehat{H}_d \to H_d$.

• In the next slides, we are going to show that M_d^{ev} an also be obtained as the irreducible quotient of a Graham-Lehrer cell module.

Definition (Graham-Lehrer cell module)

Let

$$\widehat{M}_d := \operatorname{Span}_{\mathbb{Z}[\mathbf{v},\mathbf{v}^{-1}]} \{ m_i \mid i = 0, \dots, d-1 \},\$$

where the indices of the m_i have to be taken modulo d by convention, and define an action of \hat{H}_d by

$$b_i m_j = \begin{cases} [2]m_i, & \text{if } j \equiv i \mod d; \\ (-\mathbf{v})^d m_1, & \text{if } i - 1 \equiv 0 \equiv j \mod d; \\ (-\mathbf{v})^{-d} m_0, & \text{if } i \equiv 0 \equiv j - 1 \mod d; \\ m_j, & \text{if } i \equiv j \pm 1 \mod d, \text{ but none of the above;} \\ 0, & \text{else.} \end{cases}$$

Lemma

 \widehat{M}_d has a rank-one subrepresentation, generated by (recall $m_d := m_0$)

$$n_d:=\sum_{k=1}^a(-q)^{-k}m_k,$$

and there is a natural isomorphism of \widehat{H}_d -representations

$$\begin{array}{rcl} \widehat{M}_d/\langle n_d \rangle & \xrightarrow{\cong} & M_d^{\mathsf{ev}} \\ & m_i & \mapsto & m_i & i = 1, \dots, d-1. \end{array}$$

(Affine) Soergel Bimodules

> < 注 > < 注 >

Marco Mackaay (jt. with V. Miemietz and P. Vaz)

Define two polynomial algebras

$$R := \mathbb{C}[x_1, \ldots, x_d] \subset \widehat{R} := \mathbb{C}[y, x_1, \ldots, x_d].$$

We define a \mathbb{Z} -grading on \widehat{R} (and R, of course) by

$$\deg(x_i) = \det(y) = 2$$

and the \widehat{S}_d -action on \widehat{V} extends to an \widehat{S}_d -action on \widehat{R} by degree-preserving algebra-automorphisms, which restricts to an S_d -action on R, of course.

The subalgebra of *s_i*-invariant polynomials

Definition

For any $i = 0, 1, \ldots, d - 1$, define

$$\widehat{R}^{s_i} := \left\{ f \in \widehat{R} \mid s_i(f) = f
ight\}.$$

・ 一 ・ ・ ・ ・ ・

글 🕨 🖻

The subalgebra of *s_i*-invariant polynomials

Definition

For any $i = 0, 1, \ldots, d - 1$, define

$$\widehat{R}^{s_i} := \left\{ f \in \widehat{R} \mid s_i(f) = f
ight\}.$$

Concretely,

Lemma

For
$$i = 1, \ldots, d - 1$$
, we have

$$\widehat{R}^{s_i} = \mathbb{C}[y, x_1, \dots, x_i + x_{i+1}, x_i x_{i+1}, \dots, x_d],$$

and, for i = 0, we have

$$\widehat{R}^{s_0} = \mathbb{C}[y, x_1 + x_d, x_1(x_d - y), x_2, \dots, x_{d-1}].$$

Note that $(x_1 + y)x_d = x_1(x_d - y) + y(x_1 + x_d)$.

The subalgebra of *s_i*-invariant polynomials

Lemma

For any i = 0, ..., d - 1, there is a degree-preserving isomorphism of graded R^{s_i} -modules

$$R\cong R^{s_i}\oplus R^{s_i}\langle -2\rangle.$$

Proof. The isomorphism is obtained by splitting any $f \in \widehat{R}$ into its s_i -symmetric part and its s_i -antisymmetric part. Concretely, for any i = 1, ..., d - 1,

$$f = \frac{1}{2}(f + s_i(f)) + \frac{1}{2}\left(\frac{f - s_i(f)}{x_i - x_{i+1}}\right)(x_i - x_{i+1}),$$

and, for i = 0,

$$f = \frac{1}{2}(f + s_0(f)) + \frac{1}{2}\left(\frac{f - s_0(f)}{x_d - x_1 - y}\right)(x_d - x_1 - y).$$

Definition

For every $i = 0, \ldots, d-1$, define the graded $\widehat{R} \cdot \widehat{R}$ bimodule

$$\widehat{B}_i = \widehat{B}_{s_i} := \widehat{R} \otimes_{\widehat{R}^{s_i}} \widehat{R} \langle 1 \rangle.$$

- ₹ 🗐 🕨

э

Definition

For every $i = 0, \ldots, d-1$, define the graded $\widehat{R} \cdot \widehat{R}$ bimodule

$$\widehat{B}_i = \widehat{B}_{s_i} := \widehat{R} \otimes_{\widehat{R}^{s_i}} \widehat{R} \langle 1 \rangle.$$

For any word $\underline{w} = (s_{i_1}, \ldots, s_{i_r})$ in $\{s_0, \ldots, s_{d-1}\}$, the **Bott-Samelson bimodule** $\widehat{BS}(\underline{w})$ is defined as

$$\begin{array}{lll} \widehat{BS}(\underline{w}) & := & \widehat{B}_{i_1} \otimes_{\widehat{R}} \cdots \otimes_{\widehat{R}} \widehat{B}_{i_r} \\ & \cong & \widehat{R} \otimes_{\widehat{R}^{s_{i_1}}} \widehat{R} \otimes_{\widehat{R}^{s_{i_2}}} \cdots \otimes_{\widehat{R}^{s_{i_r}}} \widehat{R} \langle r \rangle. \end{array}$$

Definition

For every $i=0,\ldots,d-1$, define the graded $\widehat{R} \cdot \widehat{R}$ bimodule

$$\widehat{B}_i = \widehat{B}_{s_i} := \widehat{R} \otimes_{\widehat{R}^{s_i}} \widehat{R} \langle 1 \rangle.$$

For any word $\underline{w} = (s_{i_1}, \ldots, s_{i_r})$ in $\{s_0, \ldots, s_{d-1}\}$, the **Bott-Samelson bimodule** $\widehat{BS}(\underline{w})$ is defined as

$$\begin{array}{lll} \widehat{BS}(\underline{w}) & := & \widehat{B}_{i_1} \otimes_{\widehat{R}} \cdots \otimes_{\widehat{R}} \widehat{B}_{i_r} \\ & \cong & \widehat{R} \otimes_{\widehat{R}^{s_{i_1}}} \widehat{R} \otimes_{\widehat{R}^{s_{i_2}}} \cdots \otimes_{\widehat{R}^{s_{i_r}}} \widehat{R} \langle r \rangle. \end{array}$$

• \widehat{B}_i is an indecomposable \widehat{R} - \widehat{R} -bimodule, because it is generated by $1 \otimes 1$ and \widehat{R} is positively graded.

Definition

For every $i = 0, \ldots, d - 1$, define the graded $\widehat{R} \cdot \widehat{R}$ bimodule

$$\widehat{B}_i = \widehat{B}_{s_i} := \widehat{R} \otimes_{\widehat{R}^{s_i}} \widehat{R} \langle 1 \rangle.$$

For any word $\underline{w} = (s_{i_1}, \ldots, s_{i_r})$ in $\{s_0, \ldots, s_{d-1}\}$, the **Bott-Samelson bimodule** $\widehat{BS}(\underline{w})$ is defined as

$$\begin{array}{lll} \widehat{BS}(\underline{w}) & := & \widehat{B}_{i_1} \otimes_{\widehat{R}} \cdots \otimes_{\widehat{R}} \widehat{B}_{i_r} \\ & \cong & \widehat{R} \otimes_{\widehat{R}^{s_{i_1}}} \widehat{R} \otimes_{\widehat{R}^{s_{i_2}}} \cdots \otimes_{\widehat{R}^{s_{i_r}}} \widehat{R} \langle r \rangle. \end{array}$$

- \widehat{B}_i is an indecomposable \widehat{R} - \widehat{R} -bimodule, because it is generated by $1 \otimes 1$ and \widehat{R} is positively graded.
- $\widehat{BS}(\underline{w})$ need not be indecomposable, e.g. next two slides.

Decomposition: examples

• Recall that

$$b_i^2 = \mathbf{v}b_i + \mathbf{v}^{-1}b_i$$

in the Hecke algebra.

$$b_i^2 = \mathbf{v}b_i + \mathbf{v}^{-1}b_i$$

in the Hecke algebra.

$$\widehat{B}_i \otimes_{\widehat{R}} \widehat{B}_i = (\widehat{R} \otimes_{\widehat{R}^{s_i}} \widehat{R}) \otimes_{\widehat{R}} (\widehat{R} \otimes_{\widehat{R}^{s_i}} \widehat{R}) \langle 2 \rangle$$

$$b_i^2 = \mathbf{v}b_i + \mathbf{v}^{-1}b_i$$

in the Hecke algebra.

$$\begin{array}{rcl} \widehat{B}_i \otimes_{\widehat{R}} \widehat{B}_i & = & (\widehat{R} \otimes_{\widehat{R}^{s_i}} \widehat{R}) \otimes_{\widehat{R}} (\widehat{R} \otimes_{\widehat{R}^{s_i}} \widehat{R}) \langle 2 \rangle \\ & \cong & \widehat{R} \otimes_{\widehat{R}^{s_i}} \widehat{R} \otimes_{\widehat{R}^{s_i}} \widehat{R} \langle 2 \rangle \end{array}$$

$$b_i^2 = \mathbf{v}b_i + \mathbf{v}^{-1}b_i$$

in the Hecke algebra.

$$\begin{array}{rcl} \widehat{B}_{i} \otimes_{\widehat{R}} \widehat{B}_{i} &=& (\widehat{R} \otimes_{\widehat{R}^{s_{i}}} \widehat{R}) \otimes_{\widehat{R}} (\widehat{R} \otimes_{\widehat{R}^{s_{i}}} \widehat{R}) \langle 2 \rangle \\ &\cong& \widehat{R} \otimes_{\widehat{R}^{s_{i}}} \widehat{R} \otimes_{\widehat{R}^{s_{i}}} \widehat{R} \langle 2 \rangle \\ &\cong& \widehat{R} \otimes_{\widehat{R}^{s_{i}}} (\widehat{R}^{s_{i}} \oplus \widehat{R}^{s_{i}} \langle -2 \rangle) \otimes_{\widehat{R}^{s_{i}}} \widehat{R} \langle 2 \rangle \end{array}$$

$$b_i^2 = \mathbf{v}b_i + \mathbf{v}^{-1}b_i$$

in the Hecke algebra.

$$\begin{array}{rcl} \widehat{B}_{i} \otimes_{\widehat{R}} \widehat{B}_{i} &=& (\widehat{R} \otimes_{\widehat{R}^{s_{i}}} \widehat{R}) \otimes_{\widehat{R}} (\widehat{R} \otimes_{\widehat{R}^{s_{i}}} \widehat{R}) \langle 2 \rangle \\ &\cong& \widehat{R} \otimes_{\widehat{R}^{s_{i}}} \widehat{R} \otimes_{\widehat{R}^{s_{i}}} \widehat{R} \langle 2 \rangle \\ &\cong& \widehat{R} \otimes_{\widehat{R}^{s_{i}}} (\widehat{R}^{s_{i}} \oplus \widehat{R}^{s_{i}} \langle -2 \rangle) \otimes_{\widehat{R}^{s_{i}}} \widehat{R} \langle 2 \rangle \\ &\cong& (\widehat{R} \otimes_{\widehat{R}^{s_{i}}} \widehat{R}^{s_{i}} \otimes_{\widehat{R}^{s_{i}}} \widehat{R} \langle 2 \rangle) \oplus (\widehat{R} \otimes_{\widehat{R}^{s_{i}}} \widehat{R}^{s_{i}} \otimes_{\widehat{R}^{s_{i}}} \widehat{R}) \end{array}$$

$$b_i^2 = \mathbf{v}b_i + \mathbf{v}^{-1}b_i$$

in the Hecke algebra.

$$\begin{array}{rcl} \widehat{B}_{i} \otimes_{\widehat{R}} \widehat{B}_{i} &=& (\widehat{R} \otimes_{\widehat{R}^{s_{i}}} \widehat{R}) \otimes_{\widehat{R}} (\widehat{R} \otimes_{\widehat{R}^{s_{i}}} \widehat{R}) \langle 2 \rangle \\ &\cong& \widehat{R} \otimes_{\widehat{R}^{s_{i}}} \widehat{R} \otimes_{\widehat{R}^{s_{i}}} \widehat{R} \langle 2 \rangle \\ &\cong& \widehat{R} \otimes_{\widehat{R}^{s_{i}}} (\widehat{R}^{s_{i}} \oplus \widehat{R}^{s_{i}} \langle -2 \rangle) \otimes_{\widehat{R}^{s_{i}}} \widehat{R} \langle 2 \rangle \\ &\cong& (\widehat{R} \otimes_{\widehat{R}^{s_{i}}} \widehat{R}^{s_{i}} \otimes_{\widehat{R}^{s_{i}}} \widehat{R} \langle 2 \rangle) \oplus (\widehat{R} \otimes_{\widehat{R}^{s_{i}}} \widehat{R}^{s_{i}} \otimes_{\widehat{R}^{s_{i}}} \widehat{R}) \\ &\cong& (\widehat{R} \otimes_{\widehat{R}^{s_{i}}} \widehat{R} \langle 2 \rangle) \oplus (\widehat{R} \otimes_{\widehat{R}^{s_{i}}} \widehat{R}) \end{array}$$

$$b_i^2 = \mathbf{v}b_i + \mathbf{v}^{-1}b_i$$

in the Hecke algebra.

$$\begin{array}{rcl} \widehat{B}_{i} \otimes_{\widehat{R}} \widehat{B}_{i} &=& (\widehat{R} \otimes_{\widehat{R}^{s_{i}}} \widehat{R}) \otimes_{\widehat{R}} (\widehat{R} \otimes_{\widehat{R}^{s_{i}}} \widehat{R}) \langle 2 \rangle \\ &\cong& \widehat{R} \otimes_{\widehat{R}^{s_{i}}} \widehat{R} \otimes_{\widehat{R}^{s_{i}}} \widehat{R} \langle 2 \rangle \\ &\cong& \widehat{R} \otimes_{\widehat{R}^{s_{i}}} (\widehat{R}^{s_{i}} \oplus \widehat{R}^{s_{i}} \langle -2 \rangle) \otimes_{\widehat{R}^{s_{i}}} \widehat{R} \langle 2 \rangle \\ &\cong& (\widehat{R} \otimes_{\widehat{R}^{s_{i}}} \widehat{R}^{s_{i}} \otimes_{\widehat{R}^{s_{i}}} \widehat{R} \langle 2 \rangle) \oplus (\widehat{R} \otimes_{\widehat{R}^{s_{i}}} \widehat{R}^{s_{i}} \otimes_{\widehat{R}^{s_{i}}} \widehat{R}) \\ &\cong& (\widehat{R} \otimes_{\widehat{R}^{s_{i}}} \widehat{R} \langle 2 \rangle) \oplus (\widehat{R} \otimes_{\widehat{R}^{s_{i}}} \widehat{R}) \\ &\cong& \widehat{B}_{i} \langle 1 \rangle \oplus B_{i} \langle -1 \rangle. \end{array}$$

Decomposition: examples

• Recall that, for any $i = 0, \ldots, d - 1$, we had

$$b_ib_{i+1}b_i=b_{i(i+1)i}+b_i.$$

▲御 と ▲ 唐 と ▲ 唐 と

э

Decomposition: examples

• Recall that, for any $i = 0, \ldots, d - 1$, we had

$$b_ib_{i+1}b_i=b_{i(i+1)i}+b_i.$$

• Let $\widehat{R}^{s_i,s_{i+1}} := \{f \in \widehat{R} \mid s_i(f) = f = s_{i+1}(f)\}$. Then there is an isomorphism of graded $\widehat{R} \cdot \widehat{R}$ -bimodules

$$\widehat{B}_i \otimes_{\widehat{R}} \widehat{B}_{i+1} \otimes_{\widehat{R}} \widehat{B}_i \cong \widehat{B}_{i(i+1)i} \oplus \widehat{B}_i,$$

where

$$\widehat{B}_{i(i+1)i} \cong \widehat{R} \otimes_{\widehat{R}^{s_i,s_{i+1}}} \widehat{R} \langle 3 \rangle.$$

Decomposition: examples

• Recall that, for any $i = 0, \ldots, d - 1$, we had

$$b_ib_{i+1}b_i=b_{i(i+1)i}+b_i.$$

• Let $\widehat{R}^{s_i,s_{i+1}} := \{ f \in \widehat{R} \mid s_i(f) = f = s_{i+1}(f) \}$. Then there is an isomorphism of graded $\widehat{R} \cdot \widehat{R}$ -bimodules

$$\widehat{B}_i \otimes_{\widehat{R}} \widehat{B}_{i+1} \otimes_{\widehat{R}} \widehat{B}_i \cong \widehat{B}_{i(i+1)i} \oplus \widehat{B}_i,$$

where

$$\widehat{B}_{i(i+1)i} \cong \widehat{R} \otimes_{\widehat{R}^{s_i,s_{i+1}}} \widehat{R} \langle 3 \rangle.$$

• We omit the proof, which is a bit tricky, but note that $\widehat{R} \otimes_{\widehat{R}^{s_i,s_{i+1}}} \widehat{R}\langle 3 \rangle$ is indecomposable, as it's generated by $1 \otimes 1$.

Soergel bimodules

Definition (Soergel)

Let \widehat{S}_d be the additive closure in \widehat{R} -mod^{fg}_{gr}- \widehat{R} (only degree-preserving bimodule maps!) of the full, additive, graded, monoidal subcategory generated by $\widehat{B}_i \langle t \rangle$, for $i = 0, \ldots, d-1$ and $t \in \mathbb{Z}$.

Soergel bimodules

Definition (Soergel)

Let \widehat{S}_d be the additive closure in \widehat{R} -mod^{fg}_{gr}- \widehat{R} (only degree-preserving bimodule maps!) of the full, additive, graded, monoidal subcategory generated by $\widehat{B}_i\langle t \rangle$, for $i = 0, \ldots, d-1$ and $t \in \mathbb{Z}$.

• Let
$$X \in \widehat{R}$$
-mod^{fg}_{gr}- \widehat{R} . Then

$$X \in \widehat{\mathcal{S}}_d \iff X \subseteq^{\oplus} \bigoplus_{\underline{w}} \widehat{BS}(\underline{w}) \langle t_{\underline{w}} \rangle$$

for some words \underline{w} in $\{s_0, \ldots, s_{d-1}\}$ and shifts $t_w \in \mathbb{Z}$.

Soergel bimodules

Definition (Soergel)

Let \widehat{S}_d be the additive closure in \widehat{R} -mod^{fg}_{gr}- \widehat{R} (only degree-preserving bimodule maps!) of the full, additive, graded, monoidal subcategory generated by $\widehat{B}_i\langle t \rangle$, for $i = 0, \ldots, d-1$ and $t \in \mathbb{Z}$.

• Let
$$X \in \widehat{R}$$
-mod^{fg}_{gr}- \widehat{R} . Then

$$X \in \widehat{\mathcal{S}}_d \iff X \subseteq^{\oplus} \bigoplus_{\underline{w}} \widehat{BS}(\underline{w}) \langle t_{\underline{w}} \rangle$$

for some words \underline{w} in $\{s_0, \ldots, s_{d-1}\}$ and shifts $t_w \in \mathbb{Z}$.

• $\widehat{\mathcal{S}}_d$ is **linear** and **additive** but **not abelian**, e.g. the kernel of

$$\widehat{B}_i\langle -1
angle = \widehat{R}\otimes_{\widehat{R}^{s_i}}\widehat{R} \xrightarrow{\mathsf{a}\otimes b\mapsto \mathsf{ab}} \widehat{R}$$

is isomorphic to \widehat{R} as a right \widehat{R} -module but the left \widehat{R} -action is twisted by s_i , so it does not belong to \widehat{S}_d .

Theorem (Soergel)

 \widehat{S}_d is Krull-Schmidt. For every $w \in \widehat{S}_d$, there is an indecomposable bimodule $\widehat{B}_w \in \widehat{S}_d$, unique up to degree-preserving isomorphism, such that (1) $\widehat{B}_w \subseteq^{\oplus} \widehat{BS}(\underline{w})$ with multiplicity one, for any rex \underline{w} of w; (2) $\widehat{B}_w \langle t \rangle \not\subseteq^{\oplus} \widehat{BS}(\underline{u})$ for any $t \in \mathbb{Z}$, $u \prec w$ and rex \underline{u} of u. (3) Every indecomposable Soergel bimodule is isomorphic to $\widehat{B}_w \langle t \rangle$, for some $w \in W$ and $t \in \mathbb{Z}$.

Let \mathcal{A} be a Krull-Schmidt category.

Definition

The **split Grothendieck group** $[\mathcal{A}]_{\oplus}$ is the abelian group generated by the isoclasses [X] of the objects $X \in \mathcal{A}$ modulo the relations

$$[X \oplus Y] = [X] + [Y]$$

for all $X, Y \in \mathcal{A}$.

Let \mathcal{A} be a Krull-Schmidt category.

Definition

The **split Grothendieck group** $[\mathcal{A}]_{\oplus}$ is the abelian group generated by the isoclasses [X] of the objects $X \in \mathcal{A}$ modulo the relations

$$[X\oplus Y]=[X]+[Y]$$

for all $X, Y \in \mathcal{A}$.

Lemma

 $[\mathcal{A}]_\oplus$ is the free abelian group generated by the isoclasses of the indecomposable objects in $\mathcal{A}.$

Definition

If $\mathcal A$ is a monoidal Krull-Schmidt category, then $[\mathcal A]_\oplus$ is a $\mathbb Z\text{-algebra}$ with product defined by

$$[X][Y] := [X \otimes Y]$$

for all $X, Y \in \mathcal{A}$.

Since the objects of $\widehat{\mathcal{S}}_d$ can be shifted, the split Grothendieck algebra $[\widehat{\mathcal{S}}_d]_{\oplus}$ is an algebra over $\mathbb{Z}[v, v^{-1}]$:

$$\mathbf{v}^t[X] := [X\langle t \rangle], \quad X \in \widehat{\mathcal{S}}_d, t \in \mathbb{Z}.$$

Since the objects of $\widehat{\mathcal{S}}_d$ can be shifted, the split Grothendieck algebra $[\widehat{\mathcal{S}}_d]_{\oplus}$ is an algebra over $\mathbb{Z}[v, v^{-1}]$:

$$\mathbf{v}^t[X] := [X\langle t \rangle], \quad X \in \widehat{\mathcal{S}}_d, t \in \mathbb{Z}.$$

Theorem (Soergel, Fiebig)

The $\mathbb{Z}[v, v^{-1}]$ -linear map given by

$$b_w \mapsto [B_w]$$

defines an algebra isomorphism between \widehat{H}_d and $[\widehat{S}_d]_{\oplus}$.

• Similarly, one can define the monoidal category S_d of Soergel bimodules of finite type A_{d-1} , which are defined over the ring $R = \mathbb{C}[x_1, \ldots, x_{d-1}].$

• Similarly, one can define the monoidal category S_d of Soergel bimodules of finite type A_{d-1} , which are defined over the ring $R = \mathbb{C}[x_1, \ldots, x_{d-1}].$

• The objects are direct summands of direct sums of shifted tensor products (over R) of the

$$B_i := R \otimes_{R^{s_i}} R\langle 1 \rangle, \quad i = 1, \ldots, d-1.$$

• Similarly, one can define the monoidal category S_d of Soergel bimodules of finite type A_{d-1} , which are defined over the ring $R = \mathbb{C}[x_1, \ldots, x_{d-1}].$

• The objects are direct summands of direct sums of shifted tensor products (over R) of the

$$B_i := R \otimes_{R^{s_i}} R\langle 1 \rangle, \quad i = 1, \ldots, d-1.$$

• S_d categorifies the Hecke algebra H_d , such that the indecomposables B_w correspond to the Kazhdan-Lusztig basis elements b_w , for $w \in S_d$.

The evaluation functor

ト く 戸 ト く

Marco Mackaay (jt. with V. Miemietz and P. Vaz)

• Recall $b_i = t_i + v$. Therefore $t_i = b_i - v$.

▲御▶ ▲ 唐▶ ▲ 唐▶

- Recall $b_i = t_i + v$. Therefore $t_i = b_i v$.
- Integer linear combinations with alternating sign are categorified by complexes.

- (≣) × .

- Recall $b_i = t_i + v$. Therefore $t_i = b_i v$.
- Integer linear combinations with alternating sign are categorified by complexes.
- Let $K^b(\mathcal{A})$ be the homotopy category of bounded complexes in a monoidal Krull-Schmidt category \mathcal{A} , which inherits a monoidal structure from \mathcal{A} .

• Recall $b_i = t_i + v$. Therefore $t_i = b_i - v$.

• Integer linear combinations with alternating sign are categorified by complexes.

• Let $K^b(\mathcal{A})$ be the homotopy category of bounded complexes in a monoidal Krull-Schmidt category \mathcal{A} , which inherits a monoidal structure from \mathcal{A} .

• Let $\underline{A_0} \to A_1 \to \cdots \to A_n \in K^b(\mathcal{A})$. Then the **Euler** characteristic in the triangulated Grothendieck group $[\mathcal{A}]_{\triangle}$ is defined as

$$[\underline{A_0} \to A_1 \to \cdots \to A_n] = [A_0] - [A_1] + \cdots + (-1)^n [A_n].$$

Definition

For any $i = 1, \ldots, d - 1$, define the complex

$$T_i \colon \underline{B_i} = R \otimes_{R^{s_i}} R\langle 1 \rangle \xrightarrow{a \otimes b \mapsto ab} R\langle 1 \rangle.$$

E

Definition

For any $i = 1, \ldots, d - 1$, define the complex

$$T_i: \underline{B_i} = \underline{R \otimes_{R^{s_i}} R\langle 1 \rangle} \xrightarrow{a \otimes b \mapsto ab} R\langle 1 \rangle.$$

Lemma

The T_i are invertible in $K^b(\mathcal{S}_d)$:

$$T_i^{-1}\colon R\langle -1\rangle \to \underline{B_i} = \underline{R\otimes_{R^{s_i}}R\langle 1\rangle},$$

with differential given by

$$1\mapsto (x_i-x_{i+1})\otimes 1+1\otimes (x_i-x_{i+1}).$$

Theorem (Rouquier)

The T_i satisfy the braid relations of type A_{d-1} in $K^b(S_d)$:

$$T_i T_j \cong T_j T_i \quad if \quad |i-j| > 1$$

$$T_i T_{i+1} T_i \cong T_{i+1} T_i T_{i+1}.$$

Theorem (Rouquier)

The T_i satisfy the braid relations of type A_{d-1} in $K^b(S_d)$:

$$T_i T_j \cong T_j T_i \quad if \quad |i-j| > 1$$

$$T_i T_{i+1} T_i \cong T_{i+1} T_i T_{i+1}.$$

By Matsumoto's theorem, the following is well-defined:

Definition

Let $w \in S_d.$ Choose any rex $(s_{i_1},\ldots,s_{i_\ell})$ for w and define

$$T_w := T_{i_1} \cdots T_{i_\ell} \in K^b(\mathcal{S}_d).$$

The T_w categorify the standard basis elements t_w in H_d .

Theorem (M–Miemietz-Vaz)

There is a linear monoidal functor $\mathcal{E}v: \widehat{\mathcal{S}}_d \to K^b(\mathcal{S}_d)$ which on objects is given by

$$\widehat{B}_i \mapsto B_i \quad \text{for} \quad i = 1, \dots, d-1$$

 $\widehat{B}_0 \mapsto T_{\rho} B_1 T_{\rho}^{-1},$

where $\rho = s_{d-1} \cdots s_1$.

• To prove this theorem, one needs to define $\mathcal{E}v$ on morphisms as well, which requires an extension of the usual **Soergel** calculus and 40 pages of diagrammatic calculations.

Evaluation Birepresentations

ヨト・モ

Marco Mackaay (jt. with V. Miemietz and P. Vaz)

Linear additive birepresentations of linear additive monoidal categories

Definition

Let \mathcal{A} be a linear additive Krull-Schmidt monoidal category. A **linear additive birepresentation M** of \mathcal{A} is a linear additive Krull-Schmidt category \mathcal{M} together with a linear monoidal functor

 $\mathsf{M}\colon \mathcal{A}\to \mathrm{END}(\mathcal{M}).$

By definition, the **rank** of **M** is equal to the rank of $[\mathcal{M}]_{\oplus}$, which is an linear representation of $[\mathcal{A}]_{\oplus}$.

A **strict** finitary birepresentation of a **strict** finitary monoidal category is called a 2-**representation**.

Recall the zigzag algebra

• $A := ZZ(A_{d-1})$ (Zigzag algebra of type A_{d-1}).

▲御 ▶ ▲ 臣 ▶ ▲ 臣 ▶ …

E.

Recall the zigzag algebra

- $A := ZZ(A_{d-1})$ (Zigzag algebra of type A_{d-1}).
 - A is the complex path algebra of the following quiver modulo the relations below

$$\bullet \overleftrightarrow{\longrightarrow} \bullet \overleftrightarrow{\longrightarrow} \bullet \overleftrightarrow{\longrightarrow} \bullet = = = = = \bullet \longleftrightarrow \bullet \overleftrightarrow{\rightarrow} \bullet \overleftrightarrow{\longrightarrow} \bullet$$
$$i|(i+1)|i = i|(i-1)|i, \quad i|(i+1)|(i+2) = 0 = (i+2)|(i+1)|i.$$

▶ ★ 문 ► ★ 문 ► _ 문

- $A := ZZ(A_{d-1})$ (Zigzag algebra of type A_{d-1}).
 - A is the complex path algebra of the following quiver modulo the relations below

$$\bullet \xrightarrow{} \bullet \xrightarrow{} 1$$

 $i|(i+1)|i = i|(i-1)|i, \quad i|(i+1)|(i+2) = 0 = (i+2)|(i+1)|i.$

• Let e_i be the idempotent corresponding to vertex i and $\ell_i := i|(i+1)|i = i|(i-1)|i$ the loop on the same vertex.

- $A := ZZ(A_{d-1})$ (Zigzag algebra of type A_{d-1}).
 - A is the complex path algebra of the following quiver modulo the relations below

$$\bullet \xrightarrow{} \bullet \xrightarrow{} 1$$

 $i|(i+1)|i = i|(i-1)|i, \quad i|(i+1)|(i+2) = 0 = (i+2)|(i+1)|i.$

• Let e_i be the idempotent corresponding to vertex i and $\ell_i := i|(i+1)|i = i|(i-1)|i$ the loop on the same vertex. • Since

$$\ell_i^2=0,$$

we have $e_i A e_i \cong D = \mathbb{C}[x]/\langle x^2 \rangle$ (dual numbers).

Theorem

There is a linear additive birepresentation \mathbf{M}_d of \mathcal{S}_d which on objects is given by

 $\begin{array}{rcl} \mathbf{M}_d\colon \mathcal{S}_d & \to & \mathrm{END}(A\operatorname{-proj}_{\mathrm{gr}}) \\ & & & & \\ B_i & \mapsto & Ae_i\otimes e_iA\langle 1\rangle\otimes_A -, \qquad i=1,\ldots,d-1. \end{array}$

• $[\mathbf{M}_d]_{\oplus} \cong M_d$ as modules over $[\mathcal{S}_d]_{\oplus} \cong H_d$.

Theorem

There is a linear additive birepresentation \mathbf{M}_d of \mathcal{S}_d which on objects is given by

 $\begin{array}{rcl} \mathbf{M}_d\colon \mathcal{S}_d & \to & \mathrm{END}(A\operatorname{-proj}_{\mathrm{gr}}) \\ & & & & \\ B_i & \mapsto & Ae_i\otimes e_iA\langle 1\rangle\otimes_A -, \qquad i=1,\ldots,d-1. \end{array}$

• $[\mathbf{M}_d]_{\oplus} \cong M_d$ as modules over $[\mathcal{S}_d]_{\oplus} \cong H_d$.

Definition

Let $\mathbf{M}_d^{\mathcal{E}_v}$ be the **triangulated** birepresentation of $\widehat{\mathcal{S}}_d$ obtained by pulling back $\mathcal{K}^b(\mathbf{M}_d)$ through $\mathcal{E}_v : \widehat{\mathcal{S}}_d \to \mathcal{K}^b(\mathcal{S}_d)$

• $[\mathbf{M}_d^{\mathcal{E}v}]_{\bigtriangleup} \cong M_d^{\text{ev}}$ as modules over $[\widehat{\mathcal{S}}_d]_{\oplus} \cong [\mathcal{K}^b(\widehat{\mathcal{S}}_d)]_{\bigtriangleup} \cong \widehat{\mathcal{H}}_d.$

The Graham-Lehrer cell birepresentation of $\widehat{\mathcal{S}}_d$

Let
$$\widehat{A}_d := ZZ(\widehat{A}_{d-1})$$
 be the (signed) zigzag algebra of type \widehat{A}_{d-1} .

Theorem

There is a linear additive birepresentation \widehat{M}_d of \widehat{S}_d which on objects is given by

$$\begin{split} \widehat{\mathsf{M}}_d \colon \widehat{\mathcal{S}}_d &\to \quad \mathrm{END}(\widehat{A}\operatorname{-proj}_{\mathrm{gr}}) \\ B_i &\mapsto \quad \widehat{A}e_i \otimes e_i \widehat{A} \langle 1 \rangle \otimes_{\widehat{A}} -, \qquad i = 0, \dots, d-1. \end{split}$$

•
$$[\widehat{\mathbf{M}}_d]_{\oplus} \cong \widehat{M}_d$$
 as modules over $[\widehat{\mathcal{S}}_d]_{\oplus} \cong \widehat{H}_d$.

Theorem

There is a **linear** morphism of linear additive birepresentations of \widehat{S}_d

$$\Phi \colon \widehat{\mathsf{M}}_d \to K^b(\mathsf{M}_d)$$

which on objects is given by

$$egin{array}{rcl} \widehat{A}e_i &\mapsto & Ae_i, & i=1,\ldots,d-1 \ \widehat{A}e_0 &\mapsto & [Ae_{d-1}\langle 1
angle o Ae_{d-2}\langle 2
angle o \cdots o Ae_1\langle d
angle] \end{array}$$

Moreover, Φ extends to a morphism of triangulated birepresentations

$$\widehat{\Phi} \colon K^b(\widehat{\mathsf{M}}_d) \to K^b(\mathsf{M}_d),$$

which is essentially surjective, faithful and epimorphic (not full!).

• What are the general definitions of triangulated birepresentations and morphisms between them?

- What are the general definitions of triangulated birepresentations and morphisms between them?
- What are simple triangulated birepresentations and is there a Jordan-Hölder theorem for triangulated birepresentations?

- What are the general definitions of triangulated birepresentations and morphisms between them?
- What are simple triangulated birepresentations and is there a Jordan-Hölder theorem for triangulated birepresentations?
- Is there any relation with (co)algebra objects in triangulated monoidal categories?

- What are the general definitions of triangulated birepresentations and morphisms between them?
- What are simple triangulated birepresentations and is there a Jordan-Hölder theorem for triangulated birepresentations?
- Is there any relation with (co)algebra objects in triangulated monoidal categories?
- Is it possible to categorify parabolic induction in the triangulated setting?

- What are the general definitions of triangulated birepresentations and morphisms between them?
- What are simple triangulated birepresentations and is there a Jordan-Hölder theorem for triangulated birepresentations?
- Is there any relation with (co)algebra objects in triangulated monoidal categories?
- Is it possible to categorify parabolic induction in the triangulated setting?
- What about other affine Weyl types?

The End

・ロト ・聞 ト ・ ヨト ・ ヨト

æ.

Marco Mackaay (jt. with V. Miemietz and P. Vaz)