When is a surface Quasi-Ordinary?

Carlos Sotillo Rodríguez

22/11/2017

Introduction

- There is a well established theory of deformations of isolated singularities, but not much is known about deformation of non isolated singularities.
- Quasi-ordinary surface singularities admit very well behaved parametrizations, therefore we may ask if the theory of equisingular deformations can be generalized for them.
- The first obstacle to overcome is to answer questions of the type: given $\varphi, \psi \in \mathbb{C}\left\{t_{1}, t_{2}\right\}$ such that φ is a parametrization is a quasi-ordinary surface, for which ψ is

$$
\left(t_{1}, t_{2}\right) \mapsto \varphi\left(t_{1}, t_{2}\right)+s \psi\left(t_{1}, t_{2}\right)
$$

the parametrization of a quasi-ordinary surface, for $|s| \ll 1$?

Introduction

In order to solve these problems we must first answer a question which is the goal of this seminar:

Question

Given a parametrization

$$
\left(t_{1}, t_{2}\right) \mapsto\left(x\left(t_{1}, t_{2}\right), y\left(t_{1}, t_{2}\right), z\left(t_{1}, t_{2}\right)\right)
$$

can we give a criteria to decide if it is the parametrization of a quasi-ordinary surface?
All this can be generalized to arbitrary hypersurfaces.

Table of Contents

(1) Plane Curves
(2) Quasi-Ordinary Hypersurfaces
(3) Parametrization of Surfaces

Table of Contents

(1) Plane Curves

(2) Quasi-Ordinary Hypersurfaces

(3) Parametrization of Surfaces

Theorem

Let $Y=\{f(x, y)=0\}$ be an irreducible plane curve. Then there exists $m \in \mathbb{N}$ such that there is a solution $y \in \mathbb{C}\left\{x^{1 / m}\right\}$ of $f(x, y)=0$ and Y can be parametrized as $Y=\left\{\left(x^{m}, \sum_{\alpha} a_{\alpha} x^{m \alpha}\right)\right\}$.

Theorem

Let $Y=\{f(x, y)=0\}$ be an irreducible plane curve. Then there exists $m \in \mathbb{N}$ such that there is a solution $y \in \mathbb{C}\left\{x^{1 / m}\right\}$ of $f(x, y)=0$ and Y can be parametrized as $Y=\left\{\left(x^{m}, \sum_{\alpha} a_{\alpha} x^{m \alpha}\right)\right\}$.

Definition

The series $y=\sum a_{i} x^{i / m}$ is called a Puiseux expansion for the curve with equation $f(x, y)=0$.

Lemma

Let f be irreducible with puiseux expansion $y=\sum_{\alpha} a_{\alpha} x^{\alpha}$. If every α with $a_{\alpha} \neq 0$ is an integer, f is regular, otherwise there is a smallest $\alpha_{1}=\frac{n_{1}}{m_{1}} \in \mathbb{Q} \backslash \mathbb{Z}$ with $\operatorname{gcd}\left(n_{1}, m_{1}\right)=1$ for which $a_{\alpha_{1}} \neq 0$. Assume there is an $\alpha=\frac{n_{2}}{m_{1} m_{2}} \in \mathbb{Q} \backslash \mathbb{Z}$ with $\alpha_{1}<\alpha, \operatorname{gcd}\left(n_{2}, m_{2}\right)=1$ and $a_{\alpha} \neq 0$, we set α_{2} as the minimal α with this property. After a finite number g of iterations we get a sequence $\left(m_{1}, n_{1}\right), \ldots,\left(m_{g}, n_{g}\right)$.

Example

- If $y=x^{3 / 2}+x^{7 / 2}+x^{17 / 4}$, the puiseux pairs are $\left(m_{1}, n_{1}\right)=(2,3)$ and $\left(m_{2}, n_{2}\right)=(2,17)$.

Example

- If $y=x^{3 / 2}+x^{7 / 2}+x^{17 / 4}$, the puiseux pairs are $\left(m_{1}, n_{1}\right)=(2,3)$ and $\left(m_{2}, n_{2}\right)=(2,17)$.
- If $y=x^{3 / 2}+x^{5 / 3}+x^{37 / 2}=x^{3 / 2}+x^{10 / 2 \cdot 3}+x^{111 / 2 \cdot 3}$, then $\left(m_{1}, n_{1}\right)=(2,3)$ and $\left(m_{2}, n_{2}\right)=(3,10)$.

Definition

The pairs $\left(m_{1}, n_{1}\right), \ldots,\left(m_{g}, n_{g}\right)$ are called the Puiseux pairs of f.

Definition

The pairs $\left(m_{1}, n_{1}\right), \ldots,\left(m_{g}, n_{g}\right)$ are called the Puiseux pairs of f.

Theorem

The Puiseux pairs of f are topological invariants of $Y=\{f(x, y)=0\}$ and determine completely the topology of Y.

Table of Contents

(1) Plane Curves

(2) Quasi-Ordinary Hypersurfaces
(3) Parametrization of Surfaces

Definition

Let $f: X \rightarrow Y$ be a continuous map, we say f is finite if it is closed and for each $y \in Y$ the fiber $f^{-1}(y)$ is a finite set.

Definition

Let $f: X \rightarrow Y$ be a continuous map, we say f is finite if it is closed and for each $y \in Y$ the fiber $f^{-1}(y)$ is a finite set.

Definition

Let N be the germ at a point of a hypersurface of a complex manifold M. We say that N is the germ of a normal crossing divisor if there is a local system of coordinates (x_{1}, \ldots, x_{n}) and a positive integer k such that $x_{1} \cdots x_{k}$ generates the defining ideal of N.

Definition

Let $(X, o)=(\{F=0\}, o) \subset\left(\mathbb{C}^{d+1}, o\right)$ be a germ of a hypersurface with $F \in \mathbb{C}\left\{x_{1}, \ldots, x_{d}, y\right\}$. Let $p: \mathbb{C}^{d+1} \rightarrow \mathbb{C}^{d}$ be the projection $\left(x_{1}, \ldots, x_{d}, y\right) \mapsto\left(x_{1}, \ldots, x_{d}\right)$. We call apparent contour of X relative to the projection p to the set $\Sigma=\left\{f=\frac{\partial f}{\partial y}=0\right\}$. We call discriminant of X relative to the projection p to the set $\Delta_{y}(S)=p(\Sigma)$.

Definition

Let $(X, o)=(\{F=0\}, o) \subset\left(\mathbb{C}^{d+1}, o\right)$ be a germ of a hypersurface with $F \in \mathbb{C}\left\{x_{1}, \ldots, x_{d}, y\right\}$. Let $p: \mathbb{C}^{d+1} \rightarrow \mathbb{C}^{d}$ be the projection $\left(x_{1}, \ldots, x_{d}, y\right) \mapsto\left(x_{1}, \ldots, x_{d}\right)$. We call apparent contour of X relative to the projection p to the set $\Sigma=\left\{f=\frac{\partial f}{\partial y}=0\right\}$. We call discriminant of X relative to the projection p to the set $\Delta_{y}(S)=p(\Sigma)$.

Definition

We say that X is a quasi-ordinary hypersurface if there is a system of local coordinates $\left(x_{1}, \ldots, x_{d}, y\right)$ such that the restriction of the projection p to X is a finite map and its discriminant is a normal crossing divisor.

Theorem

If X is quasi-ordinary relatively to the projection p, there is a positive integer k and $\zeta \in \mathbb{C}\left\{x_{1}^{1 / k}, \ldots, x_{d}^{1 / k}\right\}$ given by

$$
\zeta=\sum_{\alpha} c_{\alpha} x^{\alpha}
$$

for $\alpha \in \frac{1}{k} \mathbb{N}^{d}$, such that $F\left(x_{1}, \ldots, x_{d}, \zeta\right)=0$.

Theorem

If X is quasi-ordinary relatively to the projection p, there is a positive integer k and $\zeta \in \mathbb{C}\left\{x_{1}^{1 / k}, \ldots, x_{d}^{1 / k}\right\}$ given by

$$
\zeta=\sum_{\alpha} c_{\alpha} x^{\alpha}
$$

for $\alpha \in \frac{1}{k} \mathbb{N}^{d}$, such that $F\left(x_{1}, \ldots, x_{d}, \zeta\right)=0$.

Definition

The function ζ given from the theorem is called a quasi-ordinary branch.

Lemma

Let ζ be a quasi-ordinary branch. Assume there is α such that $c_{\alpha} \neq 0$ and $\alpha \notin \mathbb{Z}^{d}$. Then there is a minimal α with this property. Set $\alpha_{1}=\alpha$.
Assume that there is α such that $c_{\alpha} \neq 0$ and $\alpha \notin \mathbb{Z}^{d}+\mathbb{Z} \alpha_{1}$. Then there is a minimal α with this property and we set $\alpha_{2}=\alpha$. We iterate this procedure. After a finite number g of iterations we get that $c_{\alpha} \neq 0$ implies $\alpha \in \mathbb{Z}^{d}+\mathbb{Z} \alpha_{1}+\cdots+\mathbb{Z} \alpha_{g}$. Moreover, $\alpha_{1}<\cdots<\alpha_{g}$.
The d - tuples $\alpha_{1}, \ldots, \alpha_{g}$ are called the Puiseux exponents of X relative to the projection p.

Example

Assume z is a quasi-ordinary branch given by

$$
z=x^{3 / 2} y+x^{5 / 2} y+x^{7 / 4} y^{5 / 4}
$$

The puiseux exponents are $(3 / 2,1)$ and $(7 / 4,5 / 4)$. Note that the Puiseux exponents are well defined even though the pairs of exponents are not totally ordered.

Theorem

The Puiseux exponents of X relative to p are topological invariants of X and determine completely the topology of the pair of germs $\left(X, \mathbb{C}^{d+1}\right)$.

Theorem

The Puiseux exponents of X relative to p are topological invariants of X and determine completely the topology of the pair of germs $\left(X, \mathbb{C}^{d+1}\right)$.

Remark

We have a parametrization f on irreducible quasi-ordinary hypersurface X given by

$$
x_{1}=t_{1}^{k}, \ldots, x_{d}=t_{d}^{k}, y=\sum_{\alpha} c_{\alpha} t^{\alpha k}
$$

Proposition

Let S be a quasi-ordinary surface, then we can find an irreducible quasi-ordinary polynomial f and a root ζ of f, so that either $\zeta=0$ or it is a quasi-ordinary branch of the form

$$
\zeta=x^{\lambda} y^{\mu} H\left(x^{1 / k}, y^{1 / k}\right)
$$

with $H(0,0) \neq 0$ and $\lambda, \mu \in \frac{1}{k} \mathbb{Z}$ such that:
(1) $\lambda, \mu \notin \mathbb{Z}$.
(2) If $\lambda \mu=0$, then $\lambda+\mu>1$.

Table of Contents

(1) Plane Curves

(2) Quasi-Ordinary Hypersurfaces

(3) Parametrization of Surfaces

Assume now we have a parametrization of a surface S given by

$$
\begin{equation*}
x=a(t, s), y=b(t, s), z=c(t, s) \tag{1}
\end{equation*}
$$

where $a, b, c \in \mathbb{C}\{t, s\}$. Is S quasi-ordinary?
We will introduce an algorithm that answers this question.
First of all we associate to (1) the set Γ of pairs $(\alpha, \beta) \in \mathbb{N}^{2}$ such that there is $f \in \mathbb{C}\{x, y, z\}$ with $f(a, b, c)=t^{\alpha} s^{\beta} \cdot u, u$ a unit of $\mathbb{C}\{t, s\}$.

Lemma

The set Γ is a subsemigroup of $\left(\mathbb{N}^{2},+\right)$, independent of the system of local coordinates (x, y, z).

Lemma

The set Γ is a subsemigroup of $\left(\mathbb{N}^{2},+\right)$, independent of the system of local coordinates (x, y, z).

Lemma

Let S be a quasi-ordinary surface with a parametrization in normal form. Then
(1) $(k, 0),(0, k),(\alpha, \beta) \in \Gamma$.
(2) If $(I, 0) \in \Gamma$ or $(0, I) \in \Gamma, I \geq k$.
(3) If $(\gamma, \delta) \in \Gamma \backslash k \mathbb{Z}^{2},(\alpha, \beta) \leq(\gamma, \delta)$.

Lemma

Assume $x=a(t, s), y=b(t, s), z=c(t, s)$ is the parametrization of a surface such that the associated semigroup is the semigroup of a quasi-ordinary surface. After a change of coordinates, we can assume that

$$
\begin{equation*}
a(t, s)=t^{k}(1+A), b(t, s)=s^{k}(1+B), c(t, s)=t^{\alpha} s^{\beta}(1+C) \tag{2}
\end{equation*}
$$

where $A, B, C \in \mathbb{C}\{t, s\}$.

Lemma

Assume $x=a(t, s), y=b(t, s), z=c(t, s)$ is the parametrization of a surface such that the associated semigroup is the semigroup of a quasi-ordinary surface. After a change of coordinates, we can assume that

$$
\begin{equation*}
a(t, s)=t^{k}(1+A), b(t, s)=s^{k}(1+B), c(t, s)=t^{\alpha} s^{\beta}(1+C) \tag{2}
\end{equation*}
$$

where $A, B, C \in \mathbb{C}\{t, s\}$.
After a change of parameter, we can transform (2) into a parametrization of the type

$$
x=t^{k}, y=s^{k}, \quad z=\sum_{\alpha, \beta} c_{\alpha, \beta} t^{\alpha} s^{\beta} .
$$

We need to know beforehand if the parametrization is quasi-ordinary or not.

Definition

Assume $D \in\{A, B, C\}, D=\sum_{i, j} \lambda_{i, j} t^{i} s^{j}$. We say that D is well behaved if there is an integer g such that the pairs recursively defined by

$$
n_{D, p}=\inf \left\{(i, j): \lambda_{i, j} \neq 0,(i, j) \notin k \mathbb{Z}^{2}+(\alpha, \beta) \mathbb{Z}+\sum_{q<p} \mathbb{Z} n_{D, q}\right\}
$$

are well defined for $1 \leq p \leq g$ and

$$
\left\{(i, j): \lambda_{i, j} \neq 0\right\} \subset k \mathbb{Z}^{2}+(\alpha, \beta) \mathbb{Z}+\sum_{n_{D, q} \leq(i, j)} \mathbb{Z} n_{D, q} .
$$

Example

$$
\left\{\begin{array}{llc}
x & = & t^{4}\left(1+t s+2 t s^{2}\right) \\
y & = & s^{4}\left(1+5 s^{2}\right) \\
z & = & t^{3} s^{2}\left(1+t^{2} s^{2}+t^{5} s^{4}+t^{3} s^{5}\right)
\end{array} .\right.
$$

Although the pairs of exponents are not totally ordered, the parametrization is well behaved.

Example

$$
\left\{\begin{array}{lcc}
x & = & t^{4}\left(1+t s+2 t s^{2}\right) \\
y & = & s^{4}\left(1+5 s^{2}\right) \\
z & = & t^{3} s^{2}\left(1+t^{2} s^{2}+t^{5} s^{4}+t^{3} s^{5}\right)
\end{array} .\right.
$$

Although the pairs of exponents are not totally ordered, the parametrization is well behaved.

Lemma

If A, B or C are not well behaved, the parametrization does not parametrize a quasi-ordinary surface.

Definition

If A, B, C are well behaved and there are not $p, q, r \in \mathbb{N}$ such that

$$
n_{C, r}=n_{A, p}=n_{B, q}, \quad c_{n_{C, r}}=\frac{\alpha}{k} a_{n_{A, p}}+\frac{\beta}{k} b_{n_{B, q}}
$$

we say that the parametrization is non resonant.
"Non resonant" means that we can predict from the data $n_{A, i}, n_{B, j}, n_{C, I}$ which are the Puiseux exponents of the surface.

Conjecture

There is a change of coordinates after which the parametrization is non resonant or not well behaved.

Example

Consider the surface parametrized by

$$
\left\{\begin{array}{l}
x=t^{4}\left(1+2 t+t s-\frac{1}{2} t^{2} s\right) \\
y=s^{4} \\
z=t^{6} s^{4}\left(1+2 t+\frac{3}{2} t s-t^{2} s\right)
\end{array}\right.
$$

It is resonant because $n_{A, 2}=(1,1)=n_{C, 2}$ and $1=a_{n_{A, 2}}=\frac{\alpha}{k} c_{n_{C, 2}}=\frac{3}{2}$.

Example

After changing the coordinates by $t=u\left(1-\frac{1}{4} u s\right)$, we have

$$
\left\{\begin{array}{l}
x=u^{4}\left(1+2 u-3 u^{2} s-\frac{7}{8} u^{2} s^{2}+\ldots\right) \\
y=s^{4}= \\
z=u^{6} s^{4}\left(1+2 u-\frac{9}{2} u^{2} s-\frac{27}{16} u^{2} s^{2}+\ldots\right)
\end{array}\right.
$$

It is again resonant because $n_{A, 2}=(2,1)=n_{C, 2}$ and $-3=a_{n_{A, 2}}=\frac{\alpha}{k} c_{n_{C, 2}}=-\frac{9}{2}$.

Example

After changing the coordinates by $t=u\left(1-\frac{1}{4} u s\right)$, we have

$$
\left\{\begin{array}{l}
x=u^{4}\left(1+2 u-3 u^{2} s-\frac{7}{8} u^{2} s^{2}+\ldots\right) \\
y=s^{4} \\
z=u^{6} s^{4}\left(1+2 u-\frac{9}{2} u^{2} s-\frac{27}{16} u^{2} s^{2}+\ldots\right)
\end{array}\right.
$$

It is again resonant because $n_{A, 2}=(2,1)=n_{C, 2}$ and
$-3=a_{n_{A, 2}}=\frac{\alpha}{k} c_{n_{C, 2}}=-\frac{9}{2}$. We change again the coordinates, this time by $u=v\left(1+\frac{3}{4} v^{2} s\right)$, then

$$
\left\{\begin{array}{l}
x=v^{4}\left(1+2 v+\frac{15}{2} v^{3} s-\frac{7}{8} v^{2} s^{2}+\ldots\right) \\
y=s^{4}= \\
z=v^{6} s^{4}\left(1+2 v+\frac{21}{2} v^{3} s-\frac{27}{16} v^{2} s^{2}+\ldots\right)
\end{array}\right.
$$

which is clearly not well behaved.

Theorem

A surface S is quasi-ordinary if and only if after a well determined change of coordinates, it is well behaved, non resonant and the set $\left\{n_{i}\right\}_{1 \leq i \leq g}$ is well defined, where $n_{1}=(\alpha, \beta)$ and for $p \geq 2$

$$
\begin{array}{r}
n_{p}=\min \left\{n_{A, i}+(\alpha, \beta), n_{B, j}+(\alpha, \beta), n_{C, I}+(\alpha, \beta)\right. \\
\text { not in } \left.k \mathbb{Z}^{2}+\sum_{q \leq p-1} n_{q} \mathbb{Z}\right\}
\end{array}
$$

In this case the Puiseux exponents of S are $n_{1} / k, \ldots, n_{g} / k$.

Example

Consider

$$
\left\{\begin{array}{l}
x=t^{4}\left(1+t^{4} s^{6}\right) \\
y=s^{4} \\
z=t^{6} s^{4}(1+t s)
\end{array}\right.
$$

the surface is well behaved and non resonant, and $n_{1}=(6,4), n_{2}=(7,5)$ is well defined, therefore it is quasi-ordinary with Puiseux pairs $\left(\frac{3}{2}, 1\right),\left(\frac{7}{4}, \frac{5}{4}\right)$.

Egbert Brieskorn and Horst Knörrer（1986）．Plane Algebraic Curves． Springer．
園 G．M．Greuel，C．Lossen and E．Shustin（2007）．Introduction to Singular Deformations．Springer．
E J．Lipman（1965）．Quasi－ordinary singularities of embedded surfaces． Thesis，Hardvard University．
目 Pedro D．González Pérez（2003）．The semigroup of a quasi－ordinary hypersurface．Cambridge University Press．
图 J．Milnor（1963）．Morse Theory．Princeton University Press．

