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Out-of-sample prediction: domain generalization
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▶ Prediction of condition mean E[Y | X = x]

▶ Machine learning methods typically perform poorly outside of the range of
training distribution

▶ If test distribution is different, domain generalization is needed

▶ We work on methods based on extreme value theory
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Out-of-sample prediction: extreme quantile regression

E[Y|X = x]
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▶ Prediction of quantile Qx(τ) at level τ ∈ (0, 1)

▶ If τ is close to 1, we speak of extreme quantile regression

▶ Again, classical machine learning methods perform poorly
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Extreme Value Theory and Statistics

▶ Analysis of rare phenomena
with small probabilities

▶ Impact on various risks (health,
environment, economy,...)

River Flows / Losses / Temperatures
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Aare River in Bern: Catchment
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Aare River in Bern: Data

Data

▶ Daily observations of average discharge at 2 stations and total
precipitation at 6 stations.

▶ Training and validation data: 1930–1958 (10, 349 obs.).

▶ Test data: 1958–2014 (20, 697 obs.).

2005 Flood

▶ Hydrological models underestimated the event, which led to late warnings.

▶ 3 billion CHF in damages, 6 deaths and countless injuries were reported.

As regression problem

▶ Y is daily discharge at Bern station.

▶ X can contain: discharge from previous days at same and other stations;
precipitation from close-by stations; other climatological variables.
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Extreme quantile regression

▶ For i.i.d. data (X1, Y1), . . . , (Xn, Yn) where Xi ∈ Rp and Yi ∈ R, the goal
is to predict the conditional quantile at level τ ∈ (0, 1)

Qx(τ) = F−1
Y (τ | X = x).

▶ There are different scenarios depending on the quantile level τ = τn:
▶ τn ≡ τ0 < 1 (classical case)
▶ τn → 1, and n(1− τn) → ∞ (intermediate case)
▶ τn → 1, and n(1− τn) → c ∈ [0,∞) (extreme case)

▶ Classical methods for quantile regression only work well in the case of fixed
τn ≡ τ0 < 1.

▶ Methods from extreme value theory are not flexible enough
[Chernozhukov, 2005, Chavez-Demoulin and Davison, 2005] or do not
generalize well into higher dimensions [Daouia et al., 2011].

▶ Goal: Develop a new method for extreme quantile regression that works
well with high-dimensional and complex data.
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Generalized Pareto distribution

River discharge (m3/ s)
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P(Y > y)

= P(Y > u)× P(Y > y | Y > u)

≈ P(Y > u)× (1−Hσ,γ(y − u))

= P(Y > u)×
(
1 + γ

y − u

σ

)−1/γ

where Hσ,γ is the cdf of the GPD with scale and shape σ > 0 and γ ∈ R.
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Estimation

▶ Consider i.i.d. data Y1, . . . , Yn and estimate empirically the quantile
u = Q̂(τ0) for an intermediate quantile level τ0 < 1.

▶ Define the exceedances above the threshold as

Zi =
(
Yi − Q̂(τ0)

)
+
.

▶ The likelihood of the GPD model with parameters θ = (σ, γ) is

ℓZi(θ) = −
[
(1 + 1/γ) log

(
1 + γ

Zi

σ

)
+ log σ

]
IZi>0.

Estimate the parameters by maximum likelihood

θ̂ = argmax
θ

n∑
i=1

ℓZi(θ).
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Extreme quantile estimation
▶ Inverting the cdf Hσ̂,γ̂ of the GPD provides an approximation of the

quantile Q(τ) = F−1
Y (τ) for probability level τ > τ0 by

Q̂(τ) = Q̂(τ0) + σ̂

(
1−τ
1−τ0

)−γ̂

− 1

γ̂
.

▶ For independent data, we can compute a T -year event by
Q̂(1− 1/(nY T )), where nY is the number of observations per year.
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During the 2005 flood
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▶ Top: Daily observations during the 2005 flood in Bern together with
100-year return level estimate. Vertical dashed line is the first exceedance
of this level.
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Forest-based quantile regression

▶ For τ ∈ (0, 1) and x ∈ [−1, 1]p, the quantile regression function is defined
as

Qx(τ) := argmin
q

E[ρτ (Y − q) | X = x],

where ρτ (c) = c(τ − 1{c < 0}) is the quantile loss function.

▶ Recently, [Meinshausen, 2006] and [Athey et al., 2019] proposed to
estimate Qx(τ) by

Q̂x(τ) = argmin
q

n∑
i=1

wn(x, Xi)ρτ (Yi − q),

where (x, y) 7→ wn(x, y) is a localizing weight function learned with a
random forest.
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Extreme quantile regression

Given: Independent data (X1, Y1), . . . , (Xn, Yn) of response Y ∈ R and
covariates/predictors vector X ∈ Rd.
Goal:

▶ Predict extreme conditional quantiles of Y given X = x:

Qx(τ) = F−1
Y (τ | X = x).

▶ Predict exceedance probability of Y over high threshold Q (e.g., 100-year
level) given X = x:

P(Y > Q | X = x).

Examples:
▶ Bern river discharge:

▶ Y is daily discharge at Bern station.
▶ X can contain: discharge from previous days at same and other stations;

precipitation from close-by stations; other climatological variables.

▶ Risk of heat waves:
▶ Y daily temperature measurement at some location.
▶ X can contain: altitude; day of the year; other variables on land use,

climate, etc.
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Extreme quantile regression

▶ Assume the

conditional

GPD model

(Y − Q̂

x

(τ0) | Y > Q

x

(τ0),X = x) ∼ Hσ

(x)

,γ

(x)

,

where τ0 is an intermediate quantile level, and Q̂x(τ0) is an estimate of
the conditional τ0 quantile of Y | X = x

▶ Q̂x(τ0) can be estimated with classical methods, e.g., a quantile random
forest.

▶ For an extreme level τ > τ0 we can estimate

Q̂x(τ) = Q̂x(τ0) + σ̂(x)

(
1−τ
1−τ0

)−γ̂(x)

− 1

γ̂(x)
,

where θ̂(x) = (σ̂(x), γ̂(x)) is an estimate of the conditional GPD
parameters.

▶ The triple (Q̂x(τ0), σ̂(x), γ̂(x)) provides a model for the tail of Y | X = x.
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Extreme quantile regression

Two methods to estimate the GPD parameters θ̂(x) = (σ̂(x), γ̂(x)), both
maximize a localized likelihood:

n∑
i=1

wn(x, Xi)ℓ(σ,γ)(Zi)

ℓ(σ,γ)(Zi) is the GPD log-likelihood, with exceedances Zi = (Yi − Q̂x(τ0))+.

▶ Extremal gradient boosting (GBEX): The weights wn(x, Xi) are
obtained through gradient boosting.

Velthoen, J., Dombry, C., Cai, J.-J., and Engelke, S. (2021).
Gradient boosting for extreme quantile regression.
https://arxiv.org/abs/2103.00808

▶ Extremal random forest (ERF): The weights wn(x, Xi) are obtained
through a GRF

Gnecco, N., Terefe, E.M., and Engelke, S. (2022).
Extremal Random Forests.
https://arxiv.org/abs/2201.12865
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Extremal Random Forest (ERF)

▶ (σ̂(x), γ̂(x)) is the maximizer of the weighted log-likelihood

n∑
i=1

wn(x, Xi)ℓ(σ,γ)(Zi).

▶ wn(x, Xi) are localizing weights from a GRF.

▶ ℓ(σ,γ)(Zi) is the GPD log-likelihood, with Zi = (Yi − Q̂x(τ0))+,
i = 1, . . . , n.
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Extremal Random Forest (ERF)
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Consistency

▶ Let x ∈ [−1, 1]p and θ := (σ, γ). Want to show that

θ̂(x) ∈ argmax
θ

n∑
i=1

wn(x, Xi)ℓθ(Zi)
P→ θ(x).

▶ Regularity conditions from [Athey et al., 2019] do not hold in our setting.

▶ Under some assumptions, ERF estimates are consistent

θ̂(x)
P→ θ(x), for all x ∈ [−1, 1]p.
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Simulation Study I

▶ Sample n = 2000 iid copies of (X,Y ) from{
X ∼ U ([−1, 1]p) ,

(Y | X = x) ∼ s(x)T4,

where s(x) = 1 + 1{x1 > 0} and γ(x) = 1/4.

▶ Compare ERF and GBEX with QRF [Meinshausen, 2006], GRF
[Athey et al., 2019] Extreme GAM [Youngman, 2019],
[Taillardat et al., 2019].

▶ On a test data set {xi}n
′

i=1, evaluate the integrated squared error (ISE)

ISE =
1

n′

n′∑
i=1

(
Q̂xi(τ)−Qxi(τ)

)2

.
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Simulation Study I
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Simulation Study II

▶ Sample n = 5000 iid copies of (X,Y ) from{
X ∼ U ([−1, 1]p) ,

(Y | X = x) ∼ sj(x)Tν(x), j = 1, 2, 3.

▶ ν(x) := 3 + 3[1 + tanh(−2X1)] where γ(x) = 1/ν(x).

▶ s1(x) := (2 + tanh(2X1)) · (1 + 1
2
X2).

▶ s2(x) := 4− (X2
1 + 2X2

2 ).

▶ s3(x) := 1 + 2πϕ(2X1, 2X2), where ϕ(X1, X2) is a centered bivariate
Gaussian with unit variance and correlation equal to 3/4.
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Simulation Study II
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Extreme quantile regression

▶ Suppose the data (X1, Y1), . . . , (Xn, Yn) are NOT i.i.d., but have a time
series structure

▶ Then we can use recurrent neural networks to model the GPD parameters
(σ(x), γ(x))

▶ Extreme quantile regression neural networks (EQRN):

Pasche, O.C. and Engelke, S. (2022).
Neural Networks for Extreme Quantile Regression
with an Application to Forecasting of Flood Risk.
https://arxiv.org/abs/2208.07590
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Extreme quantile regression neural networks (EQRN)

▶ If there is sequential dependence as in time series, then this structure can
be used in recurrent neural networks.

▶ Predict quantiles of Yt (discharge at time t) using past observations

X = (Yt−1, Yt−2, . . . , X
1
t−1, X

1
t−2, . . . )

from response on other covariates X1, X2, . . . (e.g., precipitation at
locations 1, 2, etc.).

xt−1xt−2xt−3xt−s

NetworkNetworkNetworkNetwork ht−1ht−2ht−3

σ̂(x̃t) γ̂(x̃t)
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Results for the 2005 flood
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▶ Top: Blue line is the one-day-ahead forecasted (conditional) 100-year
return level Q̂100

x .

▶ Bottom: Blue line the the ratio of conditional exceedance probability
compared to unconditional estimate

P̂(Y > Q̂100 | X = x)

P̂(Y > Q̂100)
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