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» Prediction of condition mean E[Y | X = z]

» Machine learning methods typically perform poorly outside of the range of
training distribution

» If test distribution is different, domain generalization is needed

» We work on methods based on extreme value theory
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Out-of-sample prediction: extreme quantile regression
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Predictor vector X

> Prediction of quantile Q(7) at level 7 € (0,1)
» If 7 is close to 1, we speak of extreme quantile regression

» Again, classical machine learning methods perform poorly
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Extreme Value Theory and Statistics

» Analysis of rare phenomena
with small probabilities

» Impact on various risks (health,
environment, economy;...)
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Aare River in Bern: Catchment
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Aare River in Bern: Data

Data

» Daily observations of average discharge at 2 stations and total
precipitation at 6 stations.

» Training and validation data: 1930-1958 (10, 349 obs.).
> Test data: 1958-2014 (20,697 obs.).

5/27



Aare River in Bern: Data

Data

» Daily observations of average discharge at 2 stations and total
precipitation at 6 stations.

» Training and validation data: 1930-1958 (10, 349 obs.).
> Test data: 1958-2014 (20,697 obs.).

2005 Flood

» Hydrological models underestimated the event, which led to late warnings.

» 3 billion CHF in damages, 6 deaths and countless injuries were reported.

5/27



Aare River in Bern: Data

Data

» Daily observations of average discharge at 2 stations and total
precipitation at 6 stations.

» Training and validation data: 1930-1958 (10, 349 obs.).
> Test data: 1958-2014 (20,697 obs.).

2005 Flood
» Hydrological models underestimated the event, which led to late warnings.

» 3 billion CHF in damages, 6 deaths and countless injuries were reported.

As regression problem

» Y is daily discharge at Bern station.

» X can contain: discharge from previous days at same and other stations;
precipitation from close-by stations; other climatological variables.
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Extreme quantile regression

» Fori.i.d. data (X1,Y1),...,(Xn,Ys) where X; € RP and Y; € R, the goal
is to predict the conditional quantile at level 7 € (0, 1)

Qx(1) =Fy ' (| X =x).

6/27



Extreme quantile regression

» Fori.i.d. data (X1,Y1),...,(Xn,Ys) where X; € RP and Y; € R, the goal
is to predict the conditional quantile at level 7 € (0, 1)

Qx(1) =Fy ' (| X =x).

» There are different scenarios depending on the quantile level 7 = 7,:
» 7 =79 < 1 (classical case)
» 7, = 1, and n(1 — 1) — oo (intermediate case)
» 7, — 1, and n(l — 7,) — c € [0,00) (extreme case)

6/27



Extreme quantile regression

» Fori.i.d. data (X1,Y1),...,(Xn,Ys) where X; € RP and Y; € R, the goal
is to predict the conditional quantile at level 7 € (0, 1)

Qx(1) =Fy ' (| X =x).

» There are different scenarios depending on the quantile level 7 = 7,:

» 7 =79 < 1 (classical case)
» 7, = 1, and n(1 — 1) — oo (intermediate case)
» 7, — 1, and n(l — 7,) — c € [0,00) (extreme case)

» Classical methods for quantile regression only work well in the case of fixed
T = To < 1.

6/27



Extreme quantile regression

» Fori.i.d. data (X1,Y1),...,(Xn,Ys) where X; € RP and Y; € R, the goal
is to predict the conditional quantile at level 7 € (0, 1)

Qx(1) =Fy ' (| X =x).

» There are different scenarios depending on the quantile level 7 = 7,:
» 7 =79 < 1 (classical case)
» 7, = 1, and n(1 — 1) — oo (intermediate case)
» 7, — 1, and n(l — 7,) — c € [0,00) (extreme case)
» Classical methods for quantile regression only work well in the case of fixed
T = To < 1.
» Methods from extreme value theory are not flexible enough
[Chernozhukov, 2005, Chavez-Demoulin and Davison, 2005] or do not
generalize well into higher dimensions [Daouia et al., 2011].

6/27



Extreme quantile regression

» Fori.i.d. data (X1,Y1),...,(Xn,Ys) where X; € RP and Y; € R, the goal
is to predict the conditional quantile at level 7 € (0, 1)

Qx(1) =Fy ' (| X =x).

» There are different scenarios depending on the quantile level 7 = 7,:
» 7 =79 < 1 (classical case)
» 7, = 1, and n(1 — 1) — oo (intermediate case)
» 7, — 1, and n(l — 7,) — c € [0,00) (extreme case)
» Classical methods for quantile regression only work well in the case of fixed
T = To < 1.
» Methods from extreme value theory are not flexible enough
[Chernozhukov, 2005, Chavez-Demoulin and Davison, 2005] or do not
generalize well into higher dimensions [Daouia et al., 2011].

» Goal: Develop a new method for extreme quantile regression that works
well with high-dimensional and complex data.
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where H, - is the cdf of the GPD with scale and shape ¢ > 0 and v € R.
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Estimation

» Consider i.i.d. data Y3,...,Y,, and estimate empirically the quantile

u = Q(70) for an intermediate quantile level 7o < 1.

» Define the exceedances above the threshold as

Zy = (Yi - Q(To))+
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Estimation

» Consider i.i.d. data Y3,...,Y,, and estimate empirically the quantile

u = Q(70) for an intermediate quantile level 7o < 1.

» Define the exceedances above the threshold as
7 = (Yi - Q)
+

» The likelihood of the GPD model with parameters 6 = (o,7) is
Z;
Lz,00)=—|1+1/y)log |1 +'y; +logo| Iz,>0.
Estimate the parameters by maximum likelihood

§ = arg max lz.(0).
g1 > lz,(0)

i=1
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Extreme quantile estimation
> Inverting the cdf Hs 5 of the GPD provides an approximation of the

quantile Q(7) = Fy, ' (1) for probability level 7 > 7o by
1—7 )_’Y —1

A 1—719
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Extreme quantile estimation

> Inverting the cdf Hs 5 of the GPD provides an approximation of the
quantile Q(7) = Fy, ' (1) for probability level 7 > 7o by

1—7 -
A A A(lfT()) -1

Q1) =Q(m0) + 6 3

> For independent data, we can compute a T-year event by
Q(1 —1/(nyT)), where ny is the number of observations per year.
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During the 2005 flood
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» Top: Daily observations during the 2005 flood in Bern together with
100-year return level estimate. Vertical dashed line is the first exceedance
of this level.
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Forest-based quantile regression

» For 7 € (0,1) and z € [—1, 1], the quantile regression function is defined
as

Qu(r) i= argminE[p. (Y — ) | X = a,

where p-(c) = ¢(r — 1{c < 0}) is the quantile loss function.
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Forest-based quantile regression

» For 7 € (0,1) and z € [—1, 1], the quantile regression function is defined
as
Qu(7) i= argmin E[p, (Y — q) | X = a,
q
where p-(c) = ¢(r — 1{c < 0}) is the quantile loss function.

> Recently, [Meinshausen, 2006] and [Athey et al., 2019] proposed to
estimate Q«(7) by

Qa(7) = argmin Y wy(w, Xi)p-(Yi — q),

g i=1

where (z,y) — wn(x,y) is a localizing weight function learned with a
random forest.
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Extreme quantile regression

Given: Independent data (X1,Y1),...,(Xn,Ys) of response Y € R and
covariates /predictors vector X € R%.
Goal:

» Predict extreme conditional quantiles of Y given X = x:

Qx(1) = Fy ' (1| X = x).
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Extreme quantile regression

Given: Independent data (X1,Y1),...,(Xn,Ys) of response Y € R and
covariates /predictors vector X € R%.
Goal:

» Predict extreme conditional quantiles of Y given X = x:

Qx(1) = Fy ' (1| X = x).

> Predict exceedance probability of Y over high threshold @ (e.g., 100-year
level) given X = x:
P(Y > Q| X =x).

Examples:
» Bern river discharge:
> Y is daily discharge at Bern station.
» X can contain: discharge from previous days at same and other stations;
precipitation from close-by stations; other climatological variables.
» Risk of heat waves:
» Y daily temperature measurement at some location.
» X can contain: altitude; day of the year; other variables on land use,
climate, etc.
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Extreme quantile regression

» Assume the GPD model
(Y7Q(T0)|Y>Q(TO)7X:X)NHJ R

where 7 is an intermediate quantile level, and Qx (7o) is an estimate of
the conditional 9 quantile of Y | X =x
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where 7 is an intermediate quantile level, and Qx (7o) is an estimate of

the conditional 79 quantile of Y | X =x

> Qx(ro) can be estimated with classical methods, e.g., a quantile random
forest.

» For an extreme level 7 > 79 we can estimate
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» Assume the conditional GPD model
(Y - QX(TO) | Y > QX(TO)v X = X) ~ Ha(x),’y(x)v
where 7 is an intermediate quantile level, and Qx (7o) is an estimate of

the conditional 79 quantile of Y | X =x

> Qx(ro) can be estimated with classical methods, e.g., a quantile random
forest.

» For an extreme level 7 > 79 we can estimate

IRSON
Qx (1) = Qx(70) +&<x>(1‘f°z(x)l,

where 0(x) = (6(x),%(x)) is an estimate of the conditional GPD
parameters.

> The triple (Qx(70),5(x),4(x)) provides a model for the tail of Y | X = x.
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Extreme quantile regression

Two methods to estimate the GPD parameters 0(x) = (6(x), %(x)), both
maximize a localized likelihood:

Z Wn (;B, Xi)f(ay,y) (ZZ)

i=1

L4 (Z:) is the GPD log-likelihood, with exceedances Z; = (Y; — Qa(10)) 4
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Extreme quantile regression

Two methods to estimate the GPD parameters 0(x) = (6(x), %(x)), both
maximize a localized likelihood:

> wnl(@, Xi)lo ) (Z:)
1=1

L(5,)(Zs) is the GPD log-likelihood, with exceedances Z; = (Y; — Qz(To))+.
> Extremal gradient boosting (GBEX): The weights w,(x, X;) are
obtained through gradient boosting.

@ Velthoen, J., Dombry, C., Cai, J.-J., and Engelke, S. (2021).
Gradient boosting for extreme quantile regression.
https://arxiv.org/abs/2103.00808
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Extreme quantile regression

Two methods to estimate the GPD parameters 0(x) = (6(x), %(x)), both
maximize a localized likelihood:

> wnl(@, Xi)lo ) (Z:)
i=1
L(5,)(Zs) is the GPD log-likelihood, with exceedances Z; = (Y; — Qa(10)) 4

> Extremal gradient boosting (GBEX): The weights w,(x, X;) are
obtained through gradient boosting.

@ Velthoen, J., Dombry, C., Cai, J.-J., and Engelke, S. (2021).
Gradient boosting for extreme quantile regression.
https://arxiv.org/abs/2103.00808

> Extremal random forest (ERF): The weights w,(x, X;) are obtained
through a GRF

[ Gnecco, N., Terefe, E.M., and Engelke, S. (2022).
Extremal Random Forests.
https://arxiv.org/abs/2201.12865

14 /27



Extremal Random Forest (ERF)
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Extremal Random Forest (ERF)
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Consistency

» Let x € [-1,1]” and 0 := (0,~y). Want to show that
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» Regularity conditions from [Athey et al., 2019] do not hold in our setting.
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Consistency

» Let x € [-1,1]” and 0 := (0,~y). Want to show that

O(x) € arg max > wnw, Xi)lo(Z:) = 0(x).

i=1
» Regularity conditions from [Athey et al., 2019] do not hold in our setting.
» Under some assumptions, ERF estimates are consistent

b(x) > 0(z), forall ze[—1,1]".
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Simulation Study |
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Simulation Study |

» Sample n = 2000 iid copies of (X,Y) from

{X ~U([-1,17),
(V| X =) ~ s(x)Ts,

where s(z) =1+ 1{z; > 0} and y(z) = 1/4.

19/27



Simulation Study |

> Sample n = 2000 iid copies of (X,Y") from

{X ~U([-1,17),
(V| X =) ~ s(x)Ts,

where s(z) =1+ 1{z; > 0} and y(z) = 1/4.

» Compare ERF and GBEX with QRF [Meinshausen, 2006], GRF
[Athey et al., 2019] Extreme GAM [Youngman, 2019],
[Taillardat et al., 2019].

19/27



Simulation Study |

» Sample n = 2000 iid copies of (X,Y) from

{X ~U([-1,1]),
Y| X =a) ~ s(z)T,

where s(z) =1+ 1{z; > 0} and y(z) = 1/4.
» Compare ERF and GBEX with QRF [Meinshausen, 2006], GRF

[Athey et al., 2019] Extreme GAM [Youngman, 2019],
[Taillardat et al., 2019].

» On a test data set {x; ?;1, evaluate the integrated squared error (ISE)
n/

ISE = L Z (me (1) — Qu, (7’))2 .

n'
i=1

19/27



Simulation Study |
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Simulation Study |

1=0.9995

8| | N Methods:
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- GBEX
- EGAM

-
*
+ &= EGP Tail
e

MISE
(2]

Unconditional GPD

10 20 30

20/ 27



Simulation Study Il

» Sample n = 5000 iid copies of (X,Y) from

X ~U([=1,1]7),
(V| X =2)~s5;(2)Thw), j=123.

2127



Simulation Study Il

» Sample n = 5000 iid copies of (X,Y) from

X ~U([=1,1]7),
(V| X =2)~s5;(2)Thw), j=123.

» v(z) := 3+ 3[1 + tanh(—2X1)] where y(z) = 1/v(z).

2127



Simulation Study Il

» Sample n = 5000 iid copies of (X,Y) from

X ~U([=1,1]7),
(V| X =2)~s5;(2)Thw), j=123.

» v(z) := 3+ 3[1 + tanh(—2X1)] where y(z) = 1/v(z).
> si(z) := (24 tanh(2X1)) - (1 + £ X2).

2127



Simulation Study Il

» Sample n = 5000 iid copies of (X,Y) from

X ~U([=1,1]7),

Y| X=x)~sj@)T, (), j=123.
» v(z) := 3+ 3[1 + tanh(—2X1)] where y(z) = 1/v(z).
s1(z) = (2 + tanh(2X1)) - (1 + $X2).
sa() =4 — (X7 +2X3).

v
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Simulation Study Il

» Sample n = 5000 iid copies of (X,Y) from

X ~U([=1,1]7),
(V| X =2)~s5;(2)Thw), j=123.

v(z) := 34 3[1 4+ tanh(—2X1)] where v(z) = 1/v(z).
s1(x) = (2+tanh(2X1)) (14 3X2).
s2(x) =4 — (X2 + 2X2)
s3(x) =1+ 2wd(2X1,2X2), where ¢(X1, X2) is a centered bivariate
Gau55|an with unit variance and correlation equal to 3/4.

vvyYyy
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Simulation Study Il

n = 5000, p = 10, 7 = 0.9995

Model 1: (s1(X),v(x))

Model 2: (s5(X),v(x))

Model 3: (s3(x),v(X))
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Extreme quantile regression

» Suppose the data (X1,Y1),...,(X,,Ys) are NOT i.i.d., but have a time
series structure

» Then we can use recurrent neural networks to model the GPD parameters
(o), v(z))

»> Extreme quantile regression neural networks (EQRN):

[ Pasche, 0.C. and Engelke, S. (2022).
Neural Networks for Extreme Quantile Regression
with an Application to Forecasting of Flood Risk.
https://arxiv.org/abs/2208.07590
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Extreme quantile regression neural networks (EQRN)

» If there is sequential dependence as in time series, then this structure can
be used in recurrent neural networks.
» Predict quantiles of Y; (discharge at time t) using past observations

X = (Y;f—17yvt—27 <. '7Xt1717X151727 <. )

from response on other covariates X!, X2, ... (e.g., precipitation at

locations 1, 2, etc.).

Network eee Network —)@—} Network —)@—) Network

e © o o
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Results for the 2005 flood
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> Top: Blue line is the one-day-ahead forecasted (conditional) 100-year
return level QL.
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» Top: Blue line is the one-day-ahead forecasted (conditional) 100-year
return level QL.

» Bottom: Blue line the the ratio of conditional exceedance probability
compared to unconditional estimate
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