MACHINE LEARNING BEYOND THE DATA RANGE: EXTREME QUANTILE REGRESSION

Sebastian Engelke (University of Geneva) www.sengelke.com

Seminar in Mathematics, Physics & Machine Learning Lisbon, January 12, 2023

- Prediction of condition mean $\mathbb{E}[Y \mid X = x]$
- Machine learning methods typically perform poorly outside of the range of training distribution

- Prediction of condition mean $\mathbb{E}[Y \mid X = x]$
- Machine learning methods typically perform poorly outside of the range of training distribution
- If test distribution is different, domain generalization is needed

- Prediction of condition mean $\mathbb{E}[Y \mid X = x]$
- Machine learning methods typically perform poorly outside of the range of training distribution
- If test distribution is different, domain generalization is needed
- We work on methods based on extreme value theory

• Prediction of quantile $Q_x(\tau)$ at level $\tau \in (0,1)$

- Prediction of quantile $Q_x(\tau)$ at level $\tau \in (0,1)$
- If τ is close to 1, we speak of extreme quantile regression

- Prediction of quantile $Q_x(\tau)$ at level $\tau \in (0,1)$
- If τ is close to 1, we speak of extreme quantile regression
- > Again, classical machine learning methods perform poorly

- Analysis of rare phenomena with small probabilities
- Impact on various risks (health, environment, economy,...)

- Analysis of rare phenomena with small probabilities
- Impact on various risks (health, environment, economy,...)

River Flows / Losses / Temperatures

Probability

- Analysis of rare phenomena with small probabilities
- Impact on various risks (health, environment, economy,...)

River Flows / Losses / Temperatures

Probability

- Analysis of rare phenomena with small probabilities
- Impact on various risks (health, environment, economy,...)

River Flows / Losses / Temperatures

Probability

Aare River in Bern: Catchment

Aare River in Bern: Data

Data

- Daily observations of average discharge at 2 stations and total precipitation at 6 stations.
- Training and validation data: 1930-1958 (10, 349 obs.).
- ▶ Test data: 1958–2014 (20,697 obs.).

Aare River in Bern: Data

Data

- Daily observations of average discharge at 2 stations and total precipitation at 6 stations.
- Training and validation data: 1930-1958 (10, 349 obs.).
- ▶ Test data: 1958–2014 (20,697 obs.).

2005 Flood

- Hydrological models underestimated the event, which led to late warnings.
- ▶ 3 billion CHF in damages, 6 deaths and countless injuries were reported.

Aare River in Bern: Data

Data

- Daily observations of average discharge at 2 stations and total precipitation at 6 stations.
- Training and validation data: 1930-1958 (10, 349 obs.).
- ▶ Test data: 1958–2014 (20,697 obs.).

2005 Flood

- Hydrological models underestimated the event, which led to late warnings.
- ▶ 3 billion CHF in damages, 6 deaths and countless injuries were reported.

As regression problem

- ► *Y* is daily discharge at Bern station.
- X can contain: discharge from previous days at same and other stations; precipitation from close-by stations; other climatological variables.

For i.i.d. data $(\mathbf{X}_1, Y_1), \ldots, (\mathbf{X}_n, Y_n)$ where $\mathbf{X}_i \in \mathbb{R}^p$ and $Y_i \in \mathbb{R}$, the goal is to predict the conditional quantile at level $\tau \in (0, 1)$

$$Q_{\mathbf{x}}(\tau) = F_Y^{-1}(\tau \mid \mathbf{X} = \mathbf{x}).$$

For i.i.d. data $(\mathbf{X}_1, Y_1), \ldots, (\mathbf{X}_n, Y_n)$ where $\mathbf{X}_i \in \mathbb{R}^p$ and $Y_i \in \mathbb{R}$, the goal is to predict the conditional quantile at level $\tau \in (0, 1)$

$$Q_{\mathbf{x}}(\tau) = F_Y^{-1}(\tau \mid \mathbf{X} = \mathbf{x}).$$

There are different scenarios depending on the quantile level τ = τ_n:
τ_n ≡ τ₀ < 1 (classical case)
τ_n → 1, and n(1 − τ_n) → ∞ (intermediate case)
τ_n → 1, and n(1 − τ_n) → c ∈ [0,∞) (extreme case)

For i.i.d. data $(\mathbf{X}_1, Y_1), \ldots, (\mathbf{X}_n, Y_n)$ where $\mathbf{X}_i \in \mathbb{R}^p$ and $Y_i \in \mathbb{R}$, the goal is to predict the conditional quantile at level $\tau \in (0, 1)$

$$Q_{\mathbf{x}}(\tau) = F_Y^{-1}(\tau \mid \mathbf{X} = \mathbf{x}).$$

• There are different scenarios depending on the quantile level $\tau = \tau_n$:

- \bullet $\tau_n \equiv \tau_0 < 1$ (classical case)
- \bullet $\tau_n \to 1$, and $n(1-\tau_n) \to \infty$ (intermediate case)
- ▶ $\tau_n \to 1$, and $n(1 \tau_n) \to c \in [0, \infty)$ (extreme case)

Classical methods for quantile regression only work well in the case of fixed $\tau_n \equiv \tau_0 < 1$.

For i.i.d. data $(\mathbf{X}_1, Y_1), \ldots, (\mathbf{X}_n, Y_n)$ where $\mathbf{X}_i \in \mathbb{R}^p$ and $Y_i \in \mathbb{R}$, the goal is to predict the conditional quantile at level $\tau \in (0, 1)$

$$Q_{\mathbf{x}}(\tau) = F_Y^{-1}(\tau \mid \mathbf{X} = \mathbf{x}).$$

• There are different scenarios depending on the quantile level $\tau = \tau_n$:

- $\tau_n \equiv \tau_0 < 1$ (classical case)
- $\tau_n \to 1$, and $n(1 \tau_n) \to \infty$ (intermediate case)
- ▶ $\tau_n \to 1$, and $n(1 \tau_n) \to c \in [0, \infty)$ (extreme case)

Classical methods for quantile regression only work well in the case of fixed $\tau_n \equiv \tau_0 < 1$.

Methods from extreme value theory are not flexible enough [Chernozhukov, 2005, Chavez-Demoulin and Davison, 2005] or do not generalize well into higher dimensions [Daouia et al., 2011].

For i.i.d. data $(\mathbf{X}_1, Y_1), \ldots, (\mathbf{X}_n, Y_n)$ where $\mathbf{X}_i \in \mathbb{R}^p$ and $Y_i \in \mathbb{R}$, the goal is to predict the conditional quantile at level $\tau \in (0, 1)$

$$Q_{\mathbf{x}}(\tau) = F_Y^{-1}(\tau \mid \mathbf{X} = \mathbf{x}).$$

• There are different scenarios depending on the quantile level $\tau = \tau_n$:

- $\tau_n \equiv \tau_0 < 1$ (classical case)
- $\tau_n \to 1$, and $n(1 \tau_n) \to \infty$ (intermediate case)
- ▶ $\tau_n \to 1$, and $n(1 \tau_n) \to c \in [0, \infty)$ (extreme case)
- Classical methods for quantile regression only work well in the case of fixed $\tau_n \equiv \tau_0 < 1$.
- Methods from extreme value theory are not flexible enough [Chernozhukov, 2005, Chavez-Demoulin and Davison, 2005] or do not generalize well into higher dimensions [Daouia et al., 2011].
- Goal: Develop a new method for extreme quantile regression that works well with high-dimensional and complex data.

where $H_{\sigma,\gamma}$ is the cdf of the GPD with scale and shape $\sigma > 0$ and $\gamma \in \mathbb{R}$.

where $H_{\sigma,\gamma}$ is the cdf of the GPD with scale and shape $\sigma > 0$ and $\gamma \in \mathbb{R}$.

Estimation

- Consider i.i.d. data Y_1, \ldots, Y_n and estimate empirically the quantile $u = \hat{Q}(\tau_0)$ for an intermediate quantile level $\tau_0 < 1$.
- Define the exceedances above the threshold as

$$Z_i = \left(Y_i - \hat{Q}(\tau_0)\right)_+.$$

Estimation

- Consider i.i.d. data Y_1, \ldots, Y_n and estimate empirically the quantile $u = \hat{Q}(\tau_0)$ for an intermediate quantile level $\tau_0 < 1$.
- Define the exceedances above the threshold as

$$Z_i = \left(Y_i - \hat{Q}(\tau_0)\right)_+$$

▶ The likelihood of the GPD model with parameters $\theta = (\sigma, \gamma)$ is

$$\ell_{Z_i}(\theta) = -\left[(1+1/\gamma) \log\left(1+\gamma \frac{Z_i}{\sigma}\right) + \log \sigma \right] \mathbb{I}_{Z_i > 0}.$$

Estimate the parameters by maximum likelihood

$$\hat{\theta} = \arg\max_{\theta} \sum_{i=1}^{n} \ell_{Z_i}(\theta).$$

Extreme quantile estimation

▶ Inverting the cdf $H_{\hat{\sigma},\hat{\gamma}}$ of the GPD provides an approximation of the quantile $Q(\tau) = F_Y^{-1}(\tau)$ for probability level $\tau > \tau_0$ by

$$\hat{Q}(\tau) = \hat{Q}(\tau_0) + \hat{\sigma} \frac{\left(\frac{1-\tau}{1-\tau_0}\right)^{-\hat{\gamma}} - 1}{\hat{\gamma}}.$$

Extreme quantile estimation

▶ Inverting the cdf $H_{\hat{\sigma},\hat{\gamma}}$ of the GPD provides an approximation of the quantile $Q(\tau) = F_Y^{-1}(\tau)$ for probability level $\tau > \tau_0$ by

$$\hat{Q}(\tau) = \hat{Q}(\tau_0) + \hat{\sigma} \frac{\left(\frac{1-\tau}{1-\tau_0}\right)^{-\hat{\gamma}} - 1}{\hat{\gamma}}$$

For independent data, we can compute a *T*-year event by $\hat{Q}(1-1/(n_YT))$, where n_Y is the number of observations per year.

During the 2005 flood

Top: Daily observations during the 2005 flood in Bern together with 100-year return level estimate. Vertical dashed line is the first exceedance of this level.

Forest-based quantile regression

For $\tau \in (0,1)$ and $x \in [-1,1]^p$, the quantile regression function is defined as

$$Q_{\boldsymbol{x}}(\tau) := \arg\min_{q} \mathbb{E}[\rho_{\tau}(Y-q) \mid \boldsymbol{X} = \boldsymbol{x}],$$

where $\rho_\tau(c)=c(\tau-\mathbbm{1}\{c<0\})$ is the quantile loss function.

Forest-based quantile regression

 \blacktriangleright For $\tau \in (0,1)$ and $x \in [-1,1]^p,$ the quantile regression function is defined as

$$Q_{\boldsymbol{x}}(\tau) := \arg\min_{q} \mathbb{E}[\rho_{\tau}(Y-q) \mid \boldsymbol{X} = \boldsymbol{x}],$$

where $\rho_\tau(c)=c(\tau-\mathbbm{1}\{c<0\})$ is the quantile loss function.

Recently, [Meinshausen, 2006] and [Athey et al., 2019] proposed to estimate Q_x(τ) by

$$\hat{Q}_{\boldsymbol{x}}(\tau) = \arg\min_{q} \sum_{i=1}^{n} w_n(\boldsymbol{x}, X_i) \rho_{\tau}(Y_i - q),$$

where $(x, y) \mapsto w_n(x, y)$ is a localizing weight function learned with a random forest.

Given: Independent data $(\mathbf{X}_1, Y_1), \ldots, (\mathbf{X}_n, Y_n)$ of response $Y \in \mathbb{R}$ and covariates/predictors vector $\mathbf{X} \in \mathbb{R}^d$. Goal:

Predict extreme conditional quantiles of Y given $\mathbf{X} = \mathbf{x}$:

$$Q_{\mathbf{x}}(\tau) = F_Y^{-1}(\tau \mid \mathbf{X} = \mathbf{x}).$$

Given: Independent data $(\mathbf{X}_1, Y_1), \ldots, (\mathbf{X}_n, Y_n)$ of response $Y \in \mathbb{R}$ and covariates/predictors vector $\mathbf{X} \in \mathbb{R}^d$. Goal:

Predict extreme conditional quantiles of Y given $\mathbf{X} = \mathbf{x}$:

$$Q_{\mathbf{x}}(\tau) = F_Y^{-1}(\tau \mid \mathbf{X} = \mathbf{x}).$$

▶ Predict exceedance probability of Y over high threshold Q (e.g., 100-year level) given X = x:

$$\mathbb{P}(Y > Q \mid \mathbf{X} = \mathbf{x}).$$

Given: Independent data $(\mathbf{X}_1, Y_1), \ldots, (\mathbf{X}_n, Y_n)$ of response $Y \in \mathbb{R}$ and covariates/predictors vector $\mathbf{X} \in \mathbb{R}^d$. Goal:

Predict extreme conditional quantiles of Y given $\mathbf{X} = \mathbf{x}$:

$$Q_{\mathbf{x}}(\tau) = F_Y^{-1}(\tau \mid \mathbf{X} = \mathbf{x}).$$

Predict exceedance probability of Y over high threshold Q (e.g., 100-year level) given X = x:

$$\mathbb{P}(Y > Q \mid \mathbf{X} = \mathbf{x}).$$

Examples:

Bern river discharge:

- Y is daily discharge at Bern station.
- X can contain: discharge from previous days at same and other stations; precipitation from close-by stations; other climatological variables.
- Risk of heat waves:
 - Y daily temperature measurement at some location.
 - X can contain: altitude; day of the year; other variables on land use, climate, etc.
Assume the GPD model

$$(Y - \hat{Q} (\tau_0) \mid Y > Q (\tau_0), \mathbf{X} = \mathbf{x}) \sim H_{\sigma} ,, \gamma ,$$

where τ_0 is an intermediate quantile level, and $\hat{Q}_{\mathbf{x}}(\tau_0)$ is an estimate of the conditional τ_0 quantile of $Y \mid \mathbf{X} = \mathbf{x}$

Assume the conditional GPD model

$$(Y - \hat{Q}_{\mathbf{x}}(\tau_0) \mid Y > Q_{\mathbf{x}}(\tau_0), \mathbf{X} = \mathbf{x}) \sim H_{\sigma(\mathbf{x}), \gamma(\mathbf{x})},$$

where τ_0 is an intermediate quantile level, and $\hat{Q}_{\mathbf{x}}(\tau_0)$ is an estimate of the conditional τ_0 quantile of $Y \mid \mathbf{X} = \mathbf{x}$

Assume the conditional GPD model

$$(Y - \hat{Q}_{\mathbf{x}}(\tau_0) \mid Y > Q_{\mathbf{x}}(\tau_0), \mathbf{X} = \mathbf{x}) \sim H_{\sigma(\mathbf{x}), \gamma(\mathbf{x})},$$

where τ_0 is an intermediate quantile level, and $\hat{Q}_{\mathbf{x}}(\tau_0)$ is an estimate of the conditional τ_0 quantile of $Y \mid \mathbf{X} = \mathbf{x}$

• $\hat{Q}_{\mathbf{x}}(\tau_0)$ can be estimated with classical methods, e.g., a quantile random forest.

Assume the conditional GPD model

$$(Y - \hat{Q}_{\mathbf{x}}(\tau_0) \mid Y > Q_{\mathbf{x}}(\tau_0), \mathbf{X} = \mathbf{x}) \sim H_{\sigma(\mathbf{x}), \gamma(\mathbf{x})},$$

where τ_0 is an intermediate quantile level, and $\hat{Q}_{\mathbf{x}}(\tau_0)$ is an estimate of the conditional τ_0 quantile of $Y \mid \mathbf{X} = \mathbf{x}$

• $\hat{Q}_{\mathbf{x}}(\tau_0)$ can be estimated with classical methods, e.g., a quantile random forest.

For an extreme level $\tau > \tau_0$ we can estimate

$$\hat{Q}_{\mathbf{x}}(\tau) = \hat{Q}_{\mathbf{x}}(\tau_0) + \hat{\sigma}(\mathbf{x}) \frac{\left(\frac{1-\tau}{1-\tau_0}\right)^{-\hat{\gamma}(\mathbf{x})} - 1}{\hat{\gamma}(\mathbf{x})},$$

where $\hat{\theta}(\mathbf{x}) = (\hat{\sigma}(\mathbf{x}), \hat{\gamma}(\mathbf{x}))$ is an estimate of the conditional GPD parameters.

Assume the conditional GPD model

$$(Y - \hat{Q}_{\mathbf{x}}(\tau_0) \mid Y > Q_{\mathbf{x}}(\tau_0), \mathbf{X} = \mathbf{x}) \sim H_{\sigma(\mathbf{x}), \gamma(\mathbf{x})},$$

where τ_0 is an intermediate quantile level, and $\hat{Q}_{\mathbf{x}}(\tau_0)$ is an estimate of the conditional τ_0 quantile of $Y \mid \mathbf{X} = \mathbf{x}$

• $\hat{Q}_{\mathbf{x}}(\tau_0)$ can be estimated with classical methods, e.g., a quantile random forest.

For an extreme level $\tau > \tau_0$ we can estimate

$$\hat{Q}_{\mathbf{x}}(\tau) = \hat{Q}_{\mathbf{x}}(\tau_0) + \hat{\sigma}(\mathbf{x}) \frac{\left(\frac{1-\tau}{1-\tau_0}\right)^{-\hat{\gamma}(\mathbf{x})} - 1}{\hat{\gamma}(\mathbf{x})},$$

where $\hat{\theta}(\mathbf{x}) = (\hat{\sigma}(\mathbf{x}), \hat{\gamma}(\mathbf{x}))$ is an estimate of the conditional GPD parameters.

The triple $(\hat{Q}_{\mathbf{x}}(\tau_0), \hat{\sigma}(\mathbf{x}), \hat{\gamma}(\mathbf{x}))$ provides a model for the tail of $Y \mid \mathbf{X} = \mathbf{x}$.

Two methods to estimate the GPD parameters $\hat{\theta}(\mathbf{x}) = (\hat{\sigma}(\mathbf{x}), \hat{\gamma}(\mathbf{x}))$, both maximize a localized likelihood:

$$\sum_{i=1}^{n} w_n(\boldsymbol{x}, X_i) \ell_{(\sigma, \gamma)}(Z_i)$$

 $\ell_{(\sigma,\gamma)}(Z_i)$ is the GPD log-likelihood, with exceedances $Z_i = (Y_i - \hat{Q}_x(\tau_0))_+$.

Two methods to estimate the GPD parameters $\hat{\theta}(\mathbf{x}) = (\hat{\sigma}(\mathbf{x}), \hat{\gamma}(\mathbf{x}))$, both maximize a localized likelihood:

$$\sum_{i=1}^{n} w_n(\boldsymbol{x}, X_i) \ell_{(\sigma, \gamma)}(Z_i)$$

 $\ell_{(\sigma,\gamma)}(Z_i)$ is the GPD log-likelihood, with exceedances $Z_i = (Y_i - \hat{Q}_x(\tau_0))_+$.

- **Extremal gradient boosting (GBEX)**: The weights $w_n(\mathbf{x}, X_i)$ are obtained through gradient boosting.
 - Velthoen, J., Dombry, C., Cai, J.-J., and Engelke, S. (2021).
 Gradient boosting for extreme quantile regression.
 https://arxiv.org/abs/2103.00808

Two methods to estimate the GPD parameters $\hat{\theta}(\mathbf{x}) = (\hat{\sigma}(\mathbf{x}), \hat{\gamma}(\mathbf{x}))$, both maximize a localized likelihood:

$$\sum_{i=1}^{n} w_n(\boldsymbol{x}, X_i) \ell_{(\sigma, \gamma)}(Z_i)$$

 $\ell_{(\sigma,\gamma)}(Z_i)$ is the GPD log-likelihood, with exceedances $Z_i = (Y_i - \hat{Q}_x(\tau_0))_+$.

- Extremal gradient boosting (GBEX): The weights w_n(x, X_i) are obtained through gradient boosting.
 - Velthoen, J., Dombry, C., Cai, J.-J., and Engelke, S. (2021).
 Gradient boosting for extreme quantile regression.
 https://arxiv.org/abs/2103.00808
- **Extremal random forest (ERF)**: The weights $w_n(\mathbf{x}, X_i)$ are obtained through a GRF

Gnecco, N., Terefe, E.M., and Engelke, S. (2022). Extremal Random Forests. https://arxiv.org/abs/2201.12865

• $(\hat{\sigma}(\boldsymbol{x}), \hat{\gamma}(\boldsymbol{x}))$ is the maximizer of the weighted log-likelihood

$$\sum_{i=1}^{n} w_n(\boldsymbol{x}, X_i) \ell_{(\sigma, \gamma)}(Z_i).$$

• $(\hat{\sigma}(\boldsymbol{x}), \hat{\gamma}(\boldsymbol{x}))$ is the maximizer of the weighted log-likelihood

$$\sum_{i=1}^{n} w_n(\boldsymbol{x}, X_i) \ell_{(\sigma, \gamma)}(Z_i).$$

• $w_n(\boldsymbol{x}, X_i)$ are localizing weights from a GRF.

• $(\hat{\sigma}(\boldsymbol{x}), \hat{\gamma}(\boldsymbol{x}))$ is the maximizer of the weighted log-likelihood

$$\sum_{i=1}^{n} w_n(\boldsymbol{x}, X_i) \ell_{(\sigma, \gamma)}(Z_i).$$

• $w_n(\boldsymbol{x}, X_i)$ are localizing weights from a GRF.

▶ $\ell_{(\sigma,\gamma)}(Z_i)$ is the GPD log-likelihood, with $Z_i = (Y_i - \hat{Q}_x(\tau_0))_+$, i = 1, ..., n.

• $(\hat{\sigma}(\boldsymbol{x}), \hat{\gamma}(\boldsymbol{x}))$ is the maximizer of the weighted log-likelihood

$$\sum_{i=1}^{n} w_n(\boldsymbol{x}, X_i) \ell_{(\sigma, \gamma)}(Z_i).$$

- $w_n(\boldsymbol{x}, X_i)$ are localizing weights from a GRF.
- ▶ $\ell_{(\sigma,\gamma)}(Z_i)$ is the GPD log-likelihood, with $Z_i = (Y_i \hat{Q}_x(\tau_0))_+$, $i = 1, \ldots, n$.

• $(\hat{\sigma}(\boldsymbol{x}), \hat{\gamma}(\boldsymbol{x}))$ is the maximizer of the weighted log-likelihood

$$\sum_{i=1}^{n} w_n(\boldsymbol{x}, X_i) \ell_{(\sigma, \gamma)}(Z_i).$$

• $w_n(\boldsymbol{x}, X_i)$ are localizing weights from a GRF.

▶ $\ell_{(\sigma,\gamma)}(Z_i)$ is the GPD log-likelihood, with $Z_i = (Y_i - \hat{Q}_x(\tau_0))_+$, i = 1, ..., n.

Consistency

• Let $x \in [-1,1]^p$ and $\theta := (\sigma,\gamma)$. Want to show that

$$\hat{\theta}(x) \in \operatorname*{arg\,max}_{\theta} \sum_{i=1}^{n} w_n(\boldsymbol{x}, X_i) \ell_{\theta}(Z_i) \xrightarrow{\mathbb{P}} \theta(x).$$

Consistency

• Let $x \in [-1,1]^p$ and $\theta := (\sigma,\gamma)$. Want to show that

$$\hat{\theta}(x) \in \operatorname*{arg\,max}_{\theta} \sum_{i=1}^{n} w_n(\boldsymbol{x}, X_i) \ell_{\theta}(Z_i) \xrightarrow{\mathbb{P}} \theta(x).$$

Regularity conditions from [Athey et al., 2019] do not hold in our setting.

Consistency

• Let $x \in [-1,1]^p$ and $\theta := (\sigma,\gamma)$. Want to show that

$$\hat{\theta}(x) \in \operatorname*{arg\,max}_{\theta} \sum_{i=1}^{n} w_n(\boldsymbol{x}, X_i) \ell_{\theta}(Z_i) \xrightarrow{\mathbb{P}} \theta(x).$$

Regularity conditions from [Athey et al., 2019] do not hold in our setting.
 Under some assumptions, ERF estimates are consistent

$$\hat{\theta}(x) \xrightarrow{\mathbb{P}} \theta(x), \quad \text{for all } x \in [-1,1]^p.$$

Sample n = 2000 iid copies of (X, Y) from

$$\begin{cases} \boldsymbol{X} \sim U\left([-1,1]^p\right), \\ (Y \mid \boldsymbol{X} = \boldsymbol{x}) \sim s(\boldsymbol{x})T_4, \end{cases}$$

where $s(x) = 1 + \mathbb{1}\{x_1 > 0\}$ and $\gamma(x) = 1/4$.

Sample n = 2000 iid copies of (X, Y) from

$$\begin{cases} \boldsymbol{X} \sim U\left([-1,1]^p\right), \\ (Y \mid \boldsymbol{X} = \boldsymbol{x}) \sim s(\boldsymbol{x})T_4, \end{cases}$$

where $s(x) = 1 + \mathbb{1}\{x_1 > 0\}$ and $\gamma(x) = 1/4$.

 Compare ERF and GBEX with QRF [Meinshausen, 2006], GRF [Athey et al., 2019] Extreme GAM [Youngman, 2019], [Taillardat et al., 2019].

Sample n = 2000 iid copies of (X, Y) from

$$\begin{cases} \boldsymbol{X} \sim U\left([-1,1]^p\right), \\ \left(Y \mid \boldsymbol{X} = \boldsymbol{x}\right) \sim s(\boldsymbol{x})T_4, \end{cases}$$

where $s(x) = 1 + \mathbb{1}\{x_1 > 0\}$ and $\gamma(x) = 1/4$.

 Compare ERF and GBEX with QRF [Meinshausen, 2006], GRF [Athey et al., 2019] Extreme GAM [Youngman, 2019], [Taillardat et al., 2019].

• On a test data set $\{x_i\}_{i=1}^{n'}$, evaluate the integrated squared error (ISE)

$$\mathsf{ISE} = \frac{1}{n'} \sum_{i=1}^{n'} \left(\hat{Q}_{x_i}(\tau) - Q_{x_i}(\tau) \right)^2.$$

Sample
$$n = 5000$$
 iid copies of (X, Y) from

$$\begin{cases} \boldsymbol{X} \sim U\left([-1,1]^p\right), \\ (Y \mid \boldsymbol{X} = \boldsymbol{x}) \sim s_j(\boldsymbol{x})T_{\nu(\boldsymbol{x})}, \quad j = 1, 2, 3. \end{cases}$$

Sample
$$n = 5000$$
 iid copies of (X, Y) from

$$\begin{cases} \boldsymbol{X} \sim U\left([-1,1]^p\right), \\ (Y \mid \boldsymbol{X} = \boldsymbol{x}) \sim s_j(\boldsymbol{x}) T_{\nu(\boldsymbol{x})}, \quad j = 1, 2, 3. \end{cases}$$

▶
$$\nu(x) := 3 + 3[1 + \tanh(-2X_1)]$$
 where $\gamma(x) = 1/\nu(x)$.

Sample
$$n = 5000$$
 iid copies of (X, Y) from

$$\begin{cases} \boldsymbol{X} \sim U\left([-1,1]^p\right), \\ (Y \mid \boldsymbol{X} = \boldsymbol{x}) \sim s_j(\boldsymbol{x}) T_{\nu(\boldsymbol{x})}, \quad j = 1, 2, 3. \end{cases}$$

•
$$\nu(x) := 3 + 3[1 + \tanh(-2X_1)]$$
 where $\gamma(x) = 1/\nu(x)$.
• $s_1(x) := (2 + \tanh(2X_1)) \cdot (1 + \frac{1}{2}X_2)$.

$$\begin{cases} \boldsymbol{X} \sim U\left([-1,1]^p\right), \\ (Y \mid \boldsymbol{X} = \boldsymbol{x}) \sim s_j(\boldsymbol{x}) T_{\nu(\boldsymbol{x})}, \quad j = 1, 2, 3. \end{cases}$$

▶
$$\nu(x) := 3 + 3[1 + \tanh(-2X_1)]$$
 where $\gamma(x) = 1/\nu(x)$.
▶ $s_1(x) := (2 + \tanh(2X_1)) \cdot (1 + \frac{1}{2}X_2)$.
▶ $s_2(x) := 4 - (X_1^2 + 2X_2^2)$.

$$\begin{cases} \boldsymbol{X} \sim U\left([-1,1]^p\right), \\ (Y \mid \boldsymbol{X} = \boldsymbol{x}) \sim s_j(\boldsymbol{x})T_{\nu(\boldsymbol{x})}, \quad j = 1, 2, 3. \end{cases}$$

•
$$\nu(x) := 3 + 3[1 + \tanh(-2X_1)]$$
 where $\gamma(x) = 1/\nu(x)$.

•
$$s_1(x) := (2 + \tanh(2X_1)) \cdot (1 + \frac{1}{2}X_2).$$

•
$$s_2(x) := 4 - (X_1^2 + 2X_2^2)$$

s₃(x) := 1 + 2πφ(2X₁, 2X₂), where φ(X₁, X₂) is a centered bivariate Gaussian with unit variance and correlation equal to 3/4.

n = 5000, p = 10, $\tau = 0.9995$

Extreme quantile regression

- Suppose the data $(\mathbf{X}_1, Y_1), \ldots, (\mathbf{X}_n, Y_n)$ are NOT i.i.d., but have a time series structure
- Then we can use recurrent neural networks to model the GPD parameters $(\sigma(x), \gamma(x))$
- Extreme quantile regression neural networks (EQRN):

Pasche, O.C. and Engelke, S. (2022). Neural Networks for Extreme Quantile Regression with an Application to Forecasting of Flood Risk. https://arxiv.org/abs/2208.07590

Extreme quantile regression neural networks (EQRN)

- If there is sequential dependence as in time series, then this structure can be used in recurrent neural networks.
- Predict quantiles of Y_t (discharge at time t) using past observations

$$\mathbf{X} = (Y_{t-1}, Y_{t-2}, \dots, X_{t-1}^1, X_{t-2}^1, \dots)$$

from response on other covariates X^1, X^2, \ldots (e.g., precipitation at locations 1, 2, etc.).

Results for the 2005 flood

Top: Blue line is the one-day-ahead forecasted (conditional) 100-year return level Q₁⁽ⁿ⁾.

Results for the 2005 flood

- Top: Blue line is the one-day-ahead forecasted (conditional) 100-year return level Q²_x⁰⁰.
- Bottom: Blue line the the ratio of conditional exceedance probability compared to unconditional estimate

$$\frac{\hat{\mathbb{P}}(Y > \hat{Q}^{100} \mid \mathbf{X} = \mathbf{x})}{\hat{\mathbb{P}}(Y > \hat{Q}^{100})}$$

References I

Meinshausen, N. (2006). Quantile regression forests. Journal of Machine Learning Research, 7:983–999.

References II

Taillardat, M., Fougères, A.-L., Naveau, P., and Mestre, O. (2019). Forest-based and semiparametric methods for the postprocessing of rainfall ensemble forecasting.

Weather and Forecasting, 34(3):617 – 634.

Youngman, B. D. (2019).

Generalized additive models for exceedances of high thresholds with an application to return level estimation for u.s. wind gusts.

Journal of the American Statistical Association, 114(528):1865–1879.