Symmetric closed Reeb orbits on the sphere

Leonardo Macarini (Joint work with Miguel Abreu and Hui Liu)

イロト イヨト イヨト イヨト

Basic setup

The problem A refinement of the problem Results Idea of the proof of the theorems

Basic setup

• $(\mathbb{R}^{2n+2}, \omega), \omega = \sum_i dq_i \wedge dp_i = d\lambda$ where $\lambda = \frac{1}{2} \sum_i (q_i dp_i - p_i dq_i).$

イロン イヨン イヨン イヨン

æ

The problem A refinement of the problem Results Idea of the proof of the theorems

Basic setup

• $(\mathbb{R}^{2n+2}, \omega), \omega = \sum_i dq_i \wedge dp_i = d\lambda$ where $\lambda = \frac{1}{2} \sum_i (q_i dp_i - p_i dq_i).$

Consider the unit sphere S²ⁿ⁺¹ ⊂ ℝ²ⁿ⁺² and the (cooriented) standard contact structure ξ = ker λ|_{S²ⁿ⁺¹}.

Basic setup

・ロト ・回ト ・ヨト ・ヨト

The problem A refinement of the problem Results Idea of the proof of the theorems

• $(\mathbb{R}^{2n+2}, \omega), \omega = \sum_i dq_i \wedge dp_i = d\lambda$ where $\lambda = \frac{1}{2} \sum_i (q_i dp_i - p_i dq_i).$

• Consider the unit sphere $S^{2n+1} \subset \mathbb{R}^{2n+2}$ and the (cooriented) standard contact structure $\xi = \ker \lambda|_{S^{2n+1}}$.

Basic setup

• A contact form on S^{2n+1} supporting ξ is a 1-form α given by $f\lambda|_{S^{2n+1}}$ for some positive function $f: S^{2n+1} \to \mathbb{R}$. Its Reeb vector field is the unique vector field R_{α} s.t. $\iota_{R_{\alpha}} d\alpha = 0$ and $\alpha(R_{\alpha}) = 1$.

The problem A refinement of the problem Results Idea of the proof of the theorems

• $(\mathbb{R}^{2n+2}, \omega), \omega = \sum_i dq_i \wedge dp_i = d\lambda$ where $\lambda = \frac{1}{2} \sum_i (q_i dp_i - p_i dq_i).$

Consider the unit sphere S²ⁿ⁺¹ ⊂ ℝ²ⁿ⁺² and the (cooriented) standard contact structure ξ = ker λ|_{S²ⁿ⁺¹}.

Basic setup

- A contact form on S^{2n+1} supporting ξ is a 1-form α given by $f\lambda|_{S^{2n+1}}$ for some positive function $f: S^{2n+1} \to \mathbb{R}$. Its Reeb vector field is the unique vector field R_{α} s.t. $\iota_{R_{\alpha}} d\alpha = 0$ and $\alpha(R_{\alpha}) = 1$.
- We want to study the dynamics of Reeb flows on the standard contact sphere (S²ⁿ⁺¹, ξ).

・ロン ・回 と ・ 回 と ・ 回 と

The problem General results Results assuming convexity Dynamical convexity Results assuming dynamical convexity

The problem

• Basic dynamical objects: periodic orbits.

イロン イヨン イヨン イヨン

æ

The problem General results Results assuming convexity Dynamical convexity Results assuming dynamical convexity

The problem

- Basic dynamical objects: periodic orbits.
- Denote by \mathcal{P} the set of **simple** periodic orbits of the Reeb flow of α .

æ

The problem General results Results assuming convexity Dynamical convexity Results assuming dynamical convexity

The problem

- Basic dynamical objects: periodic orbits.
- Denote by \mathcal{P} the set of **simple** periodic orbits of the Reeb flow of α .

Multiplicity problem:

Consider a contact form on the standard contact sphere S^{2n+1} . Is it true that $\#\mathcal{P} \ge n+1$?

The problem General results Results assuming convexity Dynamical convexity Results assuming dynamical convexity

The problem

- Basic dynamical objects: periodic orbits.
- Denote by \mathcal{P} the set of **simple** periodic orbits of the Reeb flow of α .

Multiplicity problem:

Consider a contact form on the standard contact sphere S^{2n+1} . Is it true that $\#\mathcal{P} \ge n+1$?

• Note that irrational ellipsoids in \mathbb{R}^{2n+2} carry precisely n+1 periodic orbits. (An irrational ellipsoid is given by $\sum_i r_i ||z_i||^2 = 1$ with $r_0, ..., r_n$ rationally indepedent.)

The problem General results Results assuming convexity Dynamical convexity Results assuming dynamical convexity

The problem

- Basic dynamical objects: periodic orbits.
- Denote by \mathcal{P} the set of **simple** periodic orbits of the Reeb flow of α .

Multiplicity problem:

Consider a contact form on the standard contact sphere S^{2n+1} . Is it true that $\#\mathcal{P} \ge n+1$?

- Note that irrational ellipsoids in \mathbb{R}^{2n+2} carry precisely n+1 periodic orbits. (An irrational ellipsoid is given by $\sum_i r_i ||z_i||^2 = 1$ with $r_0, ..., r_n$ rationally indepedent.)
- This is a very hard question in Hamiltonian Dynamics. Notice that we are not supposing any generic condition here.

General results Results assuming dynamical convexity

• Without any assumption on α we have the following results:

イロン イヨン イヨン イヨン

æ

The problem General results Results assuming convexity Dynamical convexity Results assuming dynamical convexity

General results

- Without any assumption on α we have the following results:
- Rabinowitz'1978: $\#P \ge 1$ for any *n*.

イロン イヨン イヨン イヨン

The problem General results Results assuming convexity Dynamical convexity Results assuming dynamical convexity

General results

- Without any assumption on α we have the following results:
- Rabinowitz'1978: $\#P \ge 1$ for any *n*.
- Cristofaro Gardiner-Hutchings'2016, Ginzburg-Hein-Hryniewicz-M.'2015, Liu-Long'2016 (using a result proved in GHHM): #P ≥ 2 for n = 1.

イロト イポト イヨト イヨト

The problem General results Results assuming convexity Dynamical convexity Results assuming dynamical convexity

General results

- Without any assumption on α we have the following results:
- Rabinowitz'1978: $\#P \ge 1$ for any *n*.
- Cristofaro Gardiner-Hutchings'2016, Ginzburg-Hein-Hryniewicz-M.'2015, Liu-Long'2016 (using a result proved in GHHM): #P ≥ 2 for n = 1.
- In higher dimensions this question is widely open.

イロト イポト イヨト イヨト

The problem General results Results assuming convexity Dynamical convexity Results assuming dynamical convexity

Results assuming convexity

 There is a bijection between contact forms α on (S²ⁿ⁺¹, ξ) and starshaped hypersurfaces Σ_α in ℝ²ⁿ⁺²:

$$\alpha = f\lambda|_{S^{2n+1}} \longleftrightarrow \Sigma_{\alpha} = \{\sqrt{f(x)}x; x \in S^{2n+1}\}$$

The problem General results Results assuming convexity Dynamical convexity Results assuming dynamical convexity

Results assuming convexity

 There is a bijection between contact forms α on (S²ⁿ⁺¹, ξ) and starshaped hypersurfaces Σ_α in ℝ²ⁿ⁺²:

$$\alpha = f\lambda|_{S^{2n+1}} \longleftrightarrow \Sigma_{\alpha} = \{\sqrt{f(x)}x; x \in S^{2n+1}\}.$$

We say that α is convex if Σ_α bounds a strictly convex subset.

The problem General results Results assuming convexity Dynamical convexity Results assuming dynamical convexity

Results assuming convexity

 There is a bijection between contact forms α on (S²ⁿ⁺¹, ξ) and starshaped hypersurfaces Σ_α in ℝ²ⁿ⁺²:

$$\alpha = f\lambda|_{S^{2n+1}} \longleftrightarrow \Sigma_{\alpha} = \{\sqrt{f(x)}x; x \in S^{2n+1}\}.$$

- We say that α is convex if Σ_α bounds a strictly convex subset.
- When α is convex the following is known:

The problem General results Results assuming convexity Dynamical convexity Results assuming dynamical convexity

Results assuming convexity

 There is a bijection between contact forms α on (S²ⁿ⁺¹, ξ) and starshaped hypersurfaces Σ_α in ℝ²ⁿ⁺²:

$$\alpha = f\lambda|_{S^{2n+1}} \longleftrightarrow \Sigma_{\alpha} = \{\sqrt{f(x)}x; x \in S^{2n+1}\}.$$

- We say that α is convex if Σ_α bounds a strictly convex subset.
- When α is convex the following is known:
- Ekeland-Hofer'1987: $\#P \ge 2$.

The problem General results Results assuming convexity Dynamical convexity Results assuming dynamical convexity

Results assuming convexity

 There is a bijection between contact forms α on (S²ⁿ⁺¹, ξ) and starshaped hypersurfaces Σ_α in ℝ²ⁿ⁺²:

$$\alpha = f\lambda|_{S^{2n+1}} \longleftrightarrow \Sigma_{\alpha} = \{\sqrt{f(x)}x; x \in S^{2n+1}\}.$$

5/20

- We say that α is convex if Σ_α bounds a strictly convex subset.
- When α is convex the following is known:
- Ekeland-Hofer'1987: $\# \mathcal{P} \geq 2$.
- Long-Zhu'2002: $\#\mathcal{P} \ge \lfloor \frac{n+1}{2} \rfloor + 1$ ($\lfloor x \rfloor = \sup\{k \in \mathbb{N}; k \le x\}$).

The problem General results Results assuming convexity Dynamical convexity Results assuming dynamical convexity

Results assuming convexity

 There is a bijection between contact forms α on (S²ⁿ⁺¹, ξ) and starshaped hypersurfaces Σ_α in ℝ²ⁿ⁺²:

$$\alpha = f\lambda|_{S^{2n+1}} \longleftrightarrow \Sigma_{\alpha} = \{\sqrt{f(x)}x; x \in S^{2n+1}\}.$$

- We say that α is convex if Σ_α bounds a strictly convex subset.
- When α is convex the following is known:
- Ekeland-Hofer'1987: $\# \mathcal{P} \geq 2$.
- Long-Zhu'2002: $\#\mathcal{P} \ge \lfloor \frac{n+1}{2} \rfloor + 1$ ($\lfloor x \rfloor = \sup\{k \in \mathbb{N}; k \le x\}$).
- Wang'2016: $\#\mathcal{P} \geq \lceil \frac{n+1}{2} \rceil + 1 \ (\lceil x \rceil = \inf\{k \in \mathbb{N}; \ k \geq x\}).$

The problem General results Results assuming convexity Dynamical convexity Results assuming dynamical convexity

Dynamical convexity

 The hypothesis of convexity is not natural from the point of view of Contact Topology since it is not a condition invariant by contactomorphisms.

イロト イポト イヨト イヨト

6 / 20

The problem General results Results assuming convexity Dynamical convexity Results assuming dynamical convexity

Dynamical convexity

 The hypothesis of convexity is not natural from the point of view of Contact Topology since it is not a condition invariant by contactomorphisms.

• An alternative definition is dynamical convexity.

イロト イポト イヨト イヨト

The problem General results Results assuming convexity Dynamical convexity Results assuming dynamical convexity

Dynamical convexity

 The hypothesis of convexity is not natural from the point of view of Contact Topology since it is not a condition invariant by contactomorphisms.

- An alternative definition is dynamical convexity.
- Definition. (Hofer-Wysocki-Zehnder) A contact form α on S²ⁿ⁺¹ is dynamically convex if μ_{CZ}(γ) ≥ n + 2 for every closed Reeb orbit γ, where μ_{CZ}(γ) denotes the Conley-Zehnder index of γ.

イロン イヨン イヨン イヨン

The problem General results Results assuming convexity Dynamical convexity Results assuming dynamical convexity

Dynamical convexity

 The hypothesis of convexity is not natural from the point of view of Contact Topology since it is not a condition invariant by contactomorphisms.

- An alternative definition is dynamical convexity.
- Definition. (Hofer-Wysocki-Zehnder) A contact form α on S^{2n+1} is dynamically convex if $\mu_{CZ}(\gamma) \ge n+2$ for every closed Reeb orbit γ , where $\mu_{CZ}(\gamma)$ denotes the Conley-Zehnder index of γ .
- It is not hard to see that if α is convex then it is DC.

イロト イポト イヨト イヨト

The problem General results Results assuming convexity Dynamical convexity Results assuming dynamical convexity

Dynamical convexity

 The hypothesis of convexity is not natural from the point of view of Contact Topology since it is not a condition invariant by contactomorphisms.

▶ ★ 문 ▶ ★ 문 ▶

- An alternative definition is dynamical convexity.
- Definition. (Hofer-Wysocki-Zehnder) A contact form α on S^{2n+1} is dynamically convex if $\mu_{CZ}(\gamma) \ge n+2$ for every closed Reeb orbit γ , where $\mu_{CZ}(\gamma)$ denotes the Conley-Zehnder index of γ .
- It is not hard to see that if α is convex then it is DC.
- Dynamical convexity is more general than convexity: there are DC contact forms that are not contactomorphic to convex ones (Chaidez-Edtmair, Abreu-M., Ginzburg-M.).

The problem General results Results assuming convexity Dynamical convexity Results assuming dynamical convexity

Results assuming dynamical convexity

• Assuming that α is DC we have the following results:

イロト イポト イヨト イヨト

The problem General results Results assuming convexity Dynamical convexity Results assuming dynamical convexity

Results assuming dynamical convexity

- Assuming that α is DC we have the following results:
- Abreu-M.'2017: $\#\mathcal{P} \geq 2$.

The problem General results Results assuming convexity Dynamical convexity Results assuming dynamical convexity

Results assuming dynamical convexity

- Assuming that α is DC we have the following results:
- Abreu-M.'2017: $\#P \ge 2$.
- Ginzburg-Gurel'2020 and Duan-Liu'2017 independently: $\#\mathcal{P} \ge \lceil \frac{n+1}{2} \rceil + 1.$

A refinement of the problem Known results

A refinement of the problem

Given an integer p ≥ 1, consider the Z_p-action on S²ⁿ⁺¹, regarded as a subset of Cⁿ⁺¹, generated by the map

$$\psi(z_0,\ldots,z_n)=\left(e^{\frac{2\pi i\ell_0}{p}}z_0,e^{\frac{2\pi i\ell_1}{p}}z_1,\ldots,e^{\frac{2\pi i\ell_n}{p}}z_n\right),$$

where ℓ_0, \ldots, ℓ_n are integers called the weights of the action. Such an action is free when the weights are coprime with p (that we will assume from now on) and in that case we have a lens space obtained as the quotient of S^{2n+1} by the action of \mathbb{Z}_p . We denote this lens space by $L_p^{2n+1}(\ell_0, \ell_1, \ldots, \ell_n)$.

イロト イポト イヨト イヨト

8 / 20

A refinement of the problem Known results

A refinement of the problem

Given an integer p ≥ 1, consider the Z_p-action on S²ⁿ⁺¹, regarded as a subset of Cⁿ⁺¹, generated by the map

$$\psi(z_0,\ldots,z_n)=\left(e^{\frac{2\pi i\ell_0}{p}}z_0,e^{\frac{2\pi i\ell_1}{p}}z_1,\ldots,e^{\frac{2\pi i\ell_n}{p}}z_n\right),$$

where ℓ_0, \ldots, ℓ_n are integers called the weights of the action. Such an action is free when the weights are coprime with p (that we will assume from now on) and in that case we have a lens space obtained as the quotient of S^{2n+1} by the action of \mathbb{Z}_p . We denote this lens space by $L_p^{2n+1}(\ell_0, \ell_1, \ldots, \ell_n)$.

• Consider a contact form α on S^{2n+1} invariant under this action.

A refinement of the problem Known results

A refinement of the problem

Given an integer p ≥ 1, consider the Z_p-action on S²ⁿ⁺¹, regarded as a subset of Cⁿ⁺¹, generated by the map

$$\psi(z_0,\ldots,z_n)=\left(e^{\frac{2\pi i\ell_0}{p}}z_0,e^{\frac{2\pi i\ell_1}{p}}z_1,\ldots,e^{\frac{2\pi i\ell_n}{p}}z_n\right),$$

where ℓ_0, \ldots, ℓ_n are integers called the weights of the action. Such an action is free when the weights are coprime with p (that we will assume from now on) and in that case we have a lens space obtained as the quotient of S^{2n+1} by the action of \mathbb{Z}_p . We denote this lens space by $L_p^{2n+1}(\ell_0, \ell_1, \ldots, \ell_n)$.

• Consider a contact form α on S^{2n+1} invariant under this action.

• A closed orbit γ of α is symmetric if $\psi(\gamma(\mathbb{R})) = \gamma(\mathbb{R})$.

A refinement of the problem Known results

• Let α be a contact form on S^{2n+1} invariant under this \mathbb{Z}_p -action.

<ロ> (四) (四) (三) (三) (三)

- Let α be a contact form on S^{2n+1} invariant under this \mathbb{Z}_p -action.
- Let P_s be the set of simple symmetric closed orbits of α. Clearly, #P ≥ #P_s.

ヘロン 人間 とくほど くほとう

æ

- Let α be a contact form on S^{2n+1} invariant under this \mathbb{Z}_p -action.
- Let P_s be the set of simple symmetric closed orbits of α. Clearly, #P ≥ #P_s.

A refinement of the multiplicity problem:

Is it true that $\#\mathcal{P}_s \ge n+1$?

・ロト ・回ト ・ヨト ・ヨト

- Let α be a contact form on S^{2n+1} invariant under this \mathbb{Z}_p -action.
- Let P_s be the set of simple symmetric closed orbits of α. Clearly, #P ≥ #P_s.

A refinement of the multiplicity problem:

Is it true that $\#\mathcal{P}_s \ge n+1$?

• When p = 1 then obviuosly $\mathcal{P}_s = \mathcal{P}$ and the previous problem means that $\#\mathcal{P} \ge n+1$.

ヘロン 人間 とくほど くほとう

- Let α be a contact form on S^{2n+1} invariant under this \mathbb{Z}_p -action.
- Let P_s be the set of simple symmetric closed orbits of α. Clearly, #P ≥ #P_s.

A refinement of the multiplicity problem:

Is it true that $\#\mathcal{P}_s \ge n+1$?

- When p = 1 then obviuosly $\mathcal{P}_s = \mathcal{P}$ and the previous problem means that $\#\mathcal{P} \ge n+1$.
- Note that irrational ellipsoids in ℝ²ⁿ⁺² are invariant under this Z_p-action (for any weights and p) and carry precisely n + 1 periodic orbits which are all symmetric.

A refinement of the problem Known results

Known results

• Girardi'1984: If p = 2 (so that the corresponding lens space is \mathbb{RP}^{2n+1}) we have for any α that $\#\mathcal{P}_s \geq 1$.

イロン 不同と 不同と 不同と

æ

A refinement of the problem Known results

Known results

- Girardi'1984: If p = 2 (so that the corresponding lens space is \mathbb{RP}^{2n+1}) we have for any α that $\#\mathcal{P}_s \ge 1$.
- Bähni'2021: If p is even then $\#\mathcal{P}_s \ge 1$ for any α .

・ロン ・回と ・ヨン・

A refinement of the problem Known results

Known results

- Girardi'1984: If p = 2 (so that the corresponding lens space is \mathbb{RP}^{2n+1}) we have for any α that $\#\mathcal{P}_s \ge 1$.
- Bähni'2021: If p is even then $\#\mathcal{P}_s \geq 1$ for any α .
- Zhang'2013: If α is convex then $\#\mathcal{P}_s \geq 2$.

A refinement of the problem Known results

Known results

- Girardi'1984: If p = 2 (so that the corresponding lens space is \mathbb{RP}^{2n+1}) we have for any α that $\#\mathcal{P}_s \ge 1$.
- Bähni'2021: If p is even then $\#\mathcal{P}_s \ge 1$ for any α .
- Zhang'2013: If α is convex then $\#\mathcal{P}_s \geq 2$.
- Liu-Zhang'2022: If α is DC and p = 2 then $\#P_s \ge 2$.

Theorem 1. (Abreu-Liu-M.'2022)

Let α be any contact form on S^{2n+1} invariant under the \mathbb{Z}_p -action induced by ψ . Then $\#\mathcal{P}_s \geq 1$.

- 4 同 ト 4 ヨ ト 4 ヨ ト

Theorem 1. (Abreu-Liu-M.'2022)

Let α be any contact form on S^{2n+1} invariant under the \mathbb{Z}_p -action induced by ψ . Then $\#\mathcal{P}_s \geq 1$.

• It generalizes Rabinowitz (p=1) and Bähni (p even).

Theorem 1. (Abreu-Liu-M.'2022)

Let α be any contact form on S^{2n+1} invariant under the \mathbb{Z}_p -action induced by ψ . Then $\#\mathcal{P}_s \geq 1$.

• It generalizes Rabinowitz (p=1) and Bähni (p even).

Theorem 2. (Abreu-Liu-M.'2022)

Let α be a **dynamically convex** contact form on S^{2n+1} invariant under the \mathbb{Z}_p -action induced by ψ . Then $\#\mathcal{P}_s \geq 2$.

イロト イヨト イヨト イヨト

Theorem 1. (Abreu-Liu-M.'2022)

Let α be any contact form on S^{2n+1} invariant under the \mathbb{Z}_p -action induced by ψ . Then $\#\mathcal{P}_s \geq 1$.

• It generalizes Rabinowitz (p=1) and Bähni (p even).

Theorem 2. (Abreu-Liu-M.'2022)

Let α be a **dynamically convex** contact form on S^{2n+1} invariant under the \mathbb{Z}_p -action induced by ψ . Then $\#\mathcal{P}_s \geq 2$.

• It generalizes Zhang (α convex) and Liu-Zhang (p=2).

Preliminaries Symplectic homology Equivariant symplectic homology Lusternik-Schnirelmann theory Mean index and end of the proof

Preliminaries

 Let β be the contact form on L²ⁿ⁺¹_p(ℓ₀,...,ℓ_n) induced by α. We have a bijection between simple symmetric closed orbits of α and simple closed orbits of β whose homotopy classes are generators of π₁(L²ⁿ⁺¹_p(ℓ₀,...,ℓ_n)).

イロン イヨン イヨン イヨン

Preliminaries Symplectic homology Equivariant symplectic homology Lusternik-Schnirelmann theory Mean index and end of the proof

Preliminaries

- Let β be the contact form on L²ⁿ⁺¹_p(ℓ₀,...,ℓ_n) induced by α. We have a bijection between simple symmetric closed orbits of α and simple closed orbits of β whose homotopy classes are generators of π₁(L²ⁿ⁺¹_p(ℓ₀,...,ℓ_n)).
- Therefore, it is enough to show that given a generator a of π₁(L²ⁿ⁺¹_p(ℓ₀,...,ℓ_n)) there are one/two simple closed orbits of β with homotopy class a.

Preliminaries Symplectic homology Equivariant symplectic homology Lusternik-Schnirelmann theory Mean index and end of the proof

Preliminaries

- Let β be the contact form on L²ⁿ⁺¹_p(ℓ₀,...,ℓ_n) induced by α. We have a bijection between simple symmetric closed orbits of α and simple closed orbits of β whose homotopy classes are generators of π₁(L²ⁿ⁺¹_p(ℓ₀,...,ℓ_n)).
- Therefore, it is enough to show that given a generator a of π₁(L²ⁿ⁺¹_p(ℓ₀,...,ℓ_n)) there are one/two simple closed orbits of β with homotopy class a.
- To find these orbits we will use equivariant symplectic homology of orbifolds and Lusternik-Schnirelmann theory (to find two).

・ロン ・回と ・ヨン・

Preliminaries Symplectic homology Equivariant symplectic homology Lusternik-Schnirelmann theory Mean index and end of the proof

Symplectic homology of the filling

Suppose that M admits a strong symplectic filling (W,ω) such that ω is exact and c₁(TW) is torsion.

Preliminaries Symplectic homology Equivariant symplectic homology Lusternik-Schnirelmann theory Mean index and end of the proof

Symplectic homology of the filling

- Suppose that M admits a strong symplectic filling (W, ω) such that ω is exact and $c_1(TW)$ is torsion.
- Then one can consider the symplectic cohomology of the filling SH^{*}(W) with rational coefficients.

Preliminaries Symplectic homology Equivariant symplectic homology Lusternik-Schnirelmann theory Mean index and end of the proof

Symplectic homology of the filling

- Suppose that M admits a strong symplectic filling (W, ω) such that ω is exact and $c_1(TW)$ is torsion.
- Then one can consider the symplectic cohomology of the filling SH^{*}(W) with rational coefficients.
- It is obtained as the direct limit of Floer cohomologies of a suitable sequence of Hamiltonians on W. Such Floer cohomologies have an action filtration that allows us to define the positive symplectic cohomology SH^{*}₊(W).

・ロン ・回と ・ヨン ・ヨン

Preliminaries Symplectic homology Equivariant symplectic homology Lusternik-Schnirelmann theory Mean index and end of the proof

Symplectic homology of the filling

- Suppose that M admits a strong symplectic filling (W, ω) such that ω is exact and $c_1(TW)$ is torsion.
- Then one can consider the symplectic cohomology of the filling SH^{*}(W) with rational coefficients.
- It is obtained as the direct limit of Floer cohomologies of a suitable sequence of Hamiltonians on W. Such Floer cohomologies have an action filtration that allows us to define the positive symplectic cohomology SH^{*}₊(W).
- These homologies fit into the exact triangle

イロト イヨト イヨト イヨト

Preliminaries Symplectic homology Equivariant symplectic homology Lusternik-Schnirelmann theory Mean index and end of the proof

• Recently, this construction was generalized to orbifold fillings *W* by Gironella-Zhou.

イロン イヨン イヨン イヨン

æ

 Basic background The problem A refinement of the problem Results
 Preliminaries Symplectic homology

 Lusternik-Schnirelmann theory
 Lusternik-Schnirelmann theory

 Idea of the proof of the theorems
 Mean index and end of the proof

- Recently, this construction was generalized to orbifold fillings *W* by Gironella-Zhou.
- The corresponding symplectic cohomology groups fit into the exact triangle

where $H^*_{CR}(W; \mathbb{Q})$ is the Chen-Ruan cohomology of W.

イロト イポト イヨト イヨト

 Basic background The problem A refinement of the problem Results
 Preliminaries Symplectic homology

 Lusternik-Schnirelmann theory
 Lusternik-Schnirelmann theory

 Idea of the proof of the theorems
 Mean index and end of the proof

- Recently, this construction was generalized to orbifold fillings *W* by Gironella-Zhou.
- The corresponding symplectic cohomology groups fit into the exact triangle

where $H^*_{CR}(W; \mathbb{Q})$ is the Chen-Ruan cohomology of W.

• The Chen-Ruan cohomology encodes information about the singularities of the orbifold.

イロト イポト イヨト イヨト

 Basic background The problem
 Preliminaries

 A refinement of the problem Results
 Symplectic homology

 Lusternik-Schnirelmann theory
 Lusternik-Schnirelmann theory

 Idea of the proof of the theorems
 Mean index and end of the proof

- Recently, this construction was generalized to orbifold fillings *W* by Gironella-Zhou.
- The corresponding symplectic cohomology groups fit into the exact triangle

where $H^*_{CR}(W; \mathbb{Q})$ is the Chen-Ruan cohomology of W.

- The Chen-Ruan cohomology encodes information about the singularities of the orbifold.
- In general it has a rational grading.

イロト イポト イラト イラト

Preliminaries Symplectic homology Equivariant symplectic homology Lusternik-Schnirelmann theory Mean index and end of the proof

Example

• Example: $L_{\rho}^{2n+1}(\ell_0, \ldots, \ell_n)$ has an orbifold filling given by \mathbb{C}^{n+1}/G , where $G \subset U(n+1)$, is the subgroup generated by ψ isomorphic to \mathbb{Z}_{ρ} .

イロン イヨン イヨン イヨン

Preliminaries Symplectic homology Equivariant symplectic homology Lusternik-Schnirelmann theory Mean index and end of the proof

Example

- Example: $L_p^{2n+1}(\ell_0, \ldots, \ell_n)$ has an orbifold filling given by \mathbb{C}^{n+1}/G , where $G \subset U(n+1)$, is the subgroup generated by ψ isomorphic to \mathbb{Z}_p .
- Gironella-Zhou: $SH^*(\mathbb{C}^{n+1}/G) = 0$.

イロン イヨン イヨン イヨン

Preliminaries Symplectic homology Equivariant symplectic homology Lusternik-Schnirelmann theory Mean index and end of the proof

Example

- Example: $L_p^{2n+1}(\ell_0, \ldots, \ell_n)$ has an orbifold filling given by \mathbb{C}^{n+1}/G , where $G \subset U(n+1)$, is the subgroup generated by ψ isomorphic to \mathbb{Z}_p .
- Gironella-Zhou: $SH^*(\mathbb{C}^{n+1}/G) = 0$.
- Therefore, from the previous exact triangle, $SH^*_+(\mathbb{C}^{n+1}/G) \simeq H^{*+1}_{CR}(\mathbb{C}^{n+1}/G;\mathbb{Q}).$

・ロン ・回と ・ヨン ・ヨン

Preliminaries Symplectic homology Equivariant symplectic homology Lusternik-Schnirelmann theory Mean index and end of the proof

Example

- Example: $L_p^{2n+1}(\ell_0, \ldots, \ell_n)$ has an orbifold filling given by \mathbb{C}^{n+1}/G , where $G \subset U(n+1)$, is the subgroup generated by ψ isomorphic to \mathbb{Z}_p .
- Gironella-Zhou: $SH^*(\mathbb{C}^{n+1}/G) = 0$.
- Therefore, from the previous exact triangle, $SH^*_+(\mathbb{C}^{n+1}/G) \simeq H^{*+1}_{CR}(\mathbb{C}^{n+1}/G;\mathbb{Q}).$
- We have that

$$H^*_{CR}(\mathbb{C}^n/G;\mathbb{Q}) = \bigoplus_{k=0}^{p-1} \mathbb{Q}[-2\{k\ell_i/p\}],$$

where $\{x\} = x - \lfloor x \rfloor$.

・ロン ・回と ・ヨン ・ヨン

Preliminaries Symplectic homology Equivariant symplectic homology Lusternik-Schnirelmann theory Mean index and end of the proof

Example

- Example: $L_p^{2n+1}(\ell_0, \ldots, \ell_n)$ has an orbifold filling given by \mathbb{C}^{n+1}/G , where $G \subset U(n+1)$, is the subgroup generated by ψ isomorphic to \mathbb{Z}_p .
- Gironella-Zhou: $SH^*(\mathbb{C}^{n+1}/G) = 0$.
- Therefore, from the previous exact triangle, $SH^*_+(\mathbb{C}^{n+1}/G) \simeq H^{*+1}_{CR}(\mathbb{C}^{n+1}/G;\mathbb{Q}).$
- We have that

$$H^*_{CR}(\mathbb{C}^n/G;\mathbb{Q}) = \bigoplus_{k=0}^{p-1} \mathbb{Q}[-2\{k\ell_i/p\}],$$

where $\{x\} = x - \lfloor x \rfloor$.

• Then, using the isomorphism $SH^*_+(\mathbb{C}^{n+1}/G) \simeq H^{*+1}_{CR}(\mathbb{C}^{n+1}/G;\mathbb{Q})$, we can show that α must have a closed orbit with homotopy class *a*.

15/20

Preliminaries Symplectic homology Equivariant symplectic homology Lusternik-Schnirelmann theory Mean index and end of the proof

Symplectic homology of the symplectization

Let (M²ⁿ⁺¹, ξ) be a closed contact manifold such that c₁(ξ) is torsion.

Preliminaries Symplectic homology Equivariant symplectic homology Lusternik-Schnirelmann theory Mean index and end of the proof

Symplectic homology of the symplectization

- Let (M²ⁿ⁺¹, ξ) be a closed contact manifold such that c₁(ξ) is torsion.
- Suppose that M admits an index admissible non-degenerate contact form, that is, a non-degenerate contact form such that every contractible closed orbit γ satisfies μ_{CZ}(γ) > 3 − n. It is easy to see that L²ⁿ⁺¹_p(ℓ₀,...,ℓ_n) admits such contact form.

Preliminaries Symplectic homology Equivariant symplectic homology Lusternik-Schnirelmann theory Mean index and end of the proof

Symplectic homology of the symplectization

- Let (M²ⁿ⁺¹, ξ) be a closed contact manifold such that c₁(ξ) is torsion.
- Suppose that M admits an index admissible non-degenerate contact form, that is, a non-degenerate contact form such that every contractible closed orbit γ satisfies μ_{CZ}(γ) > 3 − n. It is easy to see that L²ⁿ⁺¹_p(ℓ₀,...,ℓ_n) admits such contact form.
- Then one can define the symplectic cohomology of the symplectization SH^{*}(*M*). This is a construction due to Bourgeois-Oancea.

Preliminaries Symplectic homology Equivariant symplectic homology Lusternik-Schnirelmann theory Mean index and end of the proof

Symplectic homology of the symplectization

- Let (M²ⁿ⁺¹, ξ) be a closed contact manifold such that c₁(ξ) is torsion.
- Suppose that M admits an index admissible non-degenerate contact form, that is, a non-degenerate contact form such that every contractible closed orbit γ satisfies μ_{CZ}(γ) > 3 − n. It is easy to see that L²ⁿ⁺¹_p(ℓ₀,...,ℓ_n) admits such contact form.
- Then one can define the symplectic cohomology of the symplectization SH^{*}(*M*). This is a construction due to Bourgeois-Oancea.
- Claim: If M has an (orbifold) filling W then $SH^*(M) \simeq SH^*_+(W)$.

・ロン ・回と ・ヨン ・ヨン

Preliminaries Symplectic homology Equivariant symplectic homology Lusternik-Schnirelmann theory Mean index and end of the proof

Equivariant symplectic homology of the symplectization

 Let (M²ⁿ⁺¹, ξ) be a closed contact manifold such that c₁(ξ) is torsion. Assume that M admits an index admissible non-degenerate contact form.

・ロト ・日本 ・モート ・モート

Preliminaries Symplectic homology Equivariant symplectic homology Lusternik-Schnirelmann theory Mean index and end of the proof

Equivariant symplectic homology of the symplectization

- Let (M²ⁿ⁺¹, ξ) be a closed contact manifold such that c₁(ξ) is torsion. Assume that M admits an index admissible non-degenerate contact form.
- Then one can consider the equivariant symplectic cohomology of the symplectization ESH^{*}(*M*). It has a filtration given by the free homotopy classes of *M*.

Preliminaries Symplectic homology Equivariant symplectic homology Lusternik-Schnirelmann theory Mean index and end of the proof

Equivariant symplectic homology of the symplectization

- Let (M²ⁿ⁺¹, ξ) be a closed contact manifold such that c₁(ξ) is torsion. Assume that M admits an index admissible non-degenerate contact form.
- Then one can consider the equivariant symplectic cohomology of the symplectization $\text{ESH}^*(M)$. It has a filtration given by the free homotopy classes of M.
- The equivariance here is related to the S¹-symmetry of the action functional for autonomous Hamiltonians.

 Basic background
 Preliminaries

 The problem
 Symplectic homology

 A refinement of the problem
 Equivariant symplectic homology

 Results
 Lusternik-Schnirelmann theory

 Idea of the proof of the theorems
 Mean index and end of the proof

 Bourgeois-Oancea: SH*(M) and ESH*(M) are related by the exact triangle

where D is the so called shift operator.

イロト イポト イヨト イヨト

 Basic background
 Preliminaries

 The problem
 Symplectic homology

 A refinement of the problem
 Equivariant symplectic homology

 Results
 Lusternik-Schnirelmann theory

 Idea of the proof of the theorems
 Mean index and end of the proof

 Bourgeois-Oancea: SH*(M) and ESH*(M) are related by the exact triangle

where D is the so called shift operator.

• Consider, from now on, the case where $M = L_{\rho}^{2n+1}(\ell_0, \ldots, \ell_n)$ with the filling $W = \mathbb{C}^{n+1}/G$.

イロト イポト イヨト イヨト

 Basic background
 Preliminaries

 The problem
 Symplectic homology

 A refinement of the problem
 Equivariant symplectic homology

 Results
 Lusternik-Schnirelmann theory

 Idea of the proof of the theorems
 Mean index and end of the proof

 Bourgeois-Oancea: SH*(M) and ESH*(M) are related by the exact triangle

where D is the so called shift operator.

- Consider, from now on, the case where $M = L_p^{2n+1}(\ell_0, \dots, \ell_n)$ with the filling $W = \mathbb{C}^{n+1}/G$.
- We have that $SH^*(M) \simeq SH^*_+(W) \simeq H^{*+1}_{CR}(W; \mathbb{Q}).$

・ロト ・日本 ・モート ・モート

 Basic background The problem
 Preliminaries

 A refinement of the problem Results
 Symplectic homology

 Lusternik-Schnirelmann theory
 Lusternik-Schnirelmann theory

 Idea of the proof of the theorems
 Mean index and end of the proof

 Bourgeois-Oancea: SH*(M) and ESH*(M) are related by the exact triangle

where D is the so called shift operator.

- Consider, from now on, the case where $M = L_{\rho}^{2n+1}(\ell_0, \dots, \ell_n)$ with the filling $W = \mathbb{C}^{n+1}/G$.
- We have that $SH^*(M) \simeq SH^*_+(W) \simeq H^{*+1}_{CR}(W; \mathbb{Q}).$
- Thus, since H^k_{CR}(W; Q) = 0 ∀k ≥ 2n + 2, we have that D is an isomorphism whenever * ≥ 2n + 1.

イロト イポト イラト イラト

Preliminaries Symplectic homology Equivariant symplectic homology Lusternik-Schnirelmann theory Mean index and end of the proof

D respects the homotopy filtration of ESH*(M). Therefore,
 D : ESH^{*,a}(M) → ESH^{*+2,a}(M) is an iso ∀* ≥ 2n.

æ

 Basic background The problem
 Preliminaries

 A refinement of the problem Results
 Equivariant symplectic homology Lusternik-Schnirelmann theory

 Idea of the proof of the theorems
 Mean index and end of the proof

- D respects the homotopy filtration of ESH*(M). Therefore,
 D : ESH^{*,a}(M) → ESH^{*+2,a}(M) is an iso ∀* ≥ 2n.
- Claim: $\mathsf{ESH}^{k_a+2j,a}(M) \simeq \mathbb{Q} \ \forall j \in \mathbb{N}_0$, where
 - $k_a = \min\{j \in \mathbb{Q}; \mathsf{ESH}^{j,a}(M) \neq 0\}.$

イロト イポト イヨト イヨト

э

 Basic background The problem
 Preliminaries

 A refinement of the problem Result
 Symplectic homology

 Lusternik-Schnirelmann theory
 Lusternik-schnirelmann theory

- D respects the homotopy filtration of ESH*(M). Therefore,
 D : ESH^{*,a}(M) → ESH^{*+2,a}(M) is an iso ∀* ≥ 2n.
- Claim: $\text{ESH}^{k_a+2j,a}(M) \simeq \mathbb{Q} \ \forall j \in \mathbb{N}_0$, where $k_a = \min\{j \in \mathbb{Q}; \text{ESH}^{j,a}(M) \neq 0\}.$
- Assume that there exist finitely many periodic orbits with homotopy class *a* (otherwise, there is nothing to prove).

イロト イポト イヨト イヨト

 Basic background
 Preliminaries

 The problem
 Symplectic homology

 A refinement of the problem
 Equivariant symplectic homology

 Results
 Lusternik-Schnitelmann theory

 Idea of the proof of the theorems
 Mean index and end of the proof

- *D* respects the homotopy filtration of $\text{ESH}^*(M)$. Therefore, $D : \text{ESH}^{*,a}(M) \to \text{ESH}^{*+2,a}(M)$ is an iso $\forall * \ge 2n$.
- Claim: $\text{ESH}^{k_a+2j,a}(M) \simeq \mathbb{Q} \ \forall j \in \mathbb{N}_0$, where $k_a = \min\{j \in \mathbb{Q}; \ \text{ESH}^{j,a}(M) \neq 0\}.$
- Assume that there exist finitely many periodic orbits with homotopy class *a* (otherwise, there is nothing to prove).
- Then, using Lusternik-Schnirelmann theory in Floer homology, developed by Ginzburg-Gurel, we can conclude that there is an injective map $\psi : \mathbb{N}_0 \to P^a$, where P^a is the set of closed orbits of β with homotopy class *a*, such that if $\gamma_j = \psi(j)$ then $|\mu_{\mathsf{CZ}}(\gamma_j) (k_a + 2j + 2k)| \leq n$ for every $j \in \mathbb{N}_0$ and some $k \geq 0$.

・ロン ・回と ・ヨン ・ヨン

 Basic background The problem
 Preliminaries

 A refinement of the problem Results
 Symplectic homology Equivariant symplectic homology Lusternik-Schnitelmann theory

 Idea of the proof of the theorems
 Mean index and end of the proof

- *D* respects the homotopy filtration of $\text{ESH}^*(M)$. Therefore, $D : \text{ESH}^{*,a}(M) \to \text{ESH}^{*+2,a}(M)$ is an iso $\forall * \ge 2n$.
- Claim: $\text{ESH}^{k_a+2j,a}(M) \simeq \mathbb{Q} \ \forall j \in \mathbb{N}_0$, where $k_a = \min\{j \in \mathbb{Q}; \text{ESH}^{j,a}(M) \neq 0\}.$
- Assume that there exist finitely many periodic orbits with homotopy class *a* (otherwise, there is nothing to prove).
- Then, using Lusternik-Schnirelmann theory in Floer homology, developed by Ginzburg-Gurel, we can conclude that there is an injective map $\psi : \mathbb{N}_0 \to P^a$, where P^a is the set of closed orbits of β with homotopy class a, such that if $\gamma_j = \psi(j)$ then $|\mu_{\mathsf{CZ}}(\gamma_j) (k_a + 2j + 2k)| \leq n$ for every $j \in \mathbb{N}_0$ and some $k \geq 0$.
- It follows from this that the density $\delta := \lim_{m \to \infty} \frac{1}{m} \#\{i; \mu_{CZ}(\gamma_i) \le m\}$ equals 1/2.

・ロン ・回と ・ヨン ・ヨン

 Basic background The problem
 Preliminaries

 A refinement of the problem Results
 Symplectic homology Equivariant symplectic homology Lusternik-Schnitelmann theory

 Idea of the proof of the theorems
 Mean index and end of the proof

- *D* respects the homotopy filtration of $\text{ESH}^*(M)$. Therefore, $D: \text{ESH}^{*,a}(M) \to \text{ESH}^{*+2,a}(M)$ is an iso $\forall * \ge 2n$.
- Claim: $\text{ESH}^{k_a+2j,a}(M) \simeq \mathbb{Q} \ \forall j \in \mathbb{N}_0$, where $k_a = \min\{j \in \mathbb{Q}; \text{ESH}^{j,a}(M) \neq 0\}.$
- Assume that there exist finitely many periodic orbits with homotopy class *a* (otherwise, there is nothing to prove).
- Then, using Lusternik-Schnirelmann theory in Floer homology, developed by Ginzburg-Gurel, we can conclude that there is an injective map $\psi : \mathbb{N}_0 \to P^a$, where P^a is the set of closed orbits of β with homotopy class *a*, such that if $\gamma_j = \psi(j)$ then $|\mu_{\mathsf{CZ}}(\gamma_j) (k_a + 2j + 2k)| \leq n$ for every $j \in \mathbb{N}_0$ and some $k \geq 0$.
- It follows from this that the density $\delta := \lim_{m \to \infty} \frac{1}{m} \#\{i; \mu_{CZ}(\gamma_i) \le m\}$ equals 1/2.
- Then, using an argument similar to Ekeland-Hofer, we can prove Theorem 2.

 Basic background
 Preliminaries

 The problem
 Symplectic homology

 A refinement of the problem
 Equivariant symplectic homology

 Results
 Lusternik-Schnirelmann theory

 Idea of the proof of the theorems
 Mean index and end of the proof

• More precisely, assume, by contradiction, that β has only one simple closed orbit $\bar{\gamma}$ with homotopy class *a*.

イロン イヨン イヨン イヨン

æ

Basic background	Preliminaries
The problem	Symplectic homology
A refinement of the problem	Equivariant symplectic homology
Results	Lusternik-Schnirelmann theory
Idea of the proof of the theorems	Mean index and end of the proof

- The mean index of $\bar{\gamma}$ is $\Delta(\bar{\gamma}) := \lim_{j \to \infty} \frac{1}{j} \mu_{\mathsf{CZ}}(\bar{\gamma}^j).$

- 4 回 2 - 4 □ 2 - 4 □

æ

Basic background	Preliminaries
The problem	Symplectic homology
A refinement of the problem	Equivariant symplectic homology
Results	Lusternik-Schnirelmann theory
Idea of the proof of the theorems	Mean index and end of the proof

- More precisely, assume, by contradiction, that β has only one simple closed orbit γ
 with homotopy class a.
- The mean index of $\bar{\gamma}$ is $\Delta(\bar{\gamma}) := \lim_{j \to \infty} \frac{1}{j} \mu_{\mathsf{CZ}}(\bar{\gamma}^j).$
- Consider the sequence of numbers $\mu_{CZ}(\bar{\gamma}^{jp+1}), j \in \mathbb{N}_0$ (recall that p is the order of $\pi_1(M)$ so that $P^a = \{\bar{\gamma}^{jp+1}; j \in \mathbb{N}_0\}$).

- 4 同 6 4 日 6 4 日 6

Basic background	Preliminaries
The problem	Symplectic homology
A refinement of the problem	Equivariant symplectic homology
Results	Lusternik-Schnirelmann theory
Idea of the proof of the theorems	Mean index and end of the proof

- More precisely, assume, by contradiction, that β has only one simple closed orbit γ
 with homotopy class a.
- The mean index of $\bar{\gamma}$ is $\Delta(\bar{\gamma}) := \lim_{j \to \infty} \frac{1}{j} \mu_{\mathsf{CZ}}(\bar{\gamma}^j).$
- Consider the sequence of numbers $\mu_{CZ}(\bar{\gamma}^{jp+1})$, $j \in \mathbb{N}_0$ (recall that p is the order of $\pi_1(M)$ so that $P^a = \{\bar{\gamma}^{jp+1}; j \in \mathbb{N}_0\}$).
- We have that $|\mu_{\mathsf{CZ}}(ar\gamma^{jp+1}) (jp+1)\Delta(ar\gamma)| \leq n \; orall j \in \mathbb{N}_0.$

・ 同 ト ・ ヨ ト ・ ヨ ト

Basic background	Preliminaries
The problem	Symplectic homology
A refinement of the problem	Equivariant symplectic homology
Results	Lusternik-Schnirelmann theory
Idea of the proof of the theorems	Mean index and end of the proof

- More precisely, assume, by contradiction, that β has only one simple closed orbit γ
 with homotopy class a.
- The mean index of $\bar{\gamma}$ is $\Delta(\bar{\gamma}) := \lim_{j \to \infty} \frac{1}{j} \mu_{\mathsf{CZ}}(\bar{\gamma}^j).$
- Consider the sequence of numbers $\mu_{CZ}(\bar{\gamma}^{jp+1})$, $j \in \mathbb{N}_0$ (recall that p is the order of $\pi_1(M)$ so that $P^a = \{\bar{\gamma}^{jp+1}; j \in \mathbb{N}_0\}$).
- We have that $|\mu_{\mathsf{CZ}}(ar\gamma^{jp+1}) (jp+1)\Delta(ar\gamma)| \leq n \; orall j \in \mathbb{N}_0.$
- Thus, the density $\overline{\delta} := \lim_{m \to \infty} \frac{1}{m} \{j; \mu_{\mathsf{CZ}}(\overline{\gamma}^{jp+1}) \leq m\}$ equals $1/(p\Delta(\overline{\gamma}))$.

(4月) (4日) (4日)

Basic background	Preliminaries
The problem	Symplectic homology
A refinement of the problem	Equivariant symplectic homology
Results	Lusternik-Schnirelmann theory
Idea of the proof of the theorems	Mean index and end of the proof

- More precisely, assume, by contradiction, that β has only one simple closed orbit γ
 with homotopy class a.
- The mean index of $\bar{\gamma}$ is $\Delta(\bar{\gamma}) := \lim_{j \to \infty} \frac{1}{j} \mu_{\mathsf{CZ}}(\bar{\gamma}^j).$
- Consider the sequence of numbers $\mu_{CZ}(\bar{\gamma}^{jp+1})$, $j \in \mathbb{N}_0$ (recall that p is the order of $\pi_1(M)$ so that $P^a = \{\bar{\gamma}^{jp+1}; j \in \mathbb{N}_0\}$).
- We have that $|\mu_{\mathsf{CZ}}(\bar{\gamma}^{jp+1}) (jp+1)\Delta(\bar{\gamma})| \leq n \; \forall j \in \mathbb{N}_0.$
- Thus, the density $\overline{\delta} := \lim_{m \to \infty} \frac{1}{m} \{j; \mu_{\mathsf{CZ}}(\overline{\gamma}^{jp+1}) \leq m\}$ equals $1/(p\Delta(\overline{\gamma}))$.
- Now, note that each point in the sequence μ_{CZ}(γ_i) belongs to the sequence μ_{CZ}(γ̄^{jp+1}) and, by the injectivity of ψ, no point in the sequence μ_{CZ}(γ̄^{jp+1}) can be used twice. Thus δ ≤ δ̄, that is, 1/2 ≤ 1/(pΔ(γ̄)) ⇔ p/2 ≤ 1/Δ(γ̄).

Basic background	Preliminaries
The problem	Symplectic homology
A refinement of the problem	Equivariant symplectic homology
Results	Lusternik-Schnirelmann theory
Idea of the proof of the theorems	Mean index and end of the proof

- More precisely, assume, by contradiction, that β has only one simple closed orbit γ
 with homotopy class a.
- The mean index of $\bar{\gamma}$ is $\Delta(\bar{\gamma}) := \lim_{j \to \infty} \frac{1}{j} \mu_{\mathsf{CZ}}(\bar{\gamma}^j).$
- Consider the sequence of numbers $\mu_{CZ}(\bar{\gamma}^{jp+1})$, $j \in \mathbb{N}_0$ (recall that p is the order of $\pi_1(M)$ so that $P^a = \{\bar{\gamma}^{jp+1}; j \in \mathbb{N}_0\}$).
- We have that $|\mu_{\mathsf{CZ}}(\bar{\gamma}^{jp+1}) (jp+1)\Delta(\bar{\gamma})| \leq n \; \forall j \in \mathbb{N}_0.$
- Thus, the density $\overline{\delta} := \lim_{m \to \infty} \frac{1}{m} \{j; \mu_{\mathsf{CZ}}(\overline{\gamma}^{jp+1}) \leq m\}$ equals $1/(p\Delta(\overline{\gamma})).$
- Now, note that each point in the sequence $\mu_{CZ}(\gamma_i)$ belongs to the sequence $\mu_{CZ}(\bar{\gamma}^{jp+1})$ and, by the injectivity of ψ , no point in the sequence $\mu_{CZ}(\bar{\gamma}^{jp+1})$ can be used twice. Thus $\delta \leq \bar{\delta}$, that is, $1/2 \leq 1/(p\Delta(\bar{\gamma})) \iff p/2 \leq 1/\Delta(\bar{\gamma})$.
- But, by DC of α , $\Delta(\bar{\gamma}^p) > 2 \iff p\Delta(\bar{\gamma}) > 2 \iff 1/\Delta(\bar{\gamma}) < p/2$, contradiction.

æ