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(R2n+2, ω), ω =
∑

i dqi ∧ dpi = dλ where
λ = 1

2

∑
i (qidpi − pidqi ).

Consider the unit sphere S2n+1 ⊂ R2n+2 and the (cooriented)
standard contact structure ξ = ker λ|S2n+1 .

A contact form on S2n+1 supporting ξ is a 1-form α given by
f λ|S2n+1 for some positive function f : S2n+1 → R. Its Reeb
vector field is the unique vector field Rα s.t. ιRαdα = 0 and
α(Rα) = 1.

We want to study the dynamics of Reeb flows on the standard
contact sphere (S2n+1, ξ).
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The problem

Basic dynamical objects: periodic orbits.

Denote by P the set of simple periodic orbits of the Reeb
flow of α.

Multiplicity problem:

Consider a contact form on the standard contact sphere S2n+1. Is
it true that #P ≥ n + 1?

Note that irrational ellipsoids in R2n+2 carry precisely n + 1
periodic orbits. (An irrational ellipsoid is given by∑

i ri‖zi‖2 = 1 with r0, ..., rn rationally indepedent.)

This is a very hard question in Hamiltonian Dynamics.
Notice that we are not supposing any generic condition here.
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General results

Without any assumption on α we have the following results:

Rabinowitz’1978: #P ≥ 1 for any n.

Cristofaro Gardiner-Hutchings’2016,
Ginzburg-Hein-Hryniewicz-M.’2015, Liu-Long’2016 (using a
result proved in GHHM): #P ≥ 2 for n = 1.

In higher dimensions this question is widely open.
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Results assuming convexity

There is a bijection between contact
forms α on (S2n+1, ξ) and starshaped
hypersurfaces Σα in R2n+2:

α = f λ|S2n+1 ←→ Σα = {
√
f (x)x ; x ∈ S2n+1}.

We say that α is convex if Σα bounds a strictly convex
subset.

When α is convex the following is known:

Ekeland-Hofer’1987: #P ≥ 2.

Long-Zhu’2002: #P ≥ bn+1
2 c+ 1 (bxc = sup{k ∈ N; k ≤ x}).

Wang’2016: #P ≥ dn+1
2 e+ 1 (dxe = inf{k ∈ N; k ≥ x}).
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Dynamical convexity

The hypothesis of convexity is not natural
from the point of view of Contact
Topology since it is not a condition
invariant by contactomorphisms.

An alternative definition is dynamical convexity.

Definition. (Hofer-Wysocki-Zehnder) A contact form α on
S2n+1 is dynamically convex if µCZ(γ) ≥ n + 2 for every
closed Reeb orbit γ, where µCZ(γ) denotes the
Conley-Zehnder index of γ.

It is not hard to see that if α is convex then it is DC.

Dynamical convexity is more general than convexity: there are
DC contact forms that are not contactomorphic to convex
ones (Chaidez-Edtmair, Abreu-M., Ginzburg-M.).
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Results assuming dynamical convexity

Assuming that α is DC we have the following results:

Abreu-M.’2017: #P ≥ 2.

Ginzburg-Gurel’2020 and Duan-Liu’2017 independently:
#P ≥ dn+1

2 e+ 1.
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A refinement of the problem

Given an integer p ≥ 1, consider the Zp-action on S2n+1,
regarded as a subset of Cn+1, generated by the map

ψ(z0, . . . , zn) =

(
e

2πi`0
p z0, e

2πi`1
p z1, . . . , e

2πi`n
p zn

)
,

where `0, . . . , `n are integers called the weights of the action.
Such an action is free when the weights are coprime with p
(that we will assume from now on) and in that case we have a
lens space obtained as the quotient of S2n+1 by the action of
Zp. We denote this lens space by L2n+1

p (`0, `1, . . . , `n).

Consider a contact form α on S2n+1 invariant under this
action.

A closed orbit γ of α is symmetric if ψ(γ(R)) = γ(R).
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Let α be a contact form on S2n+1 invariant under this
Zp-action.

Let Ps be the set of simple symmetric closed orbits of α.
Clearly, #P ≥ #Ps .

A refinement of the multiplicity problem:

Is it true that #Ps ≥ n + 1?

When p = 1 then obviuosly Ps = P and the previous problem
means that #P ≥ n + 1.

Note that irrational ellipsoids in R2n+2 are invariant under this
Zp-action (for any weights and p) and carry precisely n + 1
periodic orbits which are all symmetric.
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Note that irrational ellipsoids in R2n+2 are invariant under this
Zp-action (for any weights and p) and carry precisely n + 1
periodic orbits which are all symmetric.
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Girardi’1984: If p = 2 (so that the corresponding lens space is
RP2n+1) we have for any α that #Ps ≥ 1.

Bähni’2021: If p is even then #Ps ≥ 1 for any α.

Zhang’2013: If α is convex then #Ps ≥ 2.

Liu-Zhang’2022: If α is DC and p = 2 then #Ps ≥ 2.
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Theorem 1. (Abreu-Liu-M.’2022)

Let α be any contact form on S2n+1 invariant under the Zp-action
induced by ψ. Then #Ps ≥ 1.

It generalizes Rabinowitz (p=1) and Bähni (p even).

Theorem 2. (Abreu-Liu-M.’2022)

Let α be a dynamically convex contact form on S2n+1 invariant
under the Zp-action induced by ψ. Then #Ps ≥ 2.

It generalizes Zhang (α convex) and Liu-Zhang (p=2).
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Preliminaries

Let β be the contact form on L2n+1
p (`0, . . . , `n) induced by α.

We have a bijection between simple symmetric closed orbits of
α and simple closed orbits of β whose homotopy classes are
generators of π1(L2n+1

p (`0, . . . , `n)).

Therefore, it is enough to show that given a generator a of
π1(L2n+1

p (`0, . . . , `n)) there are one/two simple closed orbits
of β with homotopy class a.

To find these orbits we will use equivariant symplectic
homology of orbifolds and Lusternik-Schnirelmann theory (to
find two).
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Symplectic homology of the filling
Suppose that M admits a strong symplectic filling (W , ω)
such that ω is exact and c1(TW ) is torsion.

Then one can consider the symplectic cohomology of the
filling SH∗(W ) with rational coefficients.

It is obtained as the direct limit of Floer cohomologies of a
suitable sequence of Hamiltonians on W . Such Floer
cohomologies have an action filtration that allows us to define
the positive symplectic cohomology SH∗+(W ).

These homologies fit into the exact triangle

H∗(W ;Q) // SH∗(W )

xx
SH∗+(W )

[1]

ff
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Recently, this construction was generalized to orbifold fillings
W by Gironella-Zhou.

The corresponding symplectic cohomology groups fit into the
exact triangle

H∗CR(W ;Q) // SH∗(W )

xx
SH∗+(W )

[1]

ff

where H∗CR(W ;Q) is the Chen-Ruan cohomology of W .

The Chen-Ruan cohomology encodes information about the
singularities of the orbifold.

In general it has a rational grading.
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Example
Example: L2n+1

p (`0, . . . , `n) has an orbifold filling given by
Cn+1/G , where G ⊂ U(n + 1), is the subgroup generated by
ψ isomorphic to Zp.

Gironella-Zhou: SH∗(Cn+1/G ) = 0.

Therefore, from the previous exact triangle,
SH∗+(Cn+1/G ) ' H∗+1

CR (Cn+1/G ;Q).

We have that

H∗CR(Cn/G ;Q) =

p−1⊕
k=0

Q[−2{k`i/p}],

where {x} = x − bxc.
Then, using the isomorphism
SH∗+(Cn+1/G ) ' H∗+1

CR (Cn+1/G ;Q), we can show that α
must have a closed orbit with homotopy class a.
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Symplectic homology of the symplectization

Let (M2n+1, ξ) be a closed contact manifold such that c1(ξ) is
torsion.

Suppose that M admits an index admissible non-degenerate
contact form, that is, a non-degenerate contact form such that
every contractible closed orbit γ satisfies µCZ(γ) > 3− n. It is
easy to see that L2n+1

p (`0, . . . , `n) admits such contact form.

Then one can define the symplectic cohomology of the
symplectization SH∗(M). This is a construction due to
Bourgeois-Oancea.

Claim: If M has an (orbifold) filling W then
SH∗(M) ' SH∗+(W ).
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Equivariant symplectic homology of the symplectization

Let (M2n+1, ξ) be a closed contact manifold such that c1(ξ) is
torsion. Assume that M admits an index admissible
non-degenerate contact form.

Then one can consider the equivariant symplectic cohomology
of the symplectization ESH∗(M). It has a filtration given by
the free homotopy classes of M.

The equivariance here is related to the S1-symmetry of the
action functional for autonomous Hamiltonians.
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Bourgeois-Oancea: SH∗(M) and ESH∗(M) are related by the
exact triangle

SH∗+2(M)
[−1] // ESH∗(M)

Dxx
ESH∗+2(M)

gg

where D is the so called shift operator.

Consider, from now on, the case where M = L2n+1
p (`0, . . . , `n)

with the filling W = Cn+1/G .

We have that SH∗(M) ' SH∗+(W ) ' H∗+1
CR (W ;Q).

Thus, since Hk
CR(W ;Q) = 0 ∀k ≥ 2n + 2, we have that D is

an isomorphism whenever ∗ ≥ 2n + 1.
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D respects the homotopy filtration of ESH∗(M). Therefore,
D : ESH∗,a(M)→ ESH∗+2,a(M) is an iso ∀∗ ≥ 2n.

Claim: ESHka+2j ,a(M) ' Q ∀j ∈ N0, where
ka = min{j ∈ Q; ESHj ,a(M) 6= 0}.
Assume that there exist finitely many periodic orbits with
homotopy class a (otherwise, there is nothing to prove).
Then, using Lusternik-Schnirelmann theory in Floer homology,
developed by Ginzburg-Gurel, we can conclude that there is an
injective map ψ : N0 → Pa, where Pa is the set of closed
orbits of β with homotopy class a, such that if γj = ψ(j) then
|µCZ(γj)− (ka + 2j + 2k)| ≤ n for every j ∈ N0 and some
k ≥ 0.
It follows from this that the density
δ := limm→∞

1
m#{i ; µCZ(γi ) ≤ m} equals 1/2.

Then, using an argument similar to Ekeland-Hofer, we can
prove Theorem 2.
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More precisely, assume, by contradiction, that β has only one
simple closed orbit γ̄ with homotopy class a.

The mean index of γ̄ is ∆(γ̄) := limj→∞
1
j µCZ(γ̄j).

Consider the sequence of numbers µCZ(γ̄jp+1), j ∈ N0 (recall
that p is the order of π1(M) so that Pa = {γ̄jp+1; j ∈ N0}).

We have that |µCZ(γ̄jp+1)− (jp + 1)∆(γ̄)| ≤ n ∀j ∈ N0.

Thus, the density δ̄ := limm→∞
1
m{j ; µCZ(γ̄jp+1) ≤ m} equals

1/(p∆(γ̄)).

Now, note that each point in the sequence µCZ(γi ) belongs to
the sequence µCZ(γ̄jp+1) and, by the injectivity of ψ, no point
in the sequence µCZ(γ̄jp+1) can be used twice. Thus δ ≤ δ̄,
that is, 1/2 ≤ 1/(p∆(γ̄))⇐⇒ p/2 ≤ 1/∆(γ̄).

But, by DC of α, ∆(γ̄p) > 2 ⇐⇒ p∆(γ̄) > 2 ⇐⇒
1/∆(γ̄) < p/2, contradiction.
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