Symmetric closed Reeb orbits on the sphere

Leonardo Macarini
(Joint work with Miguel Abreu and Hui Liu)

Basic setup

- $\left(\mathbb{R}^{2 n+2}, \omega\right), \omega=\sum_{i} d q_{i} \wedge d p_{i}=d \lambda$ where $\lambda=\frac{1}{2} \sum_{i}\left(q_{i} d p_{i}-p_{i} d q_{i}\right)$.

Basic setup

- $\left(\mathbb{R}^{2 n+2}, \omega\right), \omega=\sum_{i} d q_{i} \wedge d p_{i}=d \lambda$ where $\lambda=\frac{1}{2} \sum_{i}\left(q_{i} d p_{i}-p_{i} d q_{i}\right)$.
- Consider the unit sphere $S^{2 n+1} \subset \mathbb{R}^{2 n+2}$ and the (cooriented) standard contact structure $\xi=\left.\operatorname{ker} \lambda\right|_{S^{2 n+1}}$.

Basic setup

- $\left(\mathbb{R}^{2 n+2}, \omega\right), \omega=\sum_{i} d q_{i} \wedge d p_{i}=d \lambda$ where $\lambda=\frac{1}{2} \sum_{i}\left(q_{i} d p_{i}-p_{i} d q_{i}\right)$.
- Consider the unit sphere $S^{2 n+1} \subset \mathbb{R}^{2 n+2}$ and the (cooriented) standard contact structure $\xi=\left.\operatorname{ker} \lambda\right|_{S^{2 n+1}}$.
- A contact form on $S^{2 n+1}$ supporting ξ is a 1-form α given by $\left.f \lambda\right|_{S^{2 n+1}}$ for some positive function $f: S^{2 n+1} \rightarrow \mathbb{R}$. Its Reeb vector field is the unique vector field R_{α} s.t. $\iota_{R_{\alpha}} d \alpha=0$ and $\alpha\left(R_{\alpha}\right)=1$.

Basic setup

- $\left(\mathbb{R}^{2 n+2}, \omega\right), \omega=\sum_{i} d q_{i} \wedge d p_{i}=d \lambda$ where $\lambda=\frac{1}{2} \sum_{i}\left(q_{i} d p_{i}-p_{i} d q_{i}\right)$.
- Consider the unit sphere $S^{2 n+1} \subset \mathbb{R}^{2 n+2}$ and the (cooriented) standard contact structure $\xi=\left.\operatorname{ker} \lambda\right|_{S^{2 n+1}}$.
- A contact form on $S^{2 n+1}$ supporting ξ is a 1-form α given by $\left.f \lambda\right|_{S^{2 n+1}}$ for some positive function $f: S^{2 n+1} \rightarrow \mathbb{R}$. Its Reeb vector field is the unique vector field R_{α} s.t. $\iota_{R_{\alpha}} d \alpha=0$ and $\alpha\left(R_{\alpha}\right)=1$.
- We want to study the dynamics of Reeb flows on the standard contact sphere ($S^{2 n+1}, \xi$).

The problem

- Basic dynamical objects: periodic orbits.

The problem

- Basic dynamical objects: periodic orbits.
- Denote by \mathcal{P} the set of simple periodic orbits of the Reeb flow of α.

The problem

- Basic dynamical objects: periodic orbits.
- Denote by \mathcal{P} the set of simple periodic orbits of the Reeb flow of α.

Multiplicity problem:

Consider a contact form on the standard contact sphere $S^{2 n+1}$. Is it true that $\# \mathcal{P} \geq n+1$?

The problem

- Basic dynamical objects: periodic orbits.
- Denote by \mathcal{P} the set of simple periodic orbits of the Reeb flow of α.

Multiplicity problem:

Consider a contact form on the standard contact sphere $S^{2 n+1}$. Is it true that $\# \mathcal{P} \geq n+1$?

- Note that irrational ellipsoids in $\mathbb{R}^{2 n+2}$ carry precisely $n+1$ periodic orbits. (An irrational ellipsoid is given by $\sum_{i} r_{i}\left\|z_{i}\right\|^{2}=1$ with r_{0}, \ldots, r_{n} rationally indepedent.)

The problem

- Basic dynamical objects: periodic orbits.
- Denote by \mathcal{P} the set of simple periodic orbits of the Reeb flow of α.

Multiplicity problem:

Consider a contact form on the standard contact sphere $S^{2 n+1}$. Is it true that $\# \mathcal{P} \geq n+1$?

- Note that irrational ellipsoids in $\mathbb{R}^{2 n+2}$ carry precisely $n+1$ periodic orbits. (An irrational ellipsoid is given by $\sum_{i} r_{i}\left\|z_{i}\right\|^{2}=1$ with r_{0}, \ldots, r_{n} rationally indepedent.)
- This is a very hard question in Hamiltonian Dynamics. Notice that we are not supposing any generic condition here.

General results

- Without any assumption on α we have the following results:

General results

- Without any assumption on α we have the following results:
- Rabinowitz'1978: \#P ≥ 1 for any n.

General results

- Without any assumption on α we have the following results:
- Rabinowitz'1978: $\# \mathcal{P} \geq 1$ for any n.
- Cristofaro Gardiner-Hutchings'2016, Ginzburg-Hein-Hryniewicz-M.'2015, Liu-Long'2016 (using a result proved in GHHM): $\# \mathcal{P} \geq 2$ for $n=1$.

```
General results
Results assuming convexity
Dynamical convexity
Results assuming dynamical convexity
```


General results

- Without any assumption on α we have the following results:
- Rabinowitz'1978: $\# \mathcal{P} \geq 1$ for any n.
- Cristofaro Gardiner-Hutchings'2016, Ginzburg-Hein-Hryniewicz-M.'2015, Liu-Long'2016 (using a result proved in GHHM): $\# \mathcal{P} \geq 2$ for $n=1$.
- In higher dimensions this question is widely open.

Results assuming convexity

- There is a bijection between contact forms α on $\left(S^{2 n+1}, \xi\right)$ and starshaped hypersurfaces Σ_{α} in $\mathbb{R}^{2 n+2}$:
$\alpha=\left.f \lambda\right|_{S^{2 n+1}} \longleftrightarrow \Sigma_{\alpha}=\left\{\sqrt{f(x)} x ; x \in S^{2 n+1}\right\}$.

Results assuming convexity

- There is a bijection between contact forms α on $\left(S^{2 n+1}, \xi\right)$ and starshaped hypersurfaces Σ_{α} in $\mathbb{R}^{2 n+2}$:
$\alpha=\left.f \lambda\right|_{S^{2 n+1}} \longleftrightarrow \Sigma_{\alpha}=\left\{\sqrt{f(x)} x ; x \in S^{2 n+1}\right\}$.

- We say that α is convex if Σ_{α} bounds a strictly convex subset.

Results assuming convexity

- There is a bijection between contact forms α on $\left(S^{2 n+1}, \xi\right)$ and starshaped hypersurfaces Σ_{α} in $\mathbb{R}^{2 n+2}$:
$\alpha=\left.f \lambda\right|_{S^{2 n+1}} \longleftrightarrow \Sigma_{\alpha}=\left\{\sqrt{f(x)} x ; x \in S^{2 n+1}\right\}$.

- We say that α is convex if Σ_{α} bounds a strictly convex subset.
- When α is convex the following is known:

Results assuming convexity

- There is a bijection between contact forms α on $\left(S^{2 n+1}, \xi\right)$ and starshaped hypersurfaces Σ_{α} in $\mathbb{R}^{2 n+2}$:
$\alpha=\left.f \lambda\right|_{S^{2 n+1}} \longleftrightarrow \Sigma_{\alpha}=\left\{\sqrt{f(x)} x ; x \in S^{2 n+1}\right\}$.

- We say that α is convex if Σ_{α} bounds a strictly convex subset.
- When α is convex the following is known:
- Ekeland-Hofer'1987: \#P ≥ 2.

Results assuming convexity

- There is a bijection between contact forms α on $\left(S^{2 n+1}, \xi\right)$ and starshaped hypersurfaces Σ_{α} in $\mathbb{R}^{2 n+2}$:
$\alpha=\left.f \lambda\right|_{S^{2 n+1}} \longleftrightarrow \Sigma_{\alpha}=\left\{\sqrt{f(x)} x ; x \in S^{2 n+1}\right\}$.

- We say that α is convex if Σ_{α} bounds a strictly convex subset.
- When α is convex the following is known:
- Ekeland-Hofer'1987: \#P ≥ 2.
- Long-Zhu'2002: $\# \mathcal{P} \geq\left\lfloor\frac{n+1}{2}\right\rfloor+1(\lfloor x\rfloor=\sup \{k \in \mathbb{N} ; k \leq x\})$.

Results assuming convexity

- There is a bijection between contact forms α on $\left(S^{2 n+1}, \xi\right)$ and starshaped hypersurfaces Σ_{α} in $\mathbb{R}^{2 n+2}$:
$\alpha=\left.f \lambda\right|_{S^{2 n+1}} \longleftrightarrow \Sigma_{\alpha}=\left\{\sqrt{f(x)} x ; x \in S^{2 n+1}\right\}$.

- We say that α is convex if Σ_{α} bounds a strictly convex subset.
- When α is convex the following is known:
- Ekeland-Hofer'1987: \#P ≥ 2.
- Long-Zhu'2002: $\# \mathcal{P} \geq\left\lfloor\frac{n+1}{2}\right\rfloor+1(\lfloor x\rfloor=\sup \{k \in \mathbb{N} ; k \leq x\})$.
- Wang'2016: $\# \mathcal{P} \geq\left\lceil\frac{n+1}{2}\right\rceil+1(\lceil x\rceil=\inf \{k \in \mathbb{N} ; k \geq x\})$.

Dynamical convexity

- The hypothesis of convexity is not natural from the point of view of Contact Topology since it is not a condition invariant by contactomorphisms.

Dynamical convexity

- The hypothesis of convexity is not natural from the point of view of Contact Topology since it is not a condition invariant by contactomorphisms.

- An alternative definition is dynamical convexity.

Dynamical convexity

- The hypothesis of convexity is not natural from the point of view of Contact Topology since it is not a condition invariant by contactomorphisms.

- An alternative definition is dynamical convexity.
- Definition. (Hofer-Wysocki-Zehnder) A contact form α on $S^{2 n+1}$ is dynamically convex if $\mu_{\mathrm{CZ}}(\gamma) \geq n+2$ for every closed Reeb orbit γ, where $\mu_{\text {CZ }}(\gamma)$ denotes the Conley-Zehnder index of γ.

Dynamical convexity

- The hypothesis of convexity is not natural from the point of view of Contact Topology since it is not a condition invariant by contactomorphisms.

- An alternative definition is dynamical convexity.
- Definition. (Hofer-Wysocki-Zehnder) A contact form α on $S^{2 n+1}$ is dynamically convex if $\mu_{C Z}(\gamma) \geq n+2$ for every closed Reeb orbit γ, where $\mu_{\text {CZ }}(\gamma)$ denotes the Conley-Zehnder index of γ.
- It is not hard to see that if α is convex then it is DC.

Dynamical convexity

- The hypothesis of convexity is not natural from the point of view of Contact Topology since it is not a condition invariant by contactomorphisms.

- An alternative definition is dynamical convexity.
- Definition. (Hofer-Wysocki-Zehnder) A contact form α on $S^{2 n+1}$ is dynamically convex if $\mu_{C Z}(\gamma) \geq n+2$ for every closed Reeb orbit γ, where $\mu_{\text {CZ }}(\gamma)$ denotes the Conley-Zehnder index of γ.
- It is not hard to see that if α is convex then it is DC.
- Dynamical convexity is more general than convexity: there are DC contact forms that are not contactomorphic to convex ones (Chaidez-Edtmair, Abreu-M., Ginzburg-M.).

Results assuming dynamical convexity

- Assuming that α is DC we have the following results:

Results assuming dynamical convexity

- Assuming that α is DC we have the following results:
- Abreu-M.'2017: \#P ≥ 2.

Results assuming dynamical convexity

- Assuming that α is DC we have the following results:
- Abreu-M.'2017: \#P ≥ 2.
- Ginzburg-Gurel'2020 and Duan-Liu'2017 independently: $\# \mathcal{P} \geq\left\lceil\frac{n+1}{2}\right\rceil+1$.

A refinement of the problem

- Given an integer $p \geq 1$, consider the $\mathbb{Z}_{p^{\text {-action }} \text { on }} S^{2 n+1}$, regarded as a subset of \mathbb{C}^{n+1}, generated by the map

$$
\psi\left(z_{0}, \ldots, z_{n}\right)=\left(e^{\frac{2 \pi i \ell_{0}}{p}} z_{0}, e^{\frac{2 \pi i \ell_{1}}{p}} z_{1}, \ldots, e^{\frac{2 \pi i \ell_{n}}{p}} z_{n}\right)
$$

where $\ell_{0}, \ldots, \ell_{n}$ are integers called the weights of the action. Such an action is free when the weights are coprime with p (that we will assume from now on) and in that case we have a lens space obtained as the quotient of $S^{2 n+1}$ by the action of \mathbb{Z}_{p}. We denote this lens space by $L_{p}^{2 n+1}\left(\ell_{0}, \ell_{1}, \ldots, \ell_{n}\right)$.

A refinement of the problem

- Given an integer $p \geq 1$, consider the $\mathbb{Z}_{p^{\text {-action }} \text { on }} S^{2 n+1}$, regarded as a subset of \mathbb{C}^{n+1}, generated by the map

$$
\psi\left(z_{0}, \ldots, z_{n}\right)=\left(e^{\frac{2 \pi i \ell_{0}}{\rho}} z_{0}, e^{\frac{2 \pi i i_{1}}{\rho}} z_{1}, \ldots, e^{\frac{2 \pi i i_{n}}{\rho}} z_{n}\right),
$$

where $\ell_{0}, \ldots, \ell_{n}$ are integers called the weights of the action. Such an action is free when the weights are coprime with p (that we will assume from now on) and in that case we have a lens space obtained as the quotient of $S^{2 n+1}$ by the action of \mathbb{Z}_{p}. We denote this lens space by $L_{p}^{2 n+1}\left(\ell_{0}, \ell_{1}, \ldots, \ell_{n}\right)$.

- Consider a contact form α on $S^{2 n+1}$ invariant under this action.

A refinement of the problem

- Given an integer $p \geq 1$, consider the $\mathbb{Z}_{p^{\text {-action }} \text { on }} S^{2 n+1}$, regarded as a subset of \mathbb{C}^{n+1}, generated by the map

$$
\psi\left(z_{0}, \ldots, z_{n}\right)=\left(e^{\frac{2 \pi i \ell_{0}}{\rho}} z_{0}, e^{\frac{2 \pi i i_{1}}{\rho}} z_{1}, \ldots, e^{\frac{2 \pi i i_{n}}{\rho}} z_{n}\right),
$$

where $\ell_{0}, \ldots, \ell_{n}$ are integers called the weights of the action. Such an action is free when the weights are coprime with p (that we will assume from now on) and in that case we have a lens space obtained as the quotient of $S^{2 n+1}$ by the action of \mathbb{Z}_{p}. We denote this lens space by $L_{p}^{2 n+1}\left(\ell_{0}, \ell_{1}, \ldots, \ell_{n}\right)$.

- Consider a contact form α on $S^{2 n+1}$ invariant under this action.
- A closed orbit γ of α is symmetric if $\psi(\gamma(\mathbb{R}))=\gamma(\mathbb{R})$.
- Let α be a contact form on $S^{2 n+1}$ invariant under this \mathbb{Z}_{p}-action.
- Let α be a contact form on $S^{2 n+1}$ invariant under this \mathbb{Z}_{p}-action.
- Let \mathcal{P}_{s} be the set of simple symmetric closed orbits of α. Clearly, $\# \mathcal{P} \geq \# \mathcal{P}_{s}$.
- Let α be a contact form on $S^{2 n+1}$ invariant under this \mathbb{Z}_{p}-action.
- Let \mathcal{P}_{s} be the set of simple symmetric closed orbits of α. Clearly, $\# \mathcal{P} \geq \# \mathcal{P}_{s}$.

A refinement of the multiplicity problem:

Is it true that $\# \mathcal{P}_{s} \geq n+1$?

- Let α be a contact form on $S^{2 n+1}$ invariant under this \mathbb{Z}_{p}-action.
- Let \mathcal{P}_{s} be the set of simple symmetric closed orbits of α. Clearly, $\# \mathcal{P} \geq \# \mathcal{P}_{s}$.

A refinement of the multiplicity problem:

Is it true that $\# \mathcal{P}_{s} \geq n+1$?

- When $p=1$ then obviuosly $\mathcal{P}_{s}=\mathcal{P}$ and the previous problem means that $\# \mathcal{P} \geq n+1$.
- Let α be a contact form on $S^{2 n+1}$ invariant under this \mathbb{Z}_{p}-action.
- Let \mathcal{P}_{s} be the set of simple symmetric closed orbits of α. Clearly, $\# \mathcal{P} \geq \# \mathcal{P}_{s}$.

A refinement of the multiplicity problem:

Is it true that $\# \mathcal{P}_{s} \geq n+1$?

- When $p=1$ then obviuosly $\mathcal{P}_{s}=\mathcal{P}$ and the previous problem means that $\# \mathcal{P} \geq n+1$.
- Note that irrational ellipsoids in $\mathbb{R}^{2 n+2}$ are invariant under this \mathbb{Z}_{p}-action (for any weights and p) and carry precisely $n+1$ periodic orbits which are all symmetric.

Known results

- Girardi'1984: If $p=2$ (so that the corresponding lens space is $\mathbb{R P}^{2 n+1}$) we have for any α that $\# \mathcal{P}_{s} \geq 1$.

Known results

- Girardi'1984: If $p=2$ (so that the corresponding lens space is $\mathbb{R P}^{2 n+1}$) we have for any α that $\# \mathcal{P}_{s} \geq 1$.
- Bähni'2021: If p is even then $\# \mathcal{P}_{s} \geq 1$ for any α.

Known results

- Girardi'1984: If $p=2$ (so that the corresponding lens space is $\mathbb{R P}^{2 n+1}$) we have for any α that $\# \mathcal{P}_{s} \geq 1$.
- Bähni'2021: If p is even then $\# \mathcal{P}_{s} \geq 1$ for any α.
- Zhang'2013: If α is convex then $\# \mathcal{P}_{s} \geq 2$.

Known results

- Girardi'1984: If $p=2$ (so that the corresponding lens space is $\mathbb{R P}^{2 n+1}$) we have for any α that $\# \mathcal{P}_{s} \geq 1$.
- Bähni'2021: If p is even then $\# \mathcal{P}_{s} \geq 1$ for any α.
- Zhang'2013: If α is convex then $\# \mathcal{P}_{s} \geq 2$.
- Liu-Zhang'2022: If α is DC and $p=2$ then $\# \mathcal{P}_{s} \geq 2$.

Theorem 1. (Abreu-Liu-M.'2022)

Let α be any contact form on $S^{2 n+1}$ invariant under the \mathbb{Z}_{p}-action induced by ψ. Then $\# \mathcal{P}_{s} \geq 1$.

Theorem 1. (Abreu-Liu-M.'2022)

Let α be any contact form on $S^{2 n+1}$ invariant under the \mathbb{Z}_{p}-action induced by ψ. Then $\# \mathcal{P}_{s} \geq 1$.

- It generalizes Rabinowitz ($p=1$) and Bähni (p even).

Theorem 1. (Abreu-Liu-M.'2022)

Let α be any contact form on $S^{2 n+1}$ invariant under the \mathbb{Z}_{p}-action induced by ψ. Then $\# \mathcal{P}_{s} \geq 1$.

- It generalizes Rabinowitz ($\mathrm{p}=1$) and Bähni (p even).

Theorem 2. (Abreu-Liu-M.'2022)

Let α be a dynamically convex contact form on $S^{2 n+1}$ invariant under the \mathbb{Z}_{p}-action induced by ψ. Then $\# \mathcal{P}_{s} \geq 2$.

Theorem 1. (Abreu-Liu-M.'2022)

Let α be any contact form on $S^{2 n+1}$ invariant under the \mathbb{Z}_{p}-action induced by ψ. Then $\# \mathcal{P}_{s} \geq 1$.

- It generalizes Rabinowitz ($\mathrm{p}=1$) and Bähni (p even).

Theorem 2. (Abreu-Liu-M.'2022)

Let α be a dynamically convex contact form on $S^{2 n+1}$ invariant under the \mathbb{Z}_{p}-action induced by ψ. Then $\# \mathcal{P}_{s} \geq 2$.

- It generalizes Zhang (α convex) and Liu-Zhang ($\mathrm{p}=2$).

Preliminaries

- Let β be the contact form on $L_{p}^{2 n+1}\left(\ell_{0}, \ldots, \ell_{n}\right)$ induced by α. We have a bijection between simple symmetric closed orbits of α and simple closed orbits of β whose homotopy classes are generators of $\pi_{1}\left(L_{p}^{2 n+1}\left(\ell_{0}, \ldots, \ell_{n}\right)\right)$.

Preliminaries

- Let β be the contact form on $L_{p}^{2 n+1}\left(\ell_{0}, \ldots, \ell_{n}\right)$ induced by α. We have a bijection between simple symmetric closed orbits of α and simple closed orbits of β whose homotopy classes are generators of $\pi_{1}\left(L_{p}^{2 n+1}\left(\ell_{0}, \ldots, \ell_{n}\right)\right)$.
- Therefore, it is enough to show that given a generator a of $\pi_{1}\left(L_{p}^{2 n+1}\left(\ell_{0}, \ldots, \ell_{n}\right)\right)$ there are one/two simple closed orbits of β with homotopy class a.

Preliminaries

- Let β be the contact form on $L_{p}^{2 n+1}\left(\ell_{0}, \ldots, \ell_{n}\right)$ induced by α. We have a bijection between simple symmetric closed orbits of α and simple closed orbits of β whose homotopy classes are generators of $\pi_{1}\left(L_{p}^{2 n+1}\left(\ell_{0}, \ldots, \ell_{n}\right)\right)$.
- Therefore, it is enough to show that given a generator a of $\pi_{1}\left(L_{p}^{2 n+1}\left(\ell_{0}, \ldots, \ell_{n}\right)\right)$ there are one/two simple closed orbits of β with homotopy class a.
- To find these orbits we will use equivariant symplectic homology of orbifolds and Lusternik-Schnirelmann theory (to find two).

Symplectic homology of the filling

- Suppose that M admits a strong symplectic filling (W, ω) such that ω is exact and $c_{1}(T W)$ is torsion.

Symplectic homology of the filling

- Suppose that M admits a strong symplectic filling (W, ω) such that ω is exact and $c_{1}(T W)$ is torsion.
- Then one can consider the symplectic cohomology of the filling $\mathrm{SH}^{*}(W)$ with rational coefficients.

Symplectic homology of the filling

- Suppose that M admits a strong symplectic filling (W, ω) such that ω is exact and $c_{1}(T W)$ is torsion.
- Then one can consider the symplectic cohomology of the filling $\mathrm{SH}^{*}(W)$ with rational coefficients.
- It is obtained as the direct limit of Floer cohomologies of a suitable sequence of Hamiltonians on W. Such Floer cohomologies have an action filtration that allows us to define the positive symplectic cohomology $\mathrm{SH}_{+}^{*}(W)$.

Symplectic homology of the filling

- Suppose that M admits a strong symplectic filling (W, ω) such that ω is exact and $c_{1}(T W)$ is torsion.
- Then one can consider the symplectic cohomology of the filling $\mathrm{SH}^{*}(W)$ with rational coefficients.
- It is obtained as the direct limit of Floer cohomologies of a suitable sequence of Hamiltonians on W. Such Floer cohomologies have an action filtration that allows us to define the positive symplectic cohomology $\mathrm{SH}_{+}^{*}(W)$.
- These homologies fit into the exact triangle

- Recently, this construction was generalized to orbifold fillings W by Gironella-Zhou.
- Recently, this construction was generalized to orbifold fillings W by Gironella-Zhou.
- The corresponding symplectic cohomology groups fit into the exact triangle

where $H_{C R}^{*}(W ; \mathbb{Q})$ is the Chen-Ruan cohomology of W.
- Recently, this construction was generalized to orbifold fillings W by Gironella-Zhou.
- The corresponding symplectic cohomology groups fit into the exact triangle

where $H_{C R}^{*}(W ; \mathbb{Q})$ is the Chen-Ruan cohomology of W.
- The Chen-Ruan cohomology encodes information about the singularities of the orbifold.
- Recently, this construction was generalized to orbifold fillings W by Gironella-Zhou.
- The corresponding symplectic cohomology groups fit into the exact triangle

where $H_{C R}^{*}(W ; \mathbb{Q})$ is the Chen-Ruan cohomology of W.
- The Chen-Ruan cohomology encodes information about the singularities of the orbifold.
- In general it has a rational grading.

Basic background
 The problem
 A refinement of the problem
 Results

Idea of the proof of the theorems

Example

- Example: $L_{p}^{2 n+1}\left(\ell_{0}, \ldots, \ell_{n}\right)$ has an orbifold filling given by \mathbb{C}^{n+1} / G, where $G \subset \mathrm{U}(n+1)$, is the subgroup generated by ψ isomorphic to \mathbb{Z}_{p}.

Basic background
 The problem
 A refinement of the problem
 Results
 Idea of the proof of the theorems

Example

- Example: $L_{p}^{2 n+1}\left(\ell_{0}, \ldots, \ell_{n}\right)$ has an orbifold filling given by \mathbb{C}^{n+1} / G, where $G \subset \mathrm{U}(n+1)$, is the subgroup generated by ψ isomorphic to \mathbb{Z}_{p}.
- Gironella-Zhou: $\mathrm{SH}^{*}\left(\mathbb{C}^{n+1} / G\right)=0$.

Example

- Example: $L_{p}^{2 n+1}\left(\ell_{0}, \ldots, \ell_{n}\right)$ has an orbifold filling given by \mathbb{C}^{n+1} / G, where $G \subset \mathrm{U}(n+1)$, is the subgroup generated by ψ isomorphic to \mathbb{Z}_{p}.
- Gironella-Zhou: $\mathrm{SH}^{*}\left(\mathbb{C}^{n+1} / G\right)=0$.
- Therefore, from the previous exact triangle, $\mathrm{SH}_{+}^{*}\left(\mathbb{C}^{n+1} / G\right) \simeq H_{C R}^{*+1}\left(\mathbb{C}^{n+1} / G ; \mathbb{Q}\right)$.

Example

- Example: $L_{p}^{2 n+1}\left(\ell_{0}, \ldots, \ell_{n}\right)$ has an orbifold filling given by \mathbb{C}^{n+1} / G, where $G \subset \mathrm{U}(n+1)$, is the subgroup generated by ψ isomorphic to \mathbb{Z}_{p}.
- Gironella-Zhou: $\mathrm{SH}^{*}\left(\mathbb{C}^{n+1} / G\right)=0$.
- Therefore, from the previous exact triangle, $\mathrm{SH}_{+}^{*}\left(\mathbb{C}^{n+1} / G\right) \simeq H_{C R}^{*+1}\left(\mathbb{C}^{n+1} / G ; \mathbb{Q}\right)$.
- We have that

$$
H_{C R}^{*}\left(\mathbb{C}^{n} / G ; \mathbb{Q}\right)=\bigoplus_{k=0}^{p-1} \mathbb{Q}\left[-2\left\{k \ell_{i} / p\right\}\right]
$$

where $\{x\}=x-\lfloor x\rfloor$.

Example

- Example: $L_{p}^{2 n+1}\left(\ell_{0}, \ldots, \ell_{n}\right)$ has an orbifold filling given by \mathbb{C}^{n+1} / G, where $G \subset \mathrm{U}(n+1)$, is the subgroup generated by ψ isomorphic to \mathbb{Z}_{p}.
- Gironella-Zhou: $\mathrm{SH}^{*}\left(\mathbb{C}^{n+1} / G\right)=0$.
- Therefore, from the previous exact triangle, $\mathrm{SH}_{+}^{*}\left(\mathbb{C}^{n+1} / G\right) \simeq H_{C R}^{*+1}\left(\mathbb{C}^{n+1} / G ; \mathbb{Q}\right)$.
- We have that

$$
H_{C R}^{*}\left(\mathbb{C}^{n} / G ; \mathbb{Q}\right)=\bigoplus_{k=0}^{p-1} \mathbb{Q}\left[-2\left\{k \ell_{i} / p\right\}\right]
$$

where $\{x\}=x-\lfloor x\rfloor$.

- Then, using the isomorphism
$\mathrm{SH}_{+}^{*}\left(\mathbb{C}^{n+1} / G\right) \simeq H_{C R}^{*+1}\left(\mathbb{C}^{n+1} / G ; \mathbb{Q}\right)$, we can show that α must have a closed orbit with homotopy class a.

Symplectic homology of the symplectization

- Let $\left(M^{2 n+1}, \xi\right)$ be a closed contact manifold such that $c_{1}(\xi)$ is torsion.

Symplectic homology of the symplectization

- Let $\left(M^{2 n+1}, \xi\right)$ be a closed contact manifold such that $c_{1}(\xi)$ is torsion.
- Suppose that M admits an index admissible non-degenerate contact form, that is, a non-degenerate contact form such that every contractible closed orbit γ satisfies $\mu_{C Z}(\gamma)>3-n$. It is easy to see that $L_{p}^{2 n+1}\left(\ell_{0}, \ldots, \ell_{n}\right)$ admits such contact form.

Symplectic homology of the symplectization

- Let $\left(M^{2 n+1}, \xi\right)$ be a closed contact manifold such that $c_{1}(\xi)$ is torsion.
- Suppose that M admits an index admissible non-degenerate contact form, that is, a non-degenerate contact form such that every contractible closed orbit γ satisfies $\mu_{C Z}(\gamma)>3-n$. It is easy to see that $L_{p}^{2 n+1}\left(\ell_{0}, \ldots, \ell_{n}\right)$ admits such contact form.
- Then one can define the symplectic cohomology of the symplectization $\mathrm{SH}^{*}(M)$. This is a construction due to Bourgeois-Oancea.

Symplectic homology of the symplectization

- Let $\left(M^{2 n+1}, \xi\right)$ be a closed contact manifold such that $c_{1}(\xi)$ is torsion.
- Suppose that M admits an index admissible non-degenerate contact form, that is, a non-degenerate contact form such that every contractible closed orbit γ satisfies $\mu_{C Z}(\gamma)>3-n$. It is easy to see that $L_{p}^{2 n+1}\left(\ell_{0}, \ldots, \ell_{n}\right)$ admits such contact form.
- Then one can define the symplectic cohomology of the symplectization $\mathrm{SH}^{*}(M)$. This is a construction due to Bourgeois-Oancea.
- Claim: If M has an (orbifold) filling W then $\mathrm{SH}^{*}(M) \simeq \mathrm{SH}_{+}^{*}(W)$.

Equivariant symplectic homology of the symplectization

- Let $\left(M^{2 n+1}, \xi\right)$ be a closed contact manifold such that $c_{1}(\xi)$ is torsion. Assume that M admits an index admissible non-degenerate contact form.

Equivariant symplectic homology of the symplectization

- Let $\left(M^{2 n+1}, \xi\right)$ be a closed contact manifold such that $c_{1}(\xi)$ is torsion. Assume that M admits an index admissible non-degenerate contact form.
- Then one can consider the equivariant symplectic cohomology of the symplectization $\mathrm{ESH}^{*}(M)$. It has a filtration given by the free homotopy classes of M.

Equivariant symplectic homology of the symplectization

- Let $\left(M^{2 n+1}, \xi\right)$ be a closed contact manifold such that $c_{1}(\xi)$ is torsion. Assume that M admits an index admissible non-degenerate contact form.
- Then one can consider the equivariant symplectic cohomology of the symplectization $\mathrm{ESH}^{*}(M)$. It has a filtration given by the free homotopy classes of M.
- The equivariance here is related to the S^{1}-symmetry of the action functional for autonomous Hamiltonians.
- Bourgeois-Oancea: $\mathrm{SH}^{*}(M)$ and $\mathrm{ESH}^{*}(M)$ are related by the exact triangle

where D is the so called shift operator.
- Bourgeois-Oancea: $\mathrm{SH}^{*}(M)$ and $\mathrm{ESH}^{*}(M)$ are related by the exact triangle

where D is the so called shift operator.
- Consider, from now on, the case where $M=L_{p}^{2 n+1}\left(\ell_{0}, \ldots, \ell_{n}\right)$ with the filling $W=\mathbb{C}^{n+1} / G$.
- Bourgeois-Oancea: $\mathrm{SH}^{*}(M)$ and $\mathrm{ESH}^{*}(M)$ are related by the exact triangle

where D is the so called shift operator.
- Consider, from now on, the case where $M=L_{p}^{2 n+1}\left(\ell_{0}, \ldots, \ell_{n}\right)$ with the filling $W=\mathbb{C}^{n+1} / G$.
- We have that $\mathrm{SH}^{*}(M) \simeq \mathrm{SH}_{+}^{*}(W) \simeq H_{C R}^{*+1}(W ; \mathbb{Q})$.
- Bourgeois-Oancea: $\mathrm{SH}^{*}(M)$ and $\mathrm{ESH}^{*}(M)$ are related by the exact triangle

where D is the so called shift operator.
- Consider, from now on, the case where $M=L_{p}^{2 n+1}\left(\ell_{0}, \ldots, \ell_{n}\right)$ with the filling $W=\mathbb{C}^{n+1} / G$.
- We have that $\mathrm{SH}^{*}(M) \simeq \mathrm{SH}_{+}^{*}(W) \simeq H_{C R}^{*+1}(W ; \mathbb{Q})$.
- Thus, since $H_{C R}^{k}(W ; \mathbb{Q})=0 \forall k \geq 2 n+2$, we have that D is an isomorphism whenever $* \geq 2 n+1$.

Preliminaries
Symplectic homology
Equivariant symplectic homology
Lusternik-Schnirelmann theory
Mean index and end of the proof

- D respects the homotopy filtration of $\mathrm{ESH}^{*}(M)$. Therefore, $D: \mathrm{ESH}^{*, a}(M) \rightarrow \mathrm{ESH}^{*+2, a}(M)$ is an iso $\forall * \geq 2 n$.

Idea of the proof of the theorems

- D respects the homotopy filtration of $\mathrm{ESH}^{*}(M)$. Therefore, $D: \mathrm{ESH}^{*, a}(M) \rightarrow \mathrm{ESH}^{*+2, a}(M)$ is an iso $\forall * \geq 2 n$.
- Claim: $\mathrm{ESH}^{k_{a}+2 j, a}(M) \simeq \mathbb{Q} \forall j \in \mathbb{N}_{0}$, where $k_{a}=\min \left\{j \in \mathbb{Q} ; \mathrm{ESH}^{j, a}(M) \neq 0\right\}$.

Idea of the proof of the theorems

- D respects the homotopy filtration of $\mathrm{ESH}^{*}(M)$. Therefore, $D: \mathrm{ESH}^{*, a}(M) \rightarrow \mathrm{ESH}^{*+2, a}(M)$ is an iso $\forall * \geq 2 n$.
- Claim: $\mathrm{ESH}^{k_{a}+2 j, a}(M) \simeq \mathbb{Q} \forall j \in \mathbb{N}_{0}$, where $k_{a}=\min \left\{j \in \mathbb{Q} ; \operatorname{ESH}^{j, a}(M) \neq 0\right\}$.
- Assume that there exist finitely many periodic orbits with homotopy class a (otherwise, there is nothing to prove).
- D respects the homotopy filtration of $\mathrm{ESH}^{*}(M)$. Therefore, $D: \mathrm{ESH}^{*, a}(M) \rightarrow \mathrm{ESH}^{*+2, a}(M)$ is an iso $\forall * \geq 2 n$.
- Claim: $\mathrm{ESH}^{k_{a}+2 j, a}(M) \simeq \mathbb{Q} \forall j \in \mathbb{N}_{0}$, where $k_{a}=\min \left\{j \in \mathbb{Q} ; \operatorname{ESH}^{j, a}(M) \neq 0\right\}$.
- Assume that there exist finitely many periodic orbits with homotopy class a (otherwise, there is nothing to prove).
- Then, using Lusternik-Schnirelmann theory in Floer homology, developed by Ginzburg-Gurel, we can conclude that there is an injective map $\psi: \mathbb{N}_{0} \rightarrow P^{a}$, where P^{a} is the set of closed orbits of β with homotopy class a, such that if $\gamma_{j}=\psi(j)$ then $\left|\mu_{C Z}\left(\gamma_{j}\right)-\left(k_{a}+2 j+2 k\right)\right| \leq n$ for every $j \in \mathbb{N}_{0}$ and some $k \geq 0$.
- D respects the homotopy filtration of $\mathrm{ESH}^{*}(M)$. Therefore, $D: \mathrm{ESH}^{*, a}(M) \rightarrow \mathrm{ESH}^{*+2, a}(M)$ is an iso $\forall * \geq 2 n$.
- Claim: $\mathrm{ESH}^{k_{a}+2 j, a}(M) \simeq \mathbb{Q} \forall j \in \mathbb{N}_{0}$, where $k_{a}=\min \left\{j \in \mathbb{Q} ; \operatorname{ESH}^{j, a}(M) \neq 0\right\}$.
- Assume that there exist finitely many periodic orbits with homotopy class a (otherwise, there is nothing to prove).
- Then, using Lusternik-Schnirelmann theory in Floer homology, developed by Ginzburg-Gurel, we can conclude that there is an injective map $\psi: \mathbb{N}_{0} \rightarrow P^{a}$, where P^{a} is the set of closed orbits of β with homotopy class a, such that if $\gamma_{j}=\psi(j)$ then $\left|\mu_{C Z}\left(\gamma_{j}\right)-\left(k_{a}+2 j+2 k\right)\right| \leq n$ for every $j \in \mathbb{N}_{0}$ and some $k \geq 0$.
- It follows from this that the density $\delta:=\lim _{m \rightarrow \infty} \frac{1}{m} \#\left\{i ; \mu_{C Z}\left(\gamma_{i}\right) \leq m\right\}$ equals $1 / 2$.
- D respects the homotopy filtration of $\mathrm{ESH}^{*}(M)$. Therefore, $D: \mathrm{ESH}^{*, a}(M) \rightarrow \mathrm{ESH}^{*+2, a}(M)$ is an iso $\forall * \geq 2 n$.
- Claim: $\mathrm{ESH}^{k_{a}+2 j, a}(M) \simeq \mathbb{Q} \forall j \in \mathbb{N}_{0}$, where $k_{a}=\min \left\{j \in \mathbb{Q} ; \operatorname{ESH}^{j, a}(M) \neq 0\right\}$.
- Assume that there exist finitely many periodic orbits with homotopy class a (otherwise, there is nothing to prove).
- Then, using Lusternik-Schnirelmann theory in Floer homology, developed by Ginzburg-Gurel, we can conclude that there is an injective map $\psi: \mathbb{N}_{0} \rightarrow P^{a}$, where P^{a} is the set of closed orbits of β with homotopy class a, such that if $\gamma_{j}=\psi(j)$ then $\left|\mu_{C Z}\left(\gamma_{j}\right)-\left(k_{a}+2 j+2 k\right)\right| \leq n$ for every $j \in \mathbb{N}_{0}$ and some $k \geq 0$.
- It follows from this that the density $\delta:=\lim _{m \rightarrow \infty} \frac{1}{m} \#\left\{i ; \mu_{\mathrm{CZ}}\left(\gamma_{i}\right) \leq m\right\}$ equals $1 / 2$.
- Then, using an argument similar to Ekeland-Hofer, we can prove Theorem 2.
- More precisely, assume, by contradiction, that β has only one simple closed orbit $\bar{\gamma}$ with homotopy class a.
- More precisely, assume, by contradiction, that β has only one simple closed orbit $\bar{\gamma}$ with homotopy class a.
- The mean index of $\bar{\gamma}$ is $\Delta(\bar{\gamma}):=\lim _{j \rightarrow \infty} \frac{1}{j} \mu_{\mathrm{CZ}}\left(\bar{\gamma}^{j}\right)$.
- More precisely, assume, by contradiction, that β has only one simple closed orbit $\bar{\gamma}$ with homotopy class a.
- The mean index of $\bar{\gamma}$ is $\Delta(\bar{\gamma}):=\lim _{j \rightarrow \infty} \frac{1}{j} \mu_{\mathrm{CZ}}\left(\bar{\gamma}^{j}\right)$.
- Consider the sequence of numbers $\mu_{C Z}\left(\bar{\gamma}^{j p+1}\right), j \in \mathbb{N}_{0}$ (recall that p is the order of $\pi_{1}(M)$ so that $\left.P^{a}=\left\{\bar{\gamma}^{j p+1} ; j \in \mathbb{N}_{0}\right\}\right)$.
- More precisely, assume, by contradiction, that β has only one simple closed orbit $\bar{\gamma}$ with homotopy class a.
- The mean index of $\bar{\gamma}$ is $\Delta(\bar{\gamma}):=\lim _{j \rightarrow \infty} \frac{1}{j} \mu_{C Z}\left(\bar{\gamma}^{j}\right)$.
- Consider the sequence of numbers $\mu_{\mathrm{CZ}}\left(\bar{\gamma}^{j p+1}\right), j \in \mathbb{N}_{0}$ (recall that p is the order of $\pi_{1}(M)$ so that $\left.P^{a}=\left\{\bar{\gamma}^{j p+1} ; j \in \mathbb{N}_{0}\right\}\right)$.
- We have that $\left|\mu_{C Z}\left(\bar{\gamma}^{j p+1}\right)-(j p+1) \Delta(\bar{\gamma})\right| \leq n \forall j \in \mathbb{N}_{0}$.
- More precisely, assume, by contradiction, that β has only one simple closed orbit $\bar{\gamma}$ with homotopy class a.
- The mean index of $\bar{\gamma}$ is $\Delta(\bar{\gamma}):=\lim _{j \rightarrow \infty} \frac{1}{j} \mu_{C Z}\left(\bar{\gamma}^{j}\right)$.
- Consider the sequence of numbers $\mu_{C Z}\left(\bar{\gamma}^{j p+1}\right), j \in \mathbb{N}_{0}$ (recall that p is the order of $\pi_{1}(M)$ so that $\left.P^{a}=\left\{\bar{\gamma}^{j p+1} ; j \in \mathbb{N}_{0}\right\}\right)$.
- We have that $\left|\mu_{C Z}\left(\bar{\gamma}^{j p+1}\right)-(j p+1) \Delta(\bar{\gamma})\right| \leq n \forall j \in \mathbb{N}_{0}$.
- Thus, the density $\bar{\delta}:=\lim _{m \rightarrow \infty} \frac{1}{m}\left\{j ; \mu_{\mathrm{CZ}}\left(\bar{\gamma}^{j p+1}\right) \leq m\right\}$ equals $1 /(p \Delta(\bar{\gamma}))$.
- More precisely, assume, by contradiction, that β has only one simple closed orbit $\bar{\gamma}$ with homotopy class a.
- The mean index of $\bar{\gamma}$ is $\Delta(\bar{\gamma}):=\lim _{j \rightarrow \infty} \frac{1}{j} \mu_{C Z}\left(\bar{\gamma}^{j}\right)$.
- Consider the sequence of numbers $\mu_{C Z}\left(\bar{\gamma}^{j p+1}\right), j \in \mathbb{N}_{0}$ (recall that p is the order of $\pi_{1}(M)$ so that $\left.P^{a}=\left\{\bar{\gamma}^{j p+1} ; j \in \mathbb{N}_{0}\right\}\right)$.
- We have that $\left|\mu_{C Z}\left(\bar{\gamma}^{j p+1}\right)-(j p+1) \Delta(\bar{\gamma})\right| \leq n \forall j \in \mathbb{N}_{0}$.
- Thus, the density $\bar{\delta}:=\lim _{m \rightarrow \infty} \frac{1}{m}\left\{j ; \mu_{\mathrm{CZ}}\left(\bar{\gamma}^{j p+1}\right) \leq m\right\}$ equals $1 /(p \Delta(\bar{\gamma}))$.
- Now, note that each point in the sequence $\mu_{\mathrm{CZ}}\left(\gamma_{i}\right)$ belongs to the sequence $\mu_{\mathrm{CZ}}\left(\bar{\gamma}^{j p+1}\right)$ and, by the injectivity of ψ, no point in the sequence $\mu_{\mathrm{CZ}}\left(\bar{\gamma}^{j p+1}\right)$ can be used twice. Thus $\delta \leq \bar{\delta}$, that is, $1 / 2 \leq 1 /(p \Delta(\bar{\gamma})) \Longleftrightarrow p / 2 \leq 1 / \Delta(\bar{\gamma})$.
- More precisely, assume, by contradiction, that β has only one simple closed orbit $\bar{\gamma}$ with homotopy class a.
- The mean index of $\bar{\gamma}$ is $\Delta(\bar{\gamma}):=\lim _{j \rightarrow \infty} \frac{1}{j} \mu_{C Z}\left(\bar{\gamma}^{j}\right)$.
- Consider the sequence of numbers $\mu_{C Z}\left(\bar{\gamma}^{j p+1}\right), j \in \mathbb{N}_{0}$ (recall that p is the order of $\pi_{1}(M)$ so that $\left.P^{a}=\left\{\bar{\gamma}^{j p+1} ; j \in \mathbb{N}_{0}\right\}\right)$.
- We have that $\left|\mu_{C Z}\left(\bar{\gamma}^{j p+1}\right)-(j p+1) \Delta(\bar{\gamma})\right| \leq n \forall j \in \mathbb{N}_{0}$.
- Thus, the density $\bar{\delta}:=\lim _{m \rightarrow \infty} \frac{1}{m}\left\{j ; \mu_{\mathrm{CZ}}\left(\bar{\gamma}^{j p+1}\right) \leq m\right\}$ equals $1 /(p \Delta(\bar{\gamma}))$.
- Now, note that each point in the sequence $\mu_{\mathrm{CZ}}\left(\gamma_{i}\right)$ belongs to the sequence $\mu_{\mathrm{CZ}}\left(\bar{\gamma}^{j p+1}\right)$ and, by the injectivity of ψ, no point in the sequence $\mu_{\mathrm{CZ}}\left(\bar{\gamma}^{j p+1}\right)$ can be used twice. Thus $\delta \leq \bar{\delta}$, that is, $1 / 2 \leq 1 /(p \Delta(\bar{\gamma})) \Longleftrightarrow p / 2 \leq 1 / \Delta(\bar{\gamma})$.
- But, by DC of $\alpha, \Delta\left(\bar{\gamma}^{p}\right)>2 \Longleftrightarrow p \Delta(\bar{\gamma})>2$ $1 / \Delta(\bar{\gamma})<p / 2$, contradiction.

