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Introduction
Motivation

Bayesian methodologies have become mainstream.

Because of this, there is a need to develop methods accessible to
‘non-experts’ that assess the influence of model choices on inference.

These will need to be:

1 Easy to interpret.

2 Easy to calculate.

Ideally: Provide a unified treatment to all pieces of Bayes theorem.
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Introduction
Motivation

Much work has been devoted to developing methods to assess the sensitivity
of the posterior to changes in the prior and likelihood.

The so-called prior–data conflict has been another subject which has been
attracting attention (Evans and Moshonov, 2006; Walter and Augustin, 2009;
Al Labadi and Evans, 2016).

Others have investigated two competing priors to specify so-called weakly
informative priors (Evans and Jang, 2011; Gelman et al., 2011).
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Introduction
Goals

The novel contribution we intend to make is to provide a metric that is able
to carry out comparisons between the:

prior and likelihood: to assess the prior–data agreement;

prior and posterior: to assess the influence that the prior has on inference;

prior and prior: to compare information available on competing priors.

To be useful this metric should be:

1 Easy to interpret.

2 Easy to calculate.

Ideally: Provide a unified treatment to all pieces of Bayes theorem.

M. de Carvalho Elements of Bayesian Geometry 4 / 34



Introduction
Goals

The novel contribution we intend to make is to provide a metric that is able
to carry out comparisons between the:

prior and likelihood: to assess the prior–data agreement;

prior and posterior: to assess the influence that the prior has on inference;

prior and prior: to compare information available on competing priors.

To be useful this metric should be:

1 Easy to interpret.

2 Easy to calculate.

Ideally: Provide a unified treatment to all pieces of Bayes theorem.

M. de Carvalho Elements of Bayesian Geometry 4 / 34



Introduction
Goals

The novel contribution we intend to make is to provide a metric that is able
to carry out comparisons between the:

prior and likelihood: to assess the prior–data agreement;

prior and posterior: to assess the influence that the prior has on inference;

prior and prior: to compare information available on competing priors.

To be useful this metric should be:

1 Easy to interpret.

2 Easy to calculate.

Ideally: Provide a unified treatment to all pieces of Bayes theorem.

M. de Carvalho Elements of Bayesian Geometry 4 / 34



Introduction
Goals

The novel contribution we intend to make is to provide a metric that is able
to carry out comparisons between the:

prior and likelihood: to assess the prior–data agreement;

prior and posterior: to assess the influence that the prior has on inference;

prior and prior: to compare information available on competing priors.

To be useful this metric should be:

1 Easy to interpret.

2 Easy to calculate.

Ideally: Provide a unified treatment to all pieces of Bayes theorem.

M. de Carvalho Elements of Bayesian Geometry 4 / 34



Introduction
Goals

The novel contribution we intend to make is to provide a metric that is able
to carry out comparisons between the:

prior and likelihood: to assess the prior–data agreement;

prior and posterior: to assess the influence that the prior has on inference;

prior and prior: to compare information available on competing priors.

To be useful this metric should be:

1 Easy to interpret.

2 Easy to calculate.

Ideally: Provide a unified treatment to all pieces of Bayes theorem.

M. de Carvalho Elements of Bayesian Geometry 4 / 34



Introduction
Goals

The novel contribution we intend to make is to provide a metric that is able
to carry out comparisons between the:

prior and likelihood: to assess the prior–data agreement;

prior and posterior: to assess the influence that the prior has on inference;

prior and prior: to compare information available on competing priors.

To be useful this metric should be:

1 Easy to interpret.

2 Easy to calculate.

Ideally: Provide a unified treatment to all pieces of Bayes theorem.

M. de Carvalho Elements of Bayesian Geometry 4 / 34



Introduction
Goals

The novel contribution we intend to make is to provide a metric that is able
to carry out comparisons between the:

prior and likelihood: to assess the prior–data agreement;

prior and posterior: to assess the influence that the prior has on inference;

prior and prior: to compare information available on competing priors.

To be useful this metric should be:

1 Easy to interpret.

2 Easy to calculate.

Ideally: Provide a unified treatment to all pieces of Bayes theorem.

M. de Carvalho Elements of Bayesian Geometry 4 / 34



Introduction
Goals

The novel contribution we intend to make is to provide a metric that is able
to carry out comparisons between the:

prior and likelihood: to assess the prior–data agreement;

prior and posterior: to assess the influence that the prior has on inference;

prior and prior: to compare information available on competing priors.

To be useful this metric should be:

1 Easy to interpret.

2 Easy to calculate.

Ideally: Provide a unified treatment to all pieces of Bayes theorem.

M. de Carvalho Elements of Bayesian Geometry 4 / 34



Introduction
Line of Attack

To this end, we view each of the components of Bayes theorem as if they
belonged to a geometry and seek to provide intuitively appealing
interpretations of the norms and angles between the vectors of this geometry.

We will show that calculating these quantities is very straightforward and can
be done online.

Interpretations are similar to those that accompany the correlation coefficient
for continuous random variables.
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Introduction
On-the-Job Drug Usage Toy Example

Example (Christensen et al, 2011, pp. 26–27)

Suppose interest lies in estimating the proportion θ ∈ [0,1] of US
transportation industry workers that use drugs on the job.

Suppose
y = (0,1,0,0,0,0,1,0,0,0) and that

y | θ iid∼ Bern(θ), θ ∼ Beta(a,b), θ | y ∼ Beta(a?,b?),

with a? = ∑Yi +a and b? = n−∑Yi +b.
The authors conduct the analysis picking (a,b) = (3.44,22.99).
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Introduction
Natural Questions

Some key questions:

How compatible is the likelihood with this prior choice?

How similar are the posterior and prior distributions?

How does the choice of Beta(a,b) compare to other possible prior
distributions?

We provide a unified treatment to answer the questions above.
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Storyboard
Plan of this Talk

1 Introduction (Done)

2 Bayes Geometry (Next)

3 Posterior and Prior Mean-Based Estimators of Compatibility

4 Discussion
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Bayes Geometry
Primitive Structures of Interest

Suppose the inference of interest is over a parameter θ in Θ⊆ Rp.

We work in L2(Θ), and use the geometry of the Hilbert space

H = (L2(Θ),〈·, ·〉),

with inner-product

〈g ,h〉=
∫

Θ
g(θ)h(θ)dθ, g ,h ∈ L2(Θ),

and norm ‖ · ‖= (〈·, ·〉)1/2.
The fact that H is an Hilbert space is often known as the Riesz–Fischer
theorem (Cheney, 2001, p. 411).

M. de Carvalho Elements of Bayesian Geometry 9 / 34



Bayes Geometry
Primitive Structures of Interest

Suppose the inference of interest is over a parameter θ in Θ⊆ Rp.
We work in L2(Θ), and use the geometry of the Hilbert space

H = (L2(Θ),〈·, ·〉),

with inner-product

〈g ,h〉=
∫

Θ
g(θ)h(θ)dθ, g ,h ∈ L2(Θ),

and norm ‖ · ‖= (〈·, ·〉)1/2.
The fact that H is an Hilbert space is often known as the Riesz–Fischer
theorem (Cheney, 2001, p. 411).

M. de Carvalho Elements of Bayesian Geometry 9 / 34



Bayes Geometry
Primitive Structures of Interest

Suppose the inference of interest is over a parameter θ in Θ⊆ Rp.
We work in L2(Θ), and use the geometry of the Hilbert space

H = (L2(Θ),〈·, ·〉),

with inner-product

〈g ,h〉=
∫

Θ
g(θ)h(θ)dθ, g ,h ∈ L2(Θ),

and norm ‖ · ‖= (〈·, ·〉)1/2.

The fact that H is an Hilbert space is often known as the Riesz–Fischer
theorem (Cheney, 2001, p. 411).

M. de Carvalho Elements of Bayesian Geometry 9 / 34



Bayes Geometry
Primitive Structures of Interest

Suppose the inference of interest is over a parameter θ in Θ⊆ Rp.
We work in L2(Θ), and use the geometry of the Hilbert space

H = (L2(Θ),〈·, ·〉),

with inner-product

〈g ,h〉=
∫

Θ
g(θ)h(θ)dθ, g ,h ∈ L2(Θ),

and norm ‖ · ‖= (〈·, ·〉)1/2.
The fact that H is an Hilbert space is often known as the Riesz–Fischer
theorem (Cheney, 2001, p. 411).

M. de Carvalho Elements of Bayesian Geometry 9 / 34



Bayes Geometry
A Geometric View of Bayes Theorem

Bayes theorem

p(θ | y) =
π(θ)f (y | θ)∫

Θ π(θ)f (y | θ)dθ

=
π(θ)`(θ)

〈π, `〉
.

`

π

p

The likelihood vector is used to enlarge/reduce the magnitude and suitably
tilt the direction of the prior vector.
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Bayes Geometry
A Geometric View of Bayes Theorem

Define the angle measure between the prior and the likelihood as

π∠ ` = arccos
〈π, `〉
‖π‖‖`‖

.

Since π and ` are nonnegative, π∠ ` ∈ [0,90◦].
Bayes theorem is incompatible with a prior being orthogonal to the likelihood
as

π∠ ` = 90◦⇒ 〈π, `〉= 0,

thus leading to a division by zero.
Our first target object of interest is given by a standardized inner product

κπ,` =
〈π, `〉
‖π‖‖`‖

,

which quantifies how much an expert’s opinion agrees with the data, thus
providing a natural measure of prior–data agreement.
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Bayes Geometry
A Geometric View of Bayes Theorem

Definition (Millman and Parker, 1991, p. 17)

An abstract geometry A consists of a pair {P,L }, where the elements of set P
are designed as points, and the elements of the collection L are designed as lines,
such that:

1 For every two points A,B ∈P, there is a line l ∈L .
2 Every line has at least two points.

Our abstract geometry of interest is A = {P,L }, where P = L2(Θ) and

L = {g +kh, : g ,h ∈ L2(Θ)}.

In our setting points are, for example, prior densities, posterior densities, or
likelihoods, as long as they are in L2(Θ).
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Bayes Geometry
A Geometric View of Bayes Theorem

Lines are elements of L , so that for example if g and h are densities, line
segments in our geometry consist of all possible mixture distributions which
can be obtained from g and h, i.e.:

{λg + (1−λ )h : λ ∈ [0,1]}.

Vectors in A = {P,L } are defined through the difference of elements in
P = L2(Θ).

If g ,h ∈ L2(Θ) are vectors then we say that g and h are collinear if there
exists k ∈ R, such that g(θ) = kh(θ).

Put differently, we say g and h are collinear if g(θ) ∝ h(θ), for all θ ∈Θ.
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Bayes Geometry
A Geometric View of Bayes Theorem

Two different densities π1 and π2 cannot be
collinear:

If π1 = kπ2, then k = 1, otherwise
∫

π2(θ)dθ 6= 1.

A density can be collinear to a likelihood:

If the prior is uniform p(θ | y) ∝ `(θ).

π1

π2

p

`

M. de Carvalho Elements of Bayesian Geometry 14 / 34



Bayes Geometry
A Geometric View of Bayes Theorem

Two different densities π1 and π2 cannot be
collinear:

If π1 = kπ2, then k = 1, otherwise
∫

π2(θ)dθ 6= 1.

A density can be collinear to a likelihood:

If the prior is uniform p(θ | y) ∝ `(θ).

π1

π2

p

`

M. de Carvalho Elements of Bayesian Geometry 14 / 34



Bayes Geometry
A Geometric View of Bayes Theorem

Our geometry is compatible with
having two likelihoods being
collinear.

This can be used to rethink the
strong likelihood principle that
states that if

`(θ) = f (θ | y) ∝ f (θ | y ∗) = `∗(θ),

then the same inference should be
drawn from both samples.

`

`∗

According to our geometry the strong likelihood principle reads:
“Likelihoods with the same direction should yield the same inference.”
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Bayes Geometry
A Geometric View of Bayes Theorem

Definition (Compatibility)

The compatibility between points in the geometry under consideration is the
mapping κ : L2(Θ)×L2(Θ)→ [0,1] defined as

κg ,h =
〈g ,h〉
‖g‖‖h‖

, g ,h ∈ L2(Θ).

Pearson correlation coefficient vs. compatibility{
〈X ,Y 〉=

∫
ΩXY dP,

X ,Y ∈ L2(Ω,BΩ,P),
instead of

{
〈g ,h〉=

∫
Θ g(θ)h(θ)dθ,

g ,h ∈ L2(Θ).

Note that:
κπ,`: prior-data agreement.
κπ,p: sensitivity of the posterior to the prior specification.
κπ1,π2 : compatibility of different priors [coherency of opinions of experts].
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Bayes Geometry
Norms and their Interpretation

κπ,` is comprised of function norms: How do we interpret norms?

In some cases the norm of a density is linked to the variance.

Example

Let U ∼ Unif(a,b) and let π(x) = (b−a)−1I(a,b)(x). Then,

‖π‖= 1/(12σ
2
U)1/4,

where the variance of U is σ2
U = 1/12(b−a)2.

Example

Let X ∼ N(µ,σ2
X ) with known variance σ2

X . It can be shown that

‖φ‖= {
∫
R

φ
2(x ; µ,σ2

X )dµ}1/2 = 1/(4πσ
2
X )1/4.
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Bayes Geometry
Norms and their Interpretation

Proposition

Let Θ⊂ Rp with |Θ|< ∞ where | · | denotes the Lebesgue measure. Consider π :
Θ→ [0,∞) a probability density with π ∈ L2(Θ) and let π0 ∼ Unif(Θ) denote a
uniform density on Θ, then

‖π‖2 = ‖π−π0‖2 +‖π0‖2.

This interpretation cannot be applied to Θ’s that do not have finite Lebesgue
measure as there is no corresponding proper Uniform distribution.

Yet, the notion that the norm of a density is a measure of its peakedness may
be applied whether or not Θ has finite Lebesgue measure.
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Bayes Geometry
Norms and their Interpretation

To see this, evaluate π(θ) on a grid θ1 < · · ·< θD and consider the vector

p = (π1, . . . ,πD),

with πd = π(θd ) for d = 1, . . . ,D.

The larger the norm of the vector p, the higher the indication that certain
components would be far from the origin—that is, π(θ) would be peaking for
certain θ in the grid.

Now, think of a density as a vector with infinitely many components (its
value at each point of the support) and replace summation by integration to
get the L2 norm.
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Bayes Geometry

Example (On-the-job drug usage toy example, cont. 1)

From the example in the Introduction we have θ | y ∼ Beta(a?,b?) with
a? = a+ ∑Yi = a+2 and b? = b+n−∑Yi = b+8. The norm of the prior,
posterior, and likelihood are respectively given by

‖π(a,b)‖=
{B(2a−1,2b−1)}1/2

B(a,b)
, a,b > 1/2,

and

‖p(a,b)‖= ‖π(a?,b?)‖.
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Bayes Geometry
Prior and Posterior Norms: On-the-Job Drug Usage Toy Example
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Figure: Prior and posterior norms for on-the-job drug usage toy example. The black dot
corresponds to (a,b) = (3.44,22.99) (values employed by Christensen et al. 2011, pp. 26–27).
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Bayes Geometry
Angles Between Other Vectors

Considering κ, it follows that

κπ,`(a,b) = B(a?,b?){B(2a−1,2b−1)B(2∑Yi +1,2(n−∑Yi ) +1)}−1/2.

As mentioned, we are not restricted to use κ only to compare π and `.

Example (On-the-job drug usage toy example, cont. 2)

Extending a previous example, we calculate

κπ,p = B(∑Yi +2a−1,n−∑Yi +2b−1)

×{B(2a−1,2b−1)

×B(2∑Yi +2a−1,2n−2∑Yi +2b−1)}−1/2,

and for π1 ∼ Beta(a1,b1) and π2 ∼ Beta(a2,b2),

κπ1,π2 =
B(a1 +a2−1,b1 +b2−1)

{B(2a1−1,2b1−1)B(2a2−1,2b2−1)}1/2
.
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Bayes Geometry
Compatibility: On-the-Job Drug Usage Toy Example
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Figure: Compatibility (κ) for on-the-job drug usage toy example. In (i) and (ii) the black dot
corresponds to (a,b) = (3.44,22.99) (values employed by Christensen et al. 2011, pp. 26–27).
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Bayes Geometry
Max-Compatible Priors and Maximum Likelihood Estimators

Definition (Max-compatible prior)

Let y ∼ f ( · | θ), and let P = {π(θ |α) : α ∈A } be a family of priors for θ. If
there exists α∗y ∈A , such that κπ,`(α

∗
y ) = 1, the prior π(θ |α∗y ) ∈P is said to

be max-compatible, and α∗y is said to be a max-compatible hyperparameter.

The max-compatible hyperparameter, α∗y , is by definition a random vector,
and thus a max-compatible prior density is a random function.
Geometrically: A prior is max-compatible iff it is collinear to the likelihood in
the sense that

κπ,`(α
∗
y ) = 1 iff π(θ |α∗y ) ∝ `(θ)

.

π(θ |α∗y )

`
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Bayes Geometry
Max-Compatible Priors and Maximum Likelihood Estimators

Example (Beta–Binomial)

Let ∑
n
i=1Yi ∼ Bin(n,θ), and suppose θ ∼ Beta(a,b). It can be shown that the

max-compatible prior is π(θ | a∗,b∗) = β (θ | a∗,b∗), where a∗ = 1+ ∑
n
i=1Yi , and

b∗ = 1+n−∑
n
i=1Yi , so that

θ̂n = arg max
θ∈(0,1)

f (y | θ) = Ȳ =
a∗−1

a∗+b∗−2
=: m(a∗,b∗).

Theorem

Let y ∼ f ( · | θ), and let P = {π(θ |α) : α ∈A } be a family of priors for θ.
Suppose there exists a max-compatible prior π(θ |α∗y ) ∈P, which we assume to
be unimodal. Then,

θ̂n = arg max
θ∈Θ

f (y | θ) = mπ (α∗y ) := arg max
θ∈Θ

π(θ |α∗y ).
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Bayes Geometry
Max-Compatible Priors and Maximum Likelihood Estimators

Example (Exp–Gamma)

In this case the max-compatible prior is given by fΓ(θ | a∗,b∗) where
(a∗,b∗) = (1+n,∑n

i=1Yi ).

The connection with the ML estimator is the following

θ̂ = arg max
θ∈Θ

f (y | θ) =
n

∑
n
i=1Yi

=
a∗−1
b∗

=: m2(a∗,b∗).

Example (Poisson–Gamma)

In this case the max-compatible prior is fΓ(θ | a∗,b∗), where
(a∗,b∗) = (1+ ∑

n
i=1Yi ,n). The max-compatible hyperparameter in this case is

different from the one in the previous example, but still

θ̂ = arg max
θ∈Θ

f (y | θ) = Ȳ =
a∗−1
b∗

=: m2(a∗,b∗).
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Posterior and Prior Mean-Based Estimators of Compatibility
Introduction

In many situations closed form estimators of κ and ‖ · ‖ are not available.

This leads to considering algorithmic techniques to obtain estimates.

As most Bayes methods resort to using MCMC methods it would be
appealing to express κ·,· and ‖ · ‖ as functions of posterior expectations and
employ MCMC iterates to estimate them.

For example, κπ,p can be expressed as

κπ,p = Ep π(θ)

[
Ep

{
π(θ)

`(θ)

}
Ep{`(θ)π(θ)}

]−1/2

,

where Ep( ·) =
∫

Θ ·p(θ | y)dθ.
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Posterior and Prior Mean-Based Estimators of Compatibility
Tentative Estimator

A natural Monte Carlo estimator would then be

κ̂π,p =
1
B

B

∑
b=1

π(θb)

[
1
B

B

∑
b=1

π(θb)

`(θb)

1
B

B

∑
b=1

`(θb)π(θb)

]−1/2

,

where θb denotes the bth MCMC iterate of p(θ | y).

Consistency of such an estimator follows trivially by the ergodic theorem and
the continuous mapping theorem, but there is an important issue regarding
its stability.
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Posterior and Prior Mean-Based Estimators of Compatibility
Problems with Previous Attempt

Unfortunately, the previous estimator includes an expectation that contains
`(θ) in the denominator and therefore (28) inherits the undesirable properties
of the so-called harmonic mean estimator (Newton and Raftery, 1994).

It has been shown that even for simple models this estimator may have
infinite variance (Raftery et al. 2007), and has been harshly criticized for,
among other things, converging extremely slowly.

As argued by Wolpert and Schmidler (2012, p. 655):
“the reduction of Monte Carlo sampling error by a factor of two requires increasing

the Monte Carlo sample size by a factor of 21/ε , or in excess of 2.5 ·1030 when ε = 0.01,
rendering [the harmonic mean estimator] entirely untenable.”
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Posterior and Prior Mean-Based Estimators of Compatibility
Solution

An alternate strategy is to avoid writing κπ,p as a function of harmonic mean
estimators and instead express it as a function of posterior and prior
expectations. For example, consider

κπ,p = Ep π(θ)

[
Eπ{π(θ)}
Eπ{`(θ)}

Ep{`(θ)π(θ)}
]−1/2

,

where Eπ ( ·) =
∫

Θ ·π(θ)dθ.
Now the Monte Carlo estimator is

κ̃π,p =
1
B

B

∑
b=1

π(θb)

{
B−1

∑
B
b=1 π(θb)

B−1 ∑
B
b=1 `(θb)

1
B

B

∑
b=1

`(θb)π(θb)

}−1/2

,

where θb denotes the bth draw of θ from π(θ), which can also be sampled
within the MCMC algorithm.
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Posterior and Prior Mean-Based Estimators of Compatibility
Illustration
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Figure: Running point estimates of prior-posterior compatibility, κπ,p , for the on-the-job drug
usage toy example. Green lines correspond to the true κπ,p values, blue represents κ̃π,p and red
denotes κ̂π,p .
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Posterior and Prior Mean-Based Estimators of Compatibility
Mean-Based Representations of Objects of Interest

Proposition

The following equalities hold:

‖p‖2 =
Ep{`(θ)π(θ)}

Eπ `(θ)
, ‖π‖2 = Eπ π(θ), ‖`‖2 = Eπ `(θ)Ep

{
`(θ)

π(θ)

}
,

κπ1,π2 = Eπ1 π2(θ)

[
Eπ1 π1(θ)Eπ2 π2(θ)

]−1/2
, κπ,` = Eπ `(θ)

[
Eπ π(θ)Eπ `(θ)Ep

{
`(θ)

π(θ)

}]−1/2
,

κπ,p = Ep π(θ)

[
Eπ π(θ)

Eπ `(θ)
Ep {`(θ)π(θ)}

]−1/2
, κ`,p = Ep `(θ)

[
Ep

{
`(θ)

π(θ)

}
Ep {`(θ)π(θ)}

]−1/2
,

κ`1,`2 = Eπ `2(θ)Ep2

{
`1(θ)

π(θ)

}[
Eπ{`1(θ)}Ep1

{
`1(θ)

π(θ)

}
Eπ `2(θ)Ep2

{
`2(θ)

π(θ)

}]−1/2
.
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Discussion
Final Remarks

We discussed a natural geometric framework to Bayesian inference which
motivated a simple, intuitively appealing measure of the agreement between
priors, likelihoods, and posteriors: compatibility (κ).

In this geometric framework, we also discuss a related measure of the
“informativeness” of a distribution, ‖ · ‖.

We developed MCMC-based estimators of these metrics that are easily
computable and, by avoiding the estimation of harmonic means, are
reasonably stable.

Our concept of compatibility can be used to evaluate how much the prior
agrees with the likelihood, to measure the sensitivity of the posterior to the
prior, and to quantify the level of agreement of elicited priors.
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