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Modern Machine Learning

> Large, complex models

» Massive amounts of data




The ILSVRC Competition
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deep learning: applications
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deep learning: applications
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Deep learning pervades data-rich problems




Benefits of feature selection
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reduces overfitting

improves accuracy

helps overcome the curse of dimensionality
allows shorter training time

aids with interpretability



Mice Protein Data

Find proteins that are discriminant between healthy and trisomic
mice. 1080 measurements, 77 proteins.[Higuera et al., 2015]
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Best six proteins: AKT, NR2B,TIAM1,nNOS,RRP1,GluR3



Prior art

» Filter and wrapper methods
» Embedded methods



Prior art

» Filter and wrapper methods
» Individual scores [Fisher score, Laplacian Score, Trace Ratio]
> Kernel based methods

> Mutual information based methods [HSIC-Lasso (Yamada et
al., 2014), Conditional covariance minimization (Jordan et al.,
2018)]

» Embedded methods
» Ll-regularization [Lasso (Tibshirani, 1996) and variants]



Desiderata

» Capture arbitrary nonlinearity [nonparametric approach]

» Achieve adaptive feature selection



Desiderata

» Capture arbitrary nonlinearity [nonparametric approach]
» Achieve adaptive feature selection
Today's proposal:
» An embedded method
» Optimizes over a large function class

» Obeys a natural hierarchy principle



Appetizer: results on MNIST
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Demonstrating LassoNet on MNIST. Simultaneously selecting informative pixels and classifiyng digit 5 vs. digit 6.

Top: The classification accuracy by number of selected features. Bottom: A sample from the model with 160, 220

and 300 active features out of the 784.
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The hierarchy principle
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"Large component main effects
are more likely to lead to apprecia-
ble interactions than small com-
ponents. Also, the interactions
corresponding to larger main ef-
fects may be in some sense of
more practical importance.”

David Cox, 1980

Photo: General Motors Cancer Research Foundation
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"Large component main effects
are more likely to lead to apprecia-
ble interactions than small com-
ponents. Also, the interactions
corresponding to larger main ef-
fects may be in some sense of
more practical importance.”

David Cox, 1980
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More recently: Lasso for hierarchical interactions (Bien et al.,
2013), reluctant interaction modelling (R.J. Tibshirani, 2019)



Our approach
» An embedded method

» Large function class: residual feedforward neural networks

F= {f L F(x) =0T x + fW(x)}

LassoNet architecture



LassoNet

» Objective function:

inimize L(0, W M@
minimize (6, W)+ X|6]|1

subject to |[WO|; - <M|o;], j=1,...

where W) denotes the network’s input layer.



LassoNet

» Objective function:

inimize L(0, W M@
minimize (6, W)+ X|6]|1

subject to |[WO|; - <M|o;], j=1,...

where W) denotes the network’s input layer.

In particular, W; = 0 as soon as ; = 0.



LassoNet

» Objective function:
minimize L(0, W) + \||0
inimize L(6, W)+ X0
subject to |[WO|; - <M|o;], j=1,...,d.
where W) denotes the network’s input layer.

In particular, W; = 0 as soon as ; = 0.

> Hyper-parameters:
> K] penalty, A. Higher values of \ encourage sparser models

| Hierarchy parameter, M. Controls the relative strength of the linear and nonlinear

components.



LassoNet Training Loop

Algorithm 1 Training LassoNet

: Input: training dataset X € R™*¢, training labels Y, feed-forward neural network fy(-),

number of epochs B, hierarchy multiplier M, path multiplier ¢, learning rate «

: Initialize and train the feed-forward network on the loss L(X,Y; 6, W)
: Initialize the penalty, A = ¢, and the number of active features, k = d
: while £ > 0 do

Update A < (1 + €)X
forb e {1...B} do
Compute gradient of the loss w.r.t to § and W using backpropagation
Update § < § —aVyLand W < W —aV, L
Update (6, W(©)) = HIER-PROX (0, W (©) X, M)
Apply early-stopping criterion
end for
Update k to be the number of non-zero coordinates of 6

: end while



Feature Selection Path

Classification accuracy
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Classification accuracies for LassoNet on a hold-out test-set.

Results on the MICE protein dataset where n = 864, d = 77.




LassoNet Training Loop

Algorithm 1 Training LassoNet

: Input: training dataset X € R™*¢, training labels Y, feed-forward neural network fy(-),

number of epochs B, hierarchy multiplier M, path multiplier ¢, learning rate «

: Initialize and train the feed-forward network on the loss L(X,Y; 6, W)
: Initialize the penalty, A = ¢, and the number of active features, k = d
: while k& > P-de
for b € do
Compute gradlent of the loss w.r.t to # and W using backpropagation
Update § «— 6 —aVgLand W < W — oV, . L

Update (0, W(*)) 5 HIER-PROX (6, W), A, M) |
Apply early-stoppirlg Criterion

end for

Update k to be the number of non-zero coordinates of 6

: end while



The power of warm starts
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The power of warm starts
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The power of warm starts

» The sparse to dense
optimization along the path
efficiently explores the
nonconvex landscape.
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The power of warm starts

Test error
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The sparse to dense
optimization along the path
efficiently explores the
nonconvex landscape.

Training combines warm
starts and early stopping
The bulk of the
computational cost goes to
training the dense model.

This is effectively pruning



The HIER-PROX algorithm

» The hierarchy constraint is separable over the features.

» Objective can be optimized by constrained proximal GD



The HIER-PROX algorithm

» The hierarchy constraint is separable over the features.
» Objective can be optimized by constrained proximal GD

> At its core, LassoNet solves d problems of the form

minimizeser wepk 3(v — 8)? + 3lu — W2 + X|8lx
subject to ||W|le < M- |f|

» Hier-PRrROX: an efficient hierarchical proximal operator



The HIER-PROX operator

P> At its core, LassoNet solves d problems of the form

minimizeser wepk 3(v — 8)? + 3lu — W2 + X|8lx

subject to ||W||eo < M - |f|

» The HIER-PROX operator provides the global solution of this
nonconvex minimization problem



The HIER-PROX operator
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» The HIER-PROX operator provides the global solution of this
nonconvex minimization problem

P Integrates seamlessly with deep learning frameworks ey



The HIER-PROX operator

P> At its core, LassoNet solves d problems of the form

minimizeser wepk 3(v — 8)? + 3lu — W2 + X|8lx

subject to ||W||eo < M - |f|

» The HIER-PROX operator provides the global solution of this
nonconvex minimization problem

P Integrates seamlessly with deep learning frameworks ey

» The algorithm has complexity O(dK - log(dK)), where d is
the number of features and K the size of the input layer

> Negligible overhead compared to gradient computations



Experimental evaluation

» Most other feature selection methods are not embedded

» Plug the selected features into external downstream learners:

» A feedforward neural network

> A tree-based classifier

» Systematic evaluation on 6 datasets



Results on the ISOLET dataset

P> Letter speech data
» Benchmark data set for feature selection
» n=17797,d =617
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Classification accuracies for feature selection methods

Left: using a one-hidden-layer feedforward neural network. Right: using an extremely randomized tree classifier.



Systematic evaluation

Compare the classification accuracies for a fixed number of
features, k = 50:

Dataset (n,d) #Classes Fisher HSIC-Lasso PFA  LassoNet
MNIST (10000, 784) 10 0.813 0.870 0.873 0.873
MNIST-Fashion (10000, 784) 10 0.671 0.785 0.793  0.800
ISOLET (7797, 617) 26 0.793 0.877 0.863  0.885
COIL-20 (1440, 400) 20 0.986 0.972 0.975 0.991
Activity (5744, 561) 6 0.769 0.829 0.779  0.849
Mice Protein (1080, 77) 8 0.944 0.958 0.939 0.958

Classification accuracies on a hold-out test set, using a one-hidden-layer feedforward neural network.



Summary

The Neural Network Resurrection
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Extensions and applications
» Unsupervised learning

» Reconstruction loss as the objective
> Related work: Concrete auto-encoder (Abid et al., /ICML 2019)

Reconstructing single digit classes of MNIST
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» Unsupervised Learning
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» Sparse PCA Net

» enforce an interpretable bottleneck layer



Extensions and applications

» Unsupervised Learning
» Reconstruction loss as the objective
> Related work: Concrete auto-encoder (Abid et al., ICML 2019)

» Sparse PCA Net

» enforce an interpretable bottleneck layer

» Cox Proportional Hazards Model

d

DeepSurv: per lized treatment re
system using a Cox proportional hazards deep neural
network

Jared L. Katzman, Uri Shaham, Alexander Cloninger, Jonathan Bates, Tingting Jiang & Yuval Kluger &1

'BMC Medical Research Methodology 18, Article number: 24 (2018) | Cite this article
16k Accesses | 59 Citations | 28 Atmetric | Metrics

Abstract

Background

Medical practitioners use survival models to explore and understand the relationships
between patients’ covariates (e.g. clinical and genetic features) and the effectiveness of
various treatment options. Standard survival models like the linear Cox proportional hazards
model require extensive feature engineering or prior medical knowledge to model treatment
interaction at an individual level. While nonlinear survival methods, such as neural networks
and survival forests, can inherently model these high-level interaction terms, they have yet to
be shown as effective treatment recommender systems.



Resources

» Talk Materials at: https://tinyurl.com/lassonet

» Code at: https://github.com/ilemhadri/lassonet

» Thanks:

» Rob Tibshirani
» Feng Ruan
» PyTorch help: Louis Abraham

> Thank you. Be well!


https://tinyurl.com/lassonet
https://github.com/ilemhadri/lassonet

The HIER-PROX algorithm

Algorithm 2 Hierarchical Proximal Algorithm

1: procedure HIER-PROX(H, W(©); \, M)

2 forj e {1,...,d} do

3 Sort the coordinates of Wj(0> into |W((J(.))1)| >..2> |W((J?)K)|
4 form € {0,...,K} do

5: Compute W, = T -SA(\9j| +M-3" |W((£)i) |)
6 Find the first m such that [W0) | < wpn < [WS) |
7 end for

8: 0; + & - sign(6;) - wm

. 37(0) ; (0) ; (0)

9: W™« sign(W;") - min(wm, W;™’)
10: end for

11: return (6, W ()
12: end procedure

13: Conventions: Ln. 6, W((](.J,i( 1y = 0, W((;J})) = +00; Ln. 9, minimum is applied coordinate-wise.




Systematic evaluation

Compare the classification accuracies for a fixed number of
features, k = 50:

Dataset (n,d) #Classes Fisher HSIC-Lasso PFA  LassoNet
MNIST (10000, 784) 10 0.813 0.870 0.873 0.873
MNIST-Fashion (10000, 784) 10 0.671 0.785 0.793 0.800
ISOLET (7797, 617) 26 0.793 0.877 0.863  0.885
COIL-20 (1440, 400) 20 0.986 0.972 0.975 0.991
Activity (5744, 561) 6 0.769 0.829 0779  0.849
Mice Protein (1080, 77) 8 0.944 0.958 0.939 0.958

Classification accuracies on a hold-out test set, using Extremely Randomized Tree Classifiers (a variant of random

forests).
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