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The Calabi’s dream

In 1950s, as a new PhD, E. Calabi has an un-parallel vision
which is far ahead of his time,

On every Kähler Class of every compact Kähler
manifolds, there must exists one best, canonical Kähler
metrics

His vision has inspired generations of Kähler geometers devoted
to the problem of establishing the existence of constant scalar
curvature Kähler metrics.

For more than six decades, we have witnessed the phenomenal
success of Calabi’s program. Noticeably, the celebrated theorem
of Yau in 1976 and the now well known Chen-Donaldson-Sun
theorem in 2012.
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Calabi’s dream

What we will lecture today is one step beyond the Kähler
Einstien metrics problem. Inspired by the celebrated C0, C2

and C3 a priori estimate of Calabi, Yau and others on Kaehler
Einstein metrics, we present a report on a priori estimates on
constant scalar curvature Kaehler metrics.

With this estimate, we prove the Donaldson conjecture on
geodesic stability and the well known properness conjecture on
the Mabuchi energy functional.

The general setting for this talk is the interaction among
algebraic geometry, partial differential equation and complex
geometry.
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Basic Kähler Geometry I

(M, [ω]) is a polarized Kähler manifold where

ω =

√
−1

2

n∑
α,β=1

gαβ̄ dwα ∧ d w̄β > 0 on M.

In some local coordinate U ⊂M, there is a local potential
function ρ such that

gαβ̄ =
∂2ρ

∂wα∂w̄β
, ∀ α, β = 1, 2, · · ·n.

A Kähler class

[ω] = {ωϕ | ωϕ = ω +
√
−1∂∂̄ϕ > 0 on M}

where ϕ is a real valued function.
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Basic Kähler Geometry II

Ricci form:

Ric(ω) = −
√
−1∂∂̄ logωn

= −
√
−1∂∂̄ log det

(
gαβ̄
)
.

Scalar curvature:

R = −gαβ̄ ∂2

∂wα∂̄wβ
log det

(
gαβ̄
)

= −4g log det
(
gαβ̄
)
.

The first Chern class is positive definite (resp: negative definite)
if

[Ric(ω)] > (resp. <) 0 on M.
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Calabi Conjecture

Conjecture (Calabi 1954 ICM)

In Kähler manifold where the first Chern class is either positive,
zero or negative, does there always exist a Kähler Einstein
metric with positive, zero or negative scalar curvature?

Conjecture (Calabi 1950s)

For any Kähler class in Kähler manifold, does there always
exist an extremal Kähler metric?
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Existence of KE metrics

In 1976, for C1 = 0, the Calabi conjecture was solved by
Yau. Yau won Fields medal because of this work.

In 1976, for C1 < 0, Calabi conjecture is solved by S. T.
Yau and T. Aubin independently.

In 2012, for C1 > 0, Chen-Donaldson-Sun proved the
stability conjecture of Fano manifold which goes back to S.
T. Yau.
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Constant scalar curvature Kähler metrics

Conjecture (Yau-Tian-Donadson)

In algebraic manifold (M, [ω]), the existence of cscK metric is
equivalent to the K stability of (M, [ω]).

Conjecture (Chen)

In Kähler manifold (M, [ω]), if ωϕ is a constance scalar
curvature Kähler metric and ϕ is bounded, then all derivatives
of ϕ with respect to the background metric is uniformly bounded.
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Donaldson’s Program

Conjecture (Donadson)

In any Kähler manifold (M, [ω]), the following statement are
equivalent

There exists no constant scalar curvature Kähler metrics in
(M, [ω]),

For some Kähler potential ϕ0 ∈ [ω], there exists a geodesic
ray where the K energy functional is non-increasing,

For any Kähler potential ϕ ∈ [ω], there exists a geodesic ray
where the K energy functional is non-increasing,

Conjecture (Properness conjecture)

The existence of constant scalar curvature Kähler metrics in
(M, [ω]) is equivalent to the properness of K energy functional
in terms of geodesic distance in the space of Kähler potentials.
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The space of Kähler potentials

The space of Kähler potentials

H = {ϕ | ωϕ = ω +
√
−1∂∂̄ϕ > 0 on M}

where the tangent space

TϕH = C∞(M).

Convexity: ∀ ϕ1, ϕ2 ∈ H,⇒ tϕ1 + (1− t)ϕ2 ∈ H.
1987, T. Mabuchi introduced a Riemmannian metric in H :
∀ ψ, φ ∈ Tϕ H = C∞(M), define an innner product

(φ, ψ)ϕ =

∫
M
ψ · φ ωnϕ.

This metric is also defined by S. Semmes in 1991 and S. K.
Donaldson in 1996 for different motivation.
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The space of Kähler Potentials

The geodesic equation is:

ϕ′′(t)− gαβ̄ϕ ϕ′α(t)ϕ′β̄(t) = 0 (1)

where gϕαβ̄ = gαβ̄ + ∂2ϕ
∂wα∂w̄β

.

According to S. Semmes, this can be written as

det
(
gij̄ + ϕij̄

)
(n+1)×(n+1)

= 0

in [0, 1]× S1 ×M.
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Basic work in space of potentials H

In 1998, X. X. Chen proved that H is geodesically convex
by C1,1 geodesic.

In 1998, X. X. Chen proved that H is a metric space; with
E. Calabi, they proved that H is non-positively curved
space in the sense of Aleanxderov.
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The K energy

T. Mabuchi in 1988 defined a 1-form in the space of Kähler
potentials

dE : TH → R

by
dE(ϕ,ψ) = −(R(ωϕ)−R,ψ)ϕ,

where (ϕ,ψ) ∈ TH.

Clearly, the Euler Lagrange equation of this functional is

R(ωϕ)−R = constant.

An important observation:
The K energy functional is convex along any smooth geodesic.
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Convexity of K energy functional

Conjecture (Chen 1998)

The K energy functional is convex along weak C1,1 geodesic
segment.

In 2014, Bendentson and Berman, conjecture holds;

In 2014, Chen-Li-Paun, conjecture holds with a new proof.

Conjecture (Chen 1998)

Any C1,1 minimizer of the K energy functional must be smooth.

2017, W.Y. He-Y. Zeng confirmed this conjecture with minor
assumption.
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Fundamental work in H I

Here are the Fundamental theorem in H needed.

Conjecture (V. Guedj)

The completion of the space H of smooth potentials equipped
with the L2 metric is precisely the space E2(M,ω0) of potentials
of finite energy.

Theorem (T. Darvas)

Guedj’s conjecture holds for all p ≥ 1.

Note that the extension to p = 1 is crucial. Moreover, the
convexity of K energy can also be extended to E1(M,ω0) space
as well.
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Fundamental work in H II

Conjecture (Darvas-Rubinstein)

Any minimizer of K energy functional in E1(M,ω0) must be
smooth.

Theorem

[Berman-Boucksom-Eyssidieux-Guedj-Zeriahi,
Berman-Darvas-Lu]
Let {ui}i ⊂ E1 be a sequence for which the following condition
holds:

sup
i
d1(0, ui) <∞, sup

i
E(ui) <∞.

Then {ui}i contains a d1-convergent subsequence.

Note that if K energy is bounded from above and if the K
energy is proper, this automatically implies the d1 distance is
bounded.
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A New Continuity Path I

For any positive, closed (1, 1)-form χ, define a continuous path
t ∈ [0, 1] as

t ·Rϕt = (1− t)trϕtχ− Ct. (2)

where

χ =
[χ] · [ω][n−1]

[ω][n]
, R =

[C1(M)] · [ω][n−1]

[ω][n]
.

and
Ct = (1− t)χ− tR.
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On the New Continuity Path II

Theorem (X. X. Chen 2015)

For any χ > 0 and t ∈ (0, 1), if there exists one solution to
Equation (2) for time t ∈ (0, 1), then there exists a small δ > 0
such that for any t′ ∈ (t− δ, t+ δ), there exists a solution to
Equation (2) for time t′.

Theorem (Y. Zeng, Y. Hashimoto)

For any χ > 0, if there exists one solution to Equation (2) for
time t = 0, then there exists a small δ > 0 such that for any
t′ ∈ [0, δ), there exists a solution to Equation (2) for time t′.

Theorem (Chen-Paun-Zeng)

For any χ > 0, if there exists one solution to Equation (2) for
time t = 1, then there exists a small δ > 0 such that for any
t′ ∈ (1− δ, 1], there exists a solution to Equation (2) for time t′.
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a Priori Estimates of Calabi, Yau

For complex MA type equation

det(gij̄ + ϕij̄) = eλϕ+hω det gij̄ .

Then,

Calabi, 1957, C2 implies C3 estimates;

S. T. Yau, 1976, C0 implies C2 and C0 estimate holds for
C1 < 0 and C1 = 0.

S. T. Yau solve the famous Calabi Conjecture and won
Fields Medal.
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What about constant scalar curvature Kähler metrics

CscK metrics satifies a 4th order fully nonlinear PDE. As
remarked by others, the difficulty permeates the cscK theory
are two folds:

one cannot use maximal principle from PDE point of view

and one can not have much control of metric from the
bound of the scalar curvature.

the first problem prevent us from adopting the celebrated
work of S. T. Yau on Calabi conjecture where Maximum
principle is crucial.

The second problem prevent us from applying the
Cheeger-Colding theory as in Chen-Donaldson-Sun theorem
on the stability conjecture which goes back to Yau.
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A Coupled Equations

The cscK metric equation can be re-written as a pair of coupled
equations

log det(gαβ̄ + ϕαβ̄) = F + log det(gαβ̄), (3)

∆ϕF = −R+ trϕRicg. (4)

Here ∆ϕ denotes the Laplace operator of Kähler form ωϕ.

Proposition

If 1
Cω0 ≤ ωϕ ≤ Cω0, for some constant C > 0, then all higher

derivatives can be estimated in terms of C.

Conjecture (Chen 2010 )

Suppose (M,ωϕ) is a constant scalar curvature Kähler metric
and M compact. If |ϕ| < C, then any higher derivative estimate
of ϕ is also uniformly bounded.
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Core estimates I

The Key a Priori Estimates

Theorem

Suppose (M,ωϕ) is a constant scalar curvature Kähler metric.
Then the following statements are mutually equivalent:

All higher derivates of ϕ is uniformly bounded.

There is a constant C such that n+ ∆ϕ < C and
ωnϕ
ωn0

> 1
C ;

There is a constant C such that 1
C <

ωnϕ
ωn < C;

There is a constant C such that |∇ϕ| < C and

log
ωnϕ
ωn ≥ −C;

There is a constant such that |ϕ| < C;

There is a constant such that
∫
M log

ωnϕ
ωn · ω

n
ϕ < C;



Core estimates I

The Key a Priori Estimates

Theorem

Suppose (M,ωϕ) is a constant scalar curvature Kähler metric.
Then the following statements are mutually equivalent:

All higher derivates of ϕ is uniformly bounded.

There is a constant C such that n+ ∆ϕ < C and
ωnϕ
ωn0

> 1
C ;

There is a constant C such that 1
C <

ωnϕ
ωn < C;

There is a constant C such that |∇ϕ| < C and

log
ωnϕ
ωn ≥ −C;

There is a constant such that |ϕ| < C;

There is a constant such that
∫
M log

ωnϕ
ωn · ω

n
ϕ < C;



Core estimates I

The Key a Priori Estimates

Theorem

Suppose (M,ωϕ) is a constant scalar curvature Kähler metric.
Then the following statements are mutually equivalent:

All higher derivates of ϕ is uniformly bounded.

There is a constant C such that n+ ∆ϕ < C and
ωnϕ
ωn0

> 1
C ;

There is a constant C such that 1
C <

ωnϕ
ωn < C;

There is a constant C such that |∇ϕ| < C and

log
ωnϕ
ωn ≥ −C;

There is a constant such that |ϕ| < C;

There is a constant such that
∫
M log

ωnϕ
ωn · ω

n
ϕ < C;



Core estimates I

The Key a Priori Estimates

Theorem

Suppose (M,ωϕ) is a constant scalar curvature Kähler metric.
Then the following statements are mutually equivalent:

All higher derivates of ϕ is uniformly bounded.

There is a constant C such that n+ ∆ϕ < C and
ωnϕ
ωn0

> 1
C ;

There is a constant C such that 1
C <

ωnϕ
ωn < C;

There is a constant C such that |∇ϕ| < C and

log
ωnϕ
ωn ≥ −C;

There is a constant such that |ϕ| < C;

There is a constant such that
∫
M log

ωnϕ
ωn · ω

n
ϕ < C;



Core estimates I

The Key a Priori Estimates

Theorem

Suppose (M,ωϕ) is a constant scalar curvature Kähler metric.
Then the following statements are mutually equivalent:

All higher derivates of ϕ is uniformly bounded.

There is a constant C such that n+ ∆ϕ < C and
ωnϕ
ωn0

> 1
C ;

There is a constant C such that 1
C <

ωnϕ
ωn < C;

There is a constant C such that |∇ϕ| < C and

log
ωnϕ
ωn ≥ −C;

There is a constant such that |ϕ| < C;

There is a constant such that
∫
M log

ωnϕ
ωn · ω

n
ϕ < C;



Core estimates I

The Key a Priori Estimates

Theorem

Suppose (M,ωϕ) is a constant scalar curvature Kähler metric.
Then the following statements are mutually equivalent:

All higher derivates of ϕ is uniformly bounded.

There is a constant C such that n+ ∆ϕ < C and
ωnϕ
ωn0

> 1
C ;

There is a constant C such that 1
C <

ωnϕ
ωn < C;

There is a constant C such that |∇ϕ| < C and

log
ωnϕ
ωn ≥ −C;

There is a constant such that |ϕ| < C;

There is a constant such that
∫
M log

ωnϕ
ωn · ω

n
ϕ < C;



The core estimates II

Theorem

(Chen-He 2010) Suppose ϕ is a solution of

log det(gαβ̄ + ϕαβ̄) = F + log det(gαβ̄)

in (M.[ω]). If ‖F‖1,p is bounded for p > 2n, then ϕ ∈W 3,p.

Theorem

Let ϕ be a smooth solution to (3), (4), then for any 1 < p <∞,
there exists a constant α(p) > 0, depending only on p, and
another constant C, depending only on ||ϕ||0, the background
metric g, and p, such that∫

M
e−α(p)F (n+ ∆ϕ)p ≤ C. (5)



The core estimates II

Theorem

(Chen-He 2010) Suppose ϕ is a solution of

log det(gαβ̄ + ϕαβ̄) = F + log det(gαβ̄)

in (M.[ω]). If ‖F‖1,p is bounded for p > 2n, then ϕ ∈W 3,p.

Theorem

Let ϕ be a smooth solution to (3), (4), then for any 1 < p <∞,
there exists a constant α(p) > 0, depending only on p, and
another constant C, depending only on ||ϕ||0, the background
metric g, and p, such that∫

M
e−α(p)F (n+ ∆ϕ)p ≤ C. (5)



The a priori estimate I

Theorem

Let ϕ be a smooth solution to (3), (4), then for any 1 < p <∞,
there exists a constant C, depending only on the background
Kähler metric (M, g), an upper bound of

∫
M eFFdvolg, and p,

such that
||eF ||Lp(dvolg) ≤ C, ||ϕ||0 ≤ C. (6)

Theorem

Let ϕ be a smooth solution to (3), (4). Then there exists
pn > 1, depending only on n, and a constant C, depending on
||ϕ||0, ||F ||0, ||n+ ∆ϕ||Lpn (dvolg), and the background metric g,
such that

n+ ∆ϕ ≤ C. (7)
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The a priori estimate II

Our Main Compactness theorem:

Theorem

The set of Kähler potentials(suitably normalized up to a
constant) with bounded scalar curvature and entropy (or
geodesic distance) is bounded in W 4,p for any p <∞, hence
precompact in C3,α for any 0 < α < 1.

Theorem

The Calabi flow can be extended as long as the scalar curvature
is uniformly bounded.

Conjecture

(Calabi, Chen) Initiating from any smooth Kähler potential, the
Calabi flow always exists globally.
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Geodesic stability

Definition

Let ρ(t) : [0,∞)→ E1
0 be a locally finite energy geodesic ray

with unit speed. One can define an invariant U([ρ]) as

U([ρ]) = lim
k→∞

K(ρ(k + 1))−K(ρ(k)).

Definition

Let ϕ0 ∈ E1
0 with K(ϕ0) <∞, (M, [ω]) is called geodesic stable

at ϕ0(resp. geodesic-semistable) if for all locally finite energy
geodesic ray initiating from ϕ0, their U invariant is always
strictly positive(resp. nonnegative). (M, [ω]) is called geodesic
stable(resp. geodesic semistable) if it is geodesic stable(resp.
geodesic semistable) at any ϕ ∈ E1
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Main theorems I

Theorem (Donaldson Conjecture)

The following statements are equivalent:

1 There is no constant scalar curvature Kähler metric in H;

2 There is a potential ϕ0 ∈ E1
0 and there exists a locally finite

energy geodesic ray ρ(t)(t ∈ [0,∞)) in E1
0 , initiating from

ϕ0 such that the K-energy is non increasing;

3 For any Kähler potential ψ ∈ E1
0 , there exists a locally finite

energy geodesic ray ρ(t)(t ∈ [0,∞)) in E1
0 , initiating from ψ

such that the K-energy is non increasing.

Alternatively,

Theorem

Suppose Aut0(M,J) = 0. Then (M, [ω]) admits a cscK metric if
and only if it is geodesic stable.
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Main theorem II

Definition

We say the K-energy is proper with respect to L1 geodesic
distance if for any sequence {ϕi}i≥1 ⊂ H0,
limi→∞ d1(0, ϕi) =∞ implies limi→∞K(ϕi) =∞.

Theorem (Properness Conjecture)

The existence of constant scalar curvature Kähler metric is
equivalent to the properness of K-energy in terms of the L1

geodesic distance.
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Main theorem III

Theorem

Any minimizer of the K energy functional in E1 space must be
smooth.

Theorem (One version of YTD conjecture)

In Toric Variety, the existence of constant scalar curvature
Kähler metrics is equivalent to the uniform stability.
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Calabi Dream Manifolds

Definition

A Kähler manifold is called Calabi dream manifold if every
Kähler class on it admits an extremal Kähler metric.

Examples: all compact Riemann surfaces, CPn, and compact
Calabi-Yau manifolds. Our discussion above asserts

Theorem

Any Kähler surface with C1 < 0 and no curve of negative
self-intersection is a Calabi dream surface.

Question

Is the Moduli space of Calabi Dream manifolds necessary
smooth?

What about manifold without constant scalar curvature Kähler
metrics?
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