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Weak SYZ conjecture

(Weak SYZ conjecture) Prove for a suitable class of Calabi-Yau
manifolds near the large complex structure limit that a special
Lagrangian T n-fibration exists in the generic region.

I SYZ is physically motivated, and admits many interpretations.
The strong version assets that the SLag fibration exists
globally; this would be much harder (cf. Joyce). Some people
adopt much softer viewpoints (algebraic, symplectic,
topological, mirror symmetry).



Weak SYZ conjecture

(Weak SYZ conjecture) Prove for a suitable class of Calabi-Yau
manifolds near the large complex structure limit that a special
Lagrangian T n-fibration exists in the generic region.
I SYZ is physically motivated, and admits many interpretations.

The strong version assets that the SLag fibration exists
globally; this would be much harder (cf. Joyce). Some people
adopt much softer viewpoints (algebraic, symplectic,
topological, mirror symmetry).



Weak SYZ conjecture

I ‘Large complex structure limit’ roughly means a polarized
family with max unipotent monodromy.(Alternative views:
essential skeleton; asymptotic of canonical volume). There are
some variations on the definitions; we take the view of
concrete examples.

I ‘Generic’ should at least mean a subset of large percentage of
the measure. (Notice on a CY manifold there is a canonical
measure up to scale).

I HyperKähler case and Abelian variety fibrations (cf. Tosatti et
al., Gross-Wilson). These are closely related to SYZ but not
polarized.

I Nonarchimedean viewpoint (cf. Boucksom).
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Weak SYZ conjecture

Fermat family:

Xs = {Z0Z1 . . .Zn+1 + e−s
n+1∑
0

Zn+2
i = 0}, s � 1.

The ‘correct’ normalisation on the Kähler class is
[ωs ] = s−1O(1)|Xs .



Weak SYZ conjecture

Theorem
Weak SYZ holds for the Fermat family (at least subsequentially) as
s →∞.

Remark
We need the permutation symmetry on the Zi variables to simplify
the combinatorics. We expect the result can be generalised to
many other families. The limit should be unique and passing to
subsequence ought not be necessary, but that’s for the future.
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Nature of the Problem: collapsing metrics

Key feature: in the generic region of the CY manifold, the local
complex structure is modelled on a large annulus region in (C∗)n, ie.

{1 < |zi | < Λ, ∀i} ⊂ (C∗)n

This feature is easy to check and occurs frequently.



Nature of the Problem: collapsing metrics

Example
Consider smooth hypersurfaces {

∑
ame

λ(m)szm = 0} inside toric
varieties of dimension n + 1 with s � 1, where λ satisfies suitable
convexity conditions. In the generic region, only two monomial
terms dominate, so the local structure of the hypersurface is
modelled on (C∗)n, with natural coordinates s−1 log zi . The reason
this is not the whole (C∗)n is that the monomials only dominate in
some local regions.



Nature of the Problem: collapsing metrics

I The next generic behaviour would involve 3 dominating
monomials, etc. There is a kind of stratification.

I If you analyze the local charts carefully, you will see tropical
geometry appearing (i.e. the combinatorics of the logarithm
map is encoded by piecewise linear objects). The Fermat
family involves the least combinatorics.
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Nature of the Problem: collapsing metrics

I CY metrics have an important dimensional reduction. Take a
function φ on (a torus invariant subset of) (C∗)n, so
φ = u ◦ Log. Then φ is psh iff u is convex, and φ satisfies
complex MA iff u satisfies real MA.

Metrics from this dim reduction are called semiflat, because
the restriction to torus fibres are flat. The metrics on fibres
can vary.
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Nature of the problem: collapsing metrics

So really we want to prove that on local charts in the generic region
the metric is C∞ approximately

ωs ≈
√
−1/2

∑ ∂2u

∂xi∂xj
s−1d log z i ∧ s−1d logz j .

Here xi = s−1 log |zi |. Notice this explains our scaling convention
of the Kähler class: it is compatible with a finite diameter Gromov
Hausdorff limit as s →∞.

The SLag fibration in such regions is more or less for free; it is a
small deformation of the log map. The construction uses no more
than McLean deformation theory; then you check the independence
of the chart.



Proof ingredients

The proof is essentially about potential estimates and metric
estimates uniform in s.

I (Technical core) Near the s →∞ limit, there is a very strong
tendency for any Kähler potential to be approximated by a
convex potential, in the sense of a Skoda type estimate. With
a little extra control on the volume density (eg some L∞

bound suffices) this approximation holds in the C 0-sense
uniformly in s, in the generic region.
This uses pluripotential theory (cf. Kolodziej).
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Proof ingredients

I Intuition (not a proof): how can we compare a local Kähler
potential with a convex function?

Given a psh function φ on an annulus in (C∗)n, we can average
over T n-fibres to obtain a function φ̄ on an open set in Rn,
which must be convex. Equivalently φ̄ is the zeroth Fourier
coefficient function of φ. Intuitively, it is very unlikely for a psh
function to be highly oscillatory, so φ should be close to φ̄.

I The above is just the local picture. We need to globalize this
by gluing approximately the convex functions on the local
charts, to produce a global Kähler potential with ‘global
convexity property’. This new Kähler potential is thought as
the regularisation of the original one. This gluing step requires
tropical combinatorics, which is managable in the Fermat case.
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Proof ingredients

I The Kolodziej pluripotential theory package in its usual form
allows one to estimate the Kähler potential in L∞ under
extremely weak assumption on the volume density. In our
proof a slight variant is used to estimate the difference of two
Kähler potentials (‘stability estimate’). The key advantage of
Kolodziej’s method is that it is very robust under the
degeneration of the complex structure, and in some sense only
improves under our degeneration.

I The effect is that we can compare the CY Kähler potential
with its regularisation and show the deviation is C 0-small at
least in the good region.



Proof ingredients

I The Kolodziej pluripotential theory package in its usual form
allows one to estimate the Kähler potential in L∞ under
extremely weak assumption on the volume density. In our
proof a slight variant is used to estimate the difference of two
Kähler potentials (‘stability estimate’). The key advantage of
Kolodziej’s method is that it is very robust under the
degeneration of the complex structure, and in some sense only
improves under our degeneration.

I The effect is that we can compare the CY Kähler potential
with its regularisation and show the deviation is C 0-small at
least in the good region.



Proof ingredients

I Techical detail: the Skoda inequality on a compact Kähler
manifold (X , ω) means that for any ω − psh function u
normalised to sup u = 0, then∫

e−αudµ ≤ C ,

with uniform positive constants α,C independent of u. This α
is related to the α-invariant important in KE metrics.

I In our collapsing setting, we should replace integrals by
average integrals. The robustness of the Kolodziej estimate
roughly means the above two constants α,C are the only
information you need about the Kähler manifold, and the
amazing thing is that they can be chosen uniformly even when
the complex structure is highly degenerate.



Proof ingredients

I Techical detail: when you compare the C 0-deviation of φ and
φ̄, the easy direction is to bound φ− φ̄ from above by
O(s−1/2) (because of mean value inequality). My improved
Skoda inequality says∫

e−αs
1/2(φ−φ̄)dµ ≤ C ,

meaning that φ− φ̄ can only fail to be bounded below by
−O(s−1/2) with exponentially small probability (where dµ is
the Calabi-Yau measure normalised to volume 1). It is quite
striking that for our Fermat case, this holds for any (suitably
normalised) Kähler potential φ without any assumption on its
volume measure. In this sense ‘Kähler potentials have a strong
tendency to be approximated by convex functions’, and
‘Kolodziej’s method only improves under our degeneration’.



Proof ingredients

I Now we know
∥∥φ− φ̄∥∥

C0 is small for large s. Using convexity
we easily get Lipschitz bounds on φ̄, so by Arzela-Ascoli we
can extract a subsequential limit φ∞ as s →∞; this is also
the limit of the local psh function φ.

I Caveat: for different s the local potentials are a priori defined
on different manifolds. Here we are talking about convergence
in the preferred coordinate system from s−1 log zi .



Proof ingredients

I Argue that φ∞ solves the real MA equation. Morally this is
because the MA operator has weak continuity under
C 0-convergence of the potential; here we need a little extra
work because the manifolds are changing.



Proof ingredients

I Solutions of real MA automatically have a lot of regularity. For
example it is C∞ near any strictly convex point, and the
complement of C∞-locus has (n − 1)-Hausdorff measure zero.
Our generic region deletes the nonsmooth locus of φ∞.



Proof ingredients

I How to bootstrap to C 2 and higher regularity?
Savin’s small perturbation theorem roughly says that for a
large class of fully nonlinear 2nd order elliptic equation,
including complex MA, if u is a smooth solution in B2, and v
is another (viscosity) solution with ‖u − v‖C0 � 1, then v has
C∞ bounds and u − v is C∞-small.

I Savin’s theorem is actually a difficult fully nonlinear result.
I We apply Savin to the local universal cover of the annuli in

(C∗)n. The effect is that the high regularity of φ∞ is
transferred to the CY local potential φ for large s, and that’s
what we need for weak SYZ.
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