"Kähler-Einstein metrics, Archimedean Zeta functions and phase transitions"

(*Robert Berman*, 2020)

Chalmers U. of Technology/U. of Gothenburg

For more details and references see

B. ''An invitation to Kähler-Einstein metrics and random point processes''. Surveys in Differential Geometry Vol. 23 (2020).

Motivation

Let X be a n-dim. complex projective algebraic variety (non-singular) and assume Kx=det (T*X)

(i.e. K_X ample). By the Aubin-Yau theorem X ('78) admits a unique Kähler-Einstein metric ω_{KE} with *negative* Ricci curvature:

 $K_X > 0$

But this is an *abstract* existence result.

Problem: find explicit formulas!

Bad news: even the case of a complex *curve* X is intractible...

Indeed, this problem is equivalent to finding an explicit *"uniformization map"* for X:

 $f: X \to \mathbb{H}/\Gamma, \ \omega_{KE} = f^* \omega_{\mathbb{H}}$

Special cases essentially appear in the classical works of Weierstrass, Riemann, Fuchs, Schwartz, Klein, Poincaré,...

(e.g. X is the classical modular curve, the Klein quartic, ...)

In these special cases the uniformization map

$$f: X \to \mathbb{H}/\Gamma$$

is expressed in terms of *periods*, i.e. integrals of the form

where α is an *algebraic form* and γ is a real cycle:

 $\int_{\gamma} \alpha, \xi$

$$f(x) = \frac{\int_{s \in \gamma_1} \alpha(x, s)}{\int_{s \in \gamma_2} \alpha(x, s)}.$$

 α is a relative top form on an ''auxiliary'' family

$$\mathcal{Y} \to X$$
, fiber \mathcal{Y}_x

Ex: for X the modular curve $(X \cong \mathbb{H}/SL(2,\mathbb{Z}))$

$$\mathcal{Y}_x = \text{elliptic curve},$$

In higher dimensions, there are a few explicit uniformization results also using periods (Deligne-Mostow,...) **Relaxed problem:** find canonical Kähler metrics ω_k approximating ω_{KE} such that ω_k is *explicitely* encoded by the *algebraic* structure of X.

More precisely: we would like the canonical approximation ω_k of ω_{KE} to be encoded by the canonical ring of X :

 $R(X) := \bigoplus_{k=1}^{\infty} H^{0}(X, kK_{X})$

k=0

(=the pluricanonical forms of "degree" k)

→Yau-Tian-Donaldson conjecture

Here will explain a probabilistic approach to KE-metrics, that leads to a canonical sequence of metrics ω_k approximating ω_{KE} .

- ω_k is expressed as a *period integral* over $X \times X \cdots \times X$ explicitly encoded by $H^0(X, kK_X)$
- In the case of Fano varieties $-K_X > 0$ (i.e. *positive* Ricci curvature) there are only partial results

The Fano case \rightsquigarrow intruiging relations to

- Yau-Tian-Donaldson conjecture
- Zeta functions
- The theory phase transitions (in statistical mechanics)
- M? A few new results...

The probabilistic approach to KE metrics $(K_X > 0)$

The starting point is the basic fact that the Kähler-Einstein ω_{KE} on X can be recovered from its volume form dV_{KE} :

It is thus enough to construct the canonical (normalized) volume form dV_{KE} .

To this end we will show that there is canonical way of chosing N points on X at random, so that we get equidistribution towards dV_{KE} (almost surely)

First need to define a canonical probability measure $d\mathbb{P}_N$ on X^N .

• It has to be *symmetric*

To this end take N to be the sequence

$$N_k := \dim H^0(X, kK_X)(\to \infty)$$

(="'plurigenera'')

Pick a basis $\alpha_1(x), ..., \alpha_{N_k}(x)$ in $H^0(X, kK_X)$ and define

 $det(x_1, ..., x_N) := \alpha_1(x_1)\alpha_1(x_2) \cdots \alpha_{N_k}(x_{N_k}) \pm ...$ completely antisymmetrized in $(x_1, ..., x_N)$.

We then get an *algebraic form* α on X^{N_k} by defining

$$\alpha(x_1, ..., x_{N_k}) := \det(x_1, ...x_{N_k})^{1/k}$$

It is complex and multivalued, but

$$\widetilde{\alpha}(x_1,...,x_N) \wedge \overline{\alpha(x_1,...,x_N)}$$

defines an honest positive real top form on X^{N_k} , which is symmetric. Now define

$$d\mathbb{P}_{N_k} := \frac{1}{Z_{N_k}} \alpha(x_1, ..., x_{N_k}) \wedge \overline{\alpha(x_1, ..., x_{N_k})},$$

where Z_{N_k} is the normalizing constant.

But is this construction really canonical? In other words, is

$${}^{\varphi_{1}(x)\varphi_{2}(x_{2})\cdots} \\ d\mathbb{P}_{N_{k}} := \frac{\left(\det(x_{1}, \dots x_{N_{k}})^{1/k} \land \overline{\det(x_{1}, \dots x_{N_{k}})^{1/k}}\right)}{Z_{N_{k}}},$$
independent of the choice of basis in $H^{0}(X, kK_{X})$?

Yes! Under a change of basis $det(x_1, ..., x_{N_k}) \rightarrow C_{N_k} det(x_1, ..., x_{N_k})$.

So OK by homogeneity!

Main theorem [B. 2017]

Consider the random measure

on X^{N_k} (endowed with $d\mathbb{P}_{N_k}).$ As $N_k\to\infty$ it converges towards dV_{KE} in probability.

More precisely, $\forall 2 70$

$$\mathbb{P}_{N}\left(d\left(\frac{1}{N_{k}}\sum_{i=1}^{N_{k}}\delta_{x_{i}}, dV_{KE}\right) > \epsilon\right) \le e^{-C_{\epsilon}N}, \ N \to \infty$$

In particular, consider the *expectations*

$$dV_k := \mathbb{E}(\frac{1}{N_k}\sum_{i=1}^{N_k}\delta_{x_i})$$

which define a sequence of canonical volume forms dV_k on X.

The previous theorem implies that

 $dV_k
ightarrow dV_{KE}, \ k
ightarrow \infty$ on X (weakly).

18

Back to periods

The canonical volume form dV_k on X is *explicitely* obtained as follows:

Thus, dV_k is indeed a quotient of two *periods*

One obtains a sequence of canonical Kähler metrics ω_k on X by setting

$$\omega_k := i\partial \bar{\partial} (\log dV_k)$$

(i.e. ω_k is the curvature form of the metric on K_X induced by dV_k).

The convergence

 $dV_k
ightarrow dV_{KE}, \ k
ightarrow \infty$

then implies that

$$\omega_k
ightarrow \omega_{KE}, \ k
ightarrow \infty$$
 (weakly)
(using $i\partial \overline{\partial}(\log dV_{KE}) = \omega_{KE}$).

The canonical Kähler metric ω_k is explicitly given by

 $i\partial_x \bar{\partial}_x \log \int_{X^{N_k-1}} \alpha(x, x_2, ..., x_{N_k}) \wedge \overline{\alpha(x, x_2, ..., x_{N_k})}$

By differentiating log this also becomes a quotient of two *periods*.

Fano varities

```
Now consider the "opposite case" where -K_X > 0,
i.e. X is a Fano variety (non-singular).
```

Then a Kähler-Einstein metric ω_{KE} on X must have *positive* Ricci curvature:

 $\operatorname{Ric}\omega_{KE}=\omega_{KE}$

However, there are *obstructions* to the existence of ω_{KE} :

YTD conjecture (/theorem) X admits a Kähler-Einstein metric ω_{KE} iff X is K-stable

(recall: this is a GIT-type stability condition).

The probabilistic approach when $-K_X > 0$

Recall: when $K_X > 0$ the probability measure on X^{N_k} is defined by

$$d\mathbb{P}_{N_k} := \frac{\left(\det(x_1, \dots x_{N_k})^{1/k} \land \overline{\det(x_1, \dots x_{N_k})^{1/k}}\right)}{Z_{N_k}},$$

where $\det(x_1, \dots x_N) \in H(X, kK_X)^{\otimes N_k}$

- However, when $-K_X > 0$ the spaces $H^0(X, kK_X)$ are trivial!
- Instead, we need to work with the spaces $H^0(X, -kK_X)$
- But then we are forced to replace the power 1/k with -1/k

$$q = dut \frac{1}{k}$$

We thus set

$$N_k := \dim H^0(X, -kK_X) \longrightarrow \infty$$

and

$$d\mathbb{P}_{N_k} = \frac{\left(\det(x_1, \dots x_{N_k})^{-1/k} \wedge \overline{\det(x_1, \dots x_{N_k})^{-1/k}}\right)}{Z_{N_k}}$$

$$=\frac{1/\alpha(x_1,...,x_{N_k})\wedge\overline{1/\alpha(x_1,...,x_{N_k})}}{\Im \quad Z_{N_k}}$$

However, in this case it may be that

$$Z_{N_k} := \int_{X^{N_k}} 1/\alpha(x_1, ..., x_{N_k}) \wedge \overline{1/\alpha(x_1, ..., x_{N_k})} = \infty$$

Indeed, the integrand is singular along the divisor \mathcal{D}_k in X^{N_k} cut out by $\alpha(x_1, ..., x_{N_k})$.

Main conjecture:

• Assume that $Z_{N_k} < \infty$ for k large. Then X admits a unique KE-metric ω_{KE} and

$$\frac{1}{N_k} \sum_{i=1}^{N_k} \delta_{x_i} \to dV_{KE}, \ N_k \to \infty$$

in probability.

• Conversely, if X admits a unique KE-metric ω_{KE} , then $Z_{N_k} < \infty$ for k large.

The condition

$$Z_{N_k} := \int_{X^{N_k}} 1/\alpha(x_1, ..., x_{N_k}) \wedge \overline{1/\alpha(x_1, ..., x_{N_k})} < \infty$$

is of a purely algebraic nature:

let \mathcal{D}_k be the anti-canonical \mathbb{Q} -divisor on X^{N_k} defined by

 $\begin{aligned} \mathcal{D}_k &:= \left\{ (x_1, ..., x_{N_k}) \in X^{N_k} : \ \alpha(x_1, ..., x_{N_k}) = 0 \right\} \\ Z_{N_k} &< \infty \iff \mathcal{D}_k \text{ has mild singularities in the} \\ \text{sense of birational geometry:} \end{aligned}$

$$Z_{N_k} < \infty \iff (\mathcal{D}_k, X^{N_k})$$
 is klt

By definition this means that the *Log Canonical Threshold* satisfies

$$\mathsf{lct}(\mathcal{D}_k, X^{N_k}) > 1$$

Indeed, to analytically define the lct of a divisor

$$\mathcal{D} := \{\alpha = 0\}$$

one looks at the function

$$Z(\beta) := \int |\alpha|^{2\beta} dV, \ \beta \in \mathbb{C}$$

This is a meromorphic function of β with poles in] $-\infty, 0[$:

first pole of $Z(\beta)$ at $\beta = -\text{lct} (D)$

In fact, Atiyah and Gelfand-Bernstein showed in 1970 that

Such meromorphic functions $Z(\beta)$ are often called archimedean Zeta functions.

(non-archimedean p-adic version $Z_p(\beta) \rightsquigarrow$ "algebro-geometric" Zeta functions: the motivic, Hodge, topological zeta functions....)

 $P_{k} = aut k on X^{U}k$ $P_{k} = \xi P_{k} = a\xi$

Here, fixing a volume form dV on X we can globally express

where $\|\cdot\|$ is the metric on $-K_{X^{N_k}}$ induced by dV.

• Hence, $Z_{N_k} := Z_{N_k}(-1).$

By basic properties of log canonical thresholds:

$$|\mathsf{ct}(\mathcal{D}_k, X^{N_k}) > |\beta_0|$$

for some negative β_0 , namely $\beta_0 = -\text{lct}(K_X)$ (Tian's α -invariant).

This means that $Z_{N_k}(\beta) < \infty$ for any $\beta > -\operatorname{lct}(K_X)$. In fact, in this case one

gets a quantitative estimate:

$$Z_{N_k}(\beta) \leq C^{N_k}, \quad (\text{if } \beta > -\text{lct}(K_X))$$

However, for a general Fano X such an estimate does not hold down to $\beta = -1$.

Thm 1 (B. 2017) Assume that there exists $\epsilon > 0$ such that

$Z_{N_k}(\beta) \le C^{N_k}$

for all $\beta > -(1 + \epsilon)$. Then X admits a unique KE-metric ω_{KE} .

What about the (random) equidistribition towards dV_{KE} as $N_k \rightarrow \infty$?

Thm 2 (B. 2020). Equidistribution towards dV_{KE} holds if there exists $\epsilon > 0$:

and the following "zero free hypothesis" holds:

• $Z_{N_k}(\beta) \neq 0$, on $[-1, 0] + D_{\epsilon}$,

where D_{ϵ} is the disc of radius ϵ centered at $0 \in \mathbb{C}$ $\bigwedge_{\text{mbern cont}} \delta f N$

Stability

Recall that the probability measure $d\mathbb{P}_{N_k}$ on X^{N_k} is well-defined iff

$\mathsf{lct} \ (\mathcal{D}_k, X^{N_k}) > 1.$

If this is the case for k >> 1, then the Fano variety X is called Gibbs stable.

There is also a stronger notion: if there exists $\epsilon > 0$:

$$\mathsf{lct}(\mathcal{D}_k, X^{N_k}) > 1 + \epsilon, \ k >> 1$$

then X is called uniformly Gibbs stable.

Algebraic version of the conjecture (without convergence statement)

Let X be a Fano variety (possibly singular)

- X is Gibbs stable iff X is K-stable
- X is uniformly Gibbs stable iff X is uniformly K-stable

Theorem [Fujita-Odaka 2018, Fujita 2016]:

X uniformly Gibbs stable \Longrightarrow X uniformly K-stable

Recall: X is uniformly K-stable $\iff \delta(X) > 1$. Hence, the main conjecture would follow from equality in (*).

Proof strategy $(K_X > 0)$

Fix a volume form dV on X. Then we can express

$$d\mathbb{P}_{N} = \frac{1}{Z_{N}} \|\alpha(x_{1}, ..., x_{N})\|^{2} \frac{dV^{\otimes N}}{\int \int \mathcal{A}^{N}} = \frac{1}{\sqrt{2}} e^{-\beta N E_{N}(x_{1}, ..., x_{N})} \frac{dV^{\otimes N}}{dV^{\otimes N}} \text{ on } X^{N}$$
where
$$E_{N}(x_{1}, ..., x_{N}) := -N^{-1} \log \|\alpha(x_{1}, ..., x_{N})\|^{2}, \quad \beta = 1$$

Statistical mechanics: this is the equilibrium distribution of N interacting particles:

 $E_N(x_1, ..., x_N) = \text{energy/particle}, 1/\beta = \text{temperature}$

 $d\mathbb{P}_N$ is called the *Gibbs measure* and $Z_N(\beta)$ the partition function:

$$d\mathbb{P}_{N} = \frac{1}{Z_{N}(\beta)} e^{-\beta N E_{N}(x_{1},...,x_{N})} dV^{\otimes N} \text{ on } X^{N}$$

The general "free energy principle"

"mean held"

Assume that

 $E_N(x_1, ..., x_N) = E(\mu) + o(1), \ \mu = \frac{1}{N} \sum_{i=1}^N \delta_{x_i} \in \mathcal{P}(X)$

 $(E(\mu)$ is the macroscopic energy). Then one gets convergence in probability:

$$\frac{1}{N}\sum_{i=1}^N \delta_{x_i} \to \mu_\beta$$

where μ_{β} is the minimizer of the "free energy" on $\mathcal{P}(X)$

$$F_{\beta}(\mu) := \beta E(\mu) - S_{dV}(\mu), \quad S_{dV}(\mu) = -\int_X \log \frac{\mu}{dV} \mu,$$

assuming that $F_{\beta}(\mu)$ has a unique minimizer on $\mathcal{P}(X)$:

Free energy =
$$\beta$$
Energy-Entropy

Here $E_N(x_1, ..., x_N) := -N^{-1} \log \|\alpha(x_1, ..., x_N)\|^2$

is strongly *repulsive*.

Indeed,

 $\|\alpha(x_1,...,x_N)\| := \|\det(x_1,...x_N)\|^{1/k}$

and $det(x_1, ..., x_N)$ vanishes when two points coincide.

Do we get

$$E_N(x_1,...,x_N) = E(\mu) + o(1), \ \mu = \frac{1}{N} \sum_{i=1}^N \delta_{x_i}$$

for some functional $E(\mu)$?

 $E_N(x_1,...,x_N) := -N^{-1} \log \|\alpha(x_1,...,x_N)\|^2$

Step 1: The following approximation holds (wrt "Γ–convergence"):

$$E_N(x_1, ..., x_N) = E(\mu) + o(1), \ \mu = \frac{1}{N} \sum_{i=1}^N \delta_{x_i} \in \mathcal{P}(X)$$

where $E(\mu)$ is the pluricomplex energy. B. Boycksom - with ... \sim feeder.

Step 2: The "free energy principle" applies.

Step 3: dV_{KE} is the *unique* minimizer of $F_{\beta}(\mu)$, $\beta = 1$.

In fact, F_1 is, essentially, *Mabuchi's K-energy* functional

 \mathcal{N}

Proof strategy when
$$-K_X > 0$$
 $X = F_{OMO}$

In this case

$$d\mathbb{P}_N = \frac{1}{Z_N} e^{-\beta N E_N(x_1, \dots, x_N)} dV^{\otimes N} \text{ on } X^N$$

where now $\beta = -1$, i.e. *negative* (absolute!) temperature.

Equivalently, can set $\beta = +1$ if

$$E_N(x_1, ..., x_N) \to -E_N(x_1, ..., x_N),$$

i.e. if the interaction energy is made *attrac*-*tive*.

Formally, this makes no difference,....

...but the devil is in the details.

The case $-K_X > 0$ but with $\beta > 0$

$$d\mathbb{P}_{N,\beta} = \frac{1}{Z_N(\beta)} \|\alpha(x_1, ..., x_N)\|^{2\beta} dV^{\otimes N}$$

Then the previous proof gives
$$\frac{1}{N_k} \sum_{i=1}^{N_k} \delta_{x_i} \to dV_\beta, \ N_k \to \infty,$$

where dV_β is the unique minimizer in $\mathcal{P}(X)$ of
 $F_\beta(\mu) := \beta E(\mu) - S(\mu), \ S(\mu) = -\int_X \log \frac{\mu}{dV} \mu,$
Concretely, writing
 $dV_\beta = \omega_\beta^n / V$

the minimizing property gives

$$\begin{aligned} & \int_{P_{\beta}} = \omega_{\beta} + (1+\beta) \operatorname{Ric} \omega_{0} \quad \text{on } X \end{aligned}$$
Ric $\omega_{\beta} = -\beta \omega_{\beta} + (1+\beta) \operatorname{Ric} \omega_{0} \quad \text{on } X$

This is *Aubin's continuity equation* with "timeparameter"

 $t := -\beta$

Note that $\beta = -1$ gives the KE-equation on X!

If ω_{KE} exists, then

$$\beta\mapsto\omega_{eta},\ \ \beta\in [-1,\infty[$$

is a real-analytic curve and $\omega_{-1} = \omega_{KE}$

BUT, when $N \to \infty$ the theorem only gives convergence towards ω_{β} when $\beta > 0$.

What about "analytic continuation"?

However, in physical terms, there could be a "phase transition" as the sign of β is switched and β decreases towards -1.

But *a phase transition is ruled out* by the zerofree hypothesis in Thm 2. Indeed, one can then do "analytic continuation" from $\beta > 0$ to $\beta = -1$.

The "zero-free hypothesis" is the analog of the "Lee-Yang property" in physics, which rules out phase transitions by controlling the zeros of the partition function Z_N .

- The zeros of $\beta \mapsto Z_N(\beta)$ are usually called "Fisher zeroes"
- The "zero-free property" of $Z_N(\beta)$ is known to hold for *spin systems* iff $|\beta| < |\beta_c|$ (the "critical" inverse temperature)
- $T_c := 1/\beta_c$ is the temperature where spontanous magnetization arises).

Connections to quantum gravity in:

"Emergent Sasaki-Einstein geometry and AdS/CFT"

joint with Tristan Collins and Daniel Persson (ArXiv)

X Fano appears as the base of a Calabi-Yau cone

Thank you!