Gauge theory for string algebroids

Mario Garcia-Fernandez

Universidad Autónoma de Madrid Instituto de Ciencias Matemáticas

Geometry in Lisbon

23rd June 2020

Joint work with Rubio and Tipler arXiv:2004.11399

The mathematical study of the **Hull-Strominger system** was initiated by Fu, Li, Tseng, and Yau more than 15 years ago.

 $F \wedge \omega^2 = 0 \qquad \qquad F^{2,0} = F^{0,2} = 0$ $d(\|\Omega\|\omega^2) = 0 \qquad \qquad dd^c \omega - \operatorname{tr} R \wedge R + \operatorname{tr} F \wedge F = 0$

• Li, Yau, JDG 70 (2005). • Fu, Yau, JDG 78 (2008). • Fu, Tseng, Yau, CMP 289 (2009).

Basic ingredients:

- A hermitian form ω on a Calabi-Yau threefold (X, Ω) (possibly non-Kähler).
- A unitary connection A on a bundle over X, with curvature $F = F_A$.
- A connection ∇ on $T\underline{X}$, with curvature $R = R_{\nabla}$

Due to its origins in heterotic string theory, ∇ is often required to be Hermite-Yang-Mills:

$$R \wedge \omega^2 = 0, \qquad R^{2,0} = R^{0,2} = 0.$$

• Strominger, Nucl. Phys. B 274 (1986). • Hull, Turin 1985 Proceedings (1986).

These equations provide a promising approach to the geometrization of *transitions* and *flops* in the passage from Kähler to non-Kähler Calabi-Yau three-folds ($\sim Reid's Fantasy$) ...

• M. Reid, Math. Ann. 278 (1987) 329--334

... and relate to a conjectural generalization of *mirror symmetry* and *GW* theory, where the Calabi-Yau is endowed with a bundle *E* such that $c_2(E) = c_2(X)$.

Melnikov, Plesser, A (0, 2)-mirror map, JHEP 1102 (2011)
 Donagi, Guffin, Katz, Sharpe, Asian J. Math.
 18 (2014)
 Garcia-Fernandez, Crelle's J. (2000)

The Hull-Strominger system has been an active topic of research in differential geometry and mathematical physics

DG: Yau, Li, Fu, Tseng, Fernandez, Ivanov, Ugarte, Villacampa, Grantcharov, Fino, Vezzoni, Andreas, GF,
 Rubio, Tipler, Fei, Phong, Picard, Zhang, Shahbazi, ...
 Hep-th: De la Ossa, Svanes, Anderson, Gray,
 Sharpe, Ashmore, Minasian, Strickland-Constable, Waldram, Tennyson, Candelas, McOrist, Larfors, ...

To the present day, there are two alternative approaches to the existence and uniqueness problem on a (non-Kähler) Calabi-Yau three-fold (X, Ω) :

Anomaly flow

$$\partial_t (\|\Omega\|_\omega \omega^2) = dd^c \omega - \operatorname{tr} R^2 + \operatorname{tr} F^2$$

• Phong, Picard, Zhang, Math. Z. (2017)

<u>Dilaton functional</u>

$$\int_X \|\Omega\|_\omega \ \omega^3$$

• Garcia-Fernandez, Rubio, Shahbazi, Tipler, arXiv:1803.01873, under review

• Garcia-Fernandez, Rubio, Tipler, TAMS (2020), to appear

 Anomaly flow: fix the balanced class b = [∥Ω∥_ωω²] ∈ H^{2,2}_{BC}(X, ℝ) and look for solutions of the Bianchi identity via:

$$\partial_t (\|\Omega\|_\omega \omega^2) = dd^c \omega - \operatorname{tr} R^2 + \operatorname{tr} F^2$$

$F\wedge\omega^2=0$	$F^{2,0} = F^{0,2} = 0$
$d(\ \Omega\ \omega^2)=0$	$dd^c\omega - { m tr} R \wedge R + { m tr} F \wedge F = 0$

• <u>Dilaton functional</u>: define Aeppli classes for solutions of the Bianchi identity via Bott-Chern secondary classes *BCh*₂

$$\mathfrak{a}_1 - \mathfrak{a}_0 = [\omega_1 - \omega_0 - BCh_2] \in H^{1,1}_{\mathcal{A}}(X,\mathbb{R}).$$

'Fix a', and look for conformally balanced and Hermite-Einstein via $\int_X \|\Omega\|_\omega \; \omega^3$

• Tseng, Yau, Generalized cohomologies and supersymmetry, Comm. Math. Phys. 326 (2014).

 Anomaly flow: fix the balanced class b = [∥Ω∥_ωω²] ∈ H^{2,2}_{BC}(X, ℝ) and look for solutions of the Bianchi identity via:

$$\partial_t(\|\Omega\|_\omega\omega^2) = dd^c\omega - \operatorname{tr} R^2 + \operatorname{tr} F^2$$

$$F \wedge \omega^2 = 0 \qquad \qquad F^{2,0} = F^{0,2} = 0$$

$$d(\|\Omega\|\omega^2) = 0 \qquad \qquad dd^c \omega - \operatorname{tr} R \wedge R + \operatorname{tr} F \wedge F = 0$$

• <u>Dilaton functional</u>: define Aeppli classes for solutions of the Bianchi identity via Bott-Chern secondary classes *BCh*₂

$$\mathfrak{a}_1 - \mathfrak{a}_0 = [\omega_1 - \omega_0 - BCh_2] \in H^{1,1}_A(X,\mathbb{R}).$$

'Fix a', and look for conformally balanced and Hermite-Einstein via $\int_{X} \|\Omega\|_{\omega} \ \omega^3$

• Tseng, Yau, Generalized cohomologies and supersymmetry, Comm. Math. Phys. 326 (2014).

The aim of this talk is to reconcile to some extent these two alternative approaches, via the duality pairing

 $H^{1,1}_{A}(X)\otimes H^{2,2}_{BC}(X)\to \mathbb{C}$

and a moment map picture for the moduli space metric.

• GF, Rubio, Tipler, Gauge theory for string algebroids, arXiv:2004.11399

The Calabi problem (through the eyes of the heterotic string)

In the 1950s, E. Calabi asked the question of whether one can prescribe the volume form μ of a Kähler metric on a compact complex manifold X.

For metrics on a fixed Kähler class $[\omega_0] \in H^{1,1}(X, \mathbb{R})$, the *Calabi Problem* reduces to solve the Complex Monge-Ampère equation for a smooth function φ on X:

$$(\omega_0 + 2i\partial\bar\partial\varphi)^n = n!\mu.$$

Theorem (Yau 1977)

Let X be a compact Kähler manifold with smooth volume μ . Then there exists a unique Kähler metric with $\omega^n = n!\mu$ in any Kähler class.

Provided that X admits a holomorphic volume form Ω , taking μ as below reduces the holonomy of the metric to SU(n) (Calabi-Yau metric)

$$\mu = (-1)^{\frac{n(n-1)}{2}} i^n \Omega \wedge \overline{\Omega}.$$

In the 1950s, E. Calabi asked the question of whether one can prescribe the volume form μ of a Kähler metric on a compact complex manifold X.

For metrics on a fixed Kähler class $[\omega_0] \in H^{1,1}(X, \mathbb{R})$, the *Calabi Problem* reduces to solve the Complex Monge-Ampère equation for a smooth function φ on X:

 $(\omega_0+2i\partial\bar\partial\varphi)^n=n!\mu.$

Theorem (Yau 1977)

Let X be a compact Kähler manifold with smooth volume μ . Then there exists a unique Kähler metric with $\omega^n = n!\mu$ in any Kähler class.

Provided that X admits a holomorphic volume form Ω , taking μ as below reduces the holonomy of the metric to SU(n) (Calabi-Yau metric)

$$\mu = (-1)^{\frac{n(n-1)}{2}} i^n \Omega \wedge \overline{\Omega}.$$

In the 1950s, E. Calabi asked the question of whether one can prescribe the volume form μ of a Kähler metric on a compact complex manifold X.

For metrics on a fixed Kähler class $[\omega_0] \in H^{1,1}(X, \mathbb{R})$, the *Calabi Problem* reduces to solve the Complex Monge-Ampère equation for a smooth function φ on X:

$$(\omega_0 + 2i\partial\bar{\partial}\varphi)^n = n!\mu.$$

Theorem (Yau 1977)

Let X be a compact Kähler manifold with smooth volume μ . Then there exists a unique Kähler metric with $\omega^n = n!\mu$ in any Kähler class.

Provided that X admits a holomorphic volume form Ω , taking μ as below reduces the holonomy of the metric to SU(n) (Calabi-Yau metric)

$$\mu = (-1)^{\frac{n(n-1)}{2}} i^n \Omega \wedge \overline{\Omega}.$$

In 2011, Joel Fine gave a moment map interpretation of the Calabi problem using a gauge theory framework.

'Despite the fact that Yau has long since resolved the Calabi conjecture, this moment-map picture does raise interesting questions ...'

• Fine, J. Symp. Geom. 12, 2011.

In this talk, we shall give a different moment map picture, through the eyes of the heterotic string.

• GF, Rubio, Tipler, arXiv:2004.11399

X compact complex manifold of dimension n, possibly non-Kähler. Define

$$\Omega^{1,1}_{>0} = \{\omega \mid \omega(,J) > 0\} \subset \Omega^{1,1}_{\mathbb{R}}$$

and consider the tangent bundle

$$\mathcal{T}\Omega^{1,1}_{>0}=\{(\omega,b)\}\cong\Omega^{1,1}_{>0} imes\Omega^{1,1}_{\mathbb{R}},$$

endowed with the complex structure

$$\mathbf{J}(\dot{\omega},\dot{b})=(-\dot{b},\dot{\omega}).$$

Consider the partial action of the additive group of complex two-forms

$$\begin{aligned} \Omega^2_{\mathbb{C}} \times T\Omega^{1,1}_{>0} &\to T\Omega^{1,1}_{\mathbb{R}} \\ (B,(\omega,b)) &\mapsto (\omega + \operatorname{Re} B^{1,1}, b + \operatorname{Im} B^{1,1}). \end{aligned}$$
(1)

We study a Hamiltonian action of the subgroup of $i\Omega^2 \subset \Omega^2_{\mathbb{C}}$ for a natural family of Kähler structures on $\mathcal{T}\Omega^{1,1}_{>0}$.

To define our family of Kähler structures, we fix a smooth volume form μ on X. For any $\omega \in \Omega_{>0}^{1,1}$, we define the *dilaton function* f_{ω} by

$$\omega^n = n! e^{2f_\omega} \mu$$

Definition: Given $\ell \in \mathbb{R}$, the ℓ -dilaton functional on $T\Omega_{>0}^{1,1}$ is

$$M_{\ell}(\omega, b) := \int_X e^{-\ell f_{\omega}} \frac{\omega^n}{n!}.$$

For any $\ell \neq 2$, there is a pseudo-Kähler structure $\Omega_{\ell} := -d J d \log M_{\ell}$. The associated metric is (the subscript 0 means primitive):

$$g_{\ell} = \frac{2-\ell}{2M_{\ell}} \int_{X} (|\dot{\omega}_{0}|^{2} + |\dot{b}_{0}|^{2}) e^{-\ell f_{\omega}} \frac{\omega^{n}}{n!} + \frac{2-\ell}{2M_{\ell}} \left(\frac{\ell}{2} - \frac{n-1}{n}\right) \int_{X} (|\Lambda_{\omega}\dot{b}|^{2} + |\Lambda_{\omega}\dot{\omega}|^{2}) e^{-\ell f_{\omega}} \frac{\omega^{n}}{n!} + \left(\frac{2-\ell}{2M_{\ell}}\right)^{2} \left(\left(\int_{X} \Lambda_{\omega}\dot{\omega} e^{-\ell f_{\omega}} \frac{\omega^{n}}{n!}\right)^{2} + \left(\int_{X} \Lambda_{\omega}\dot{b} e^{-\ell f_{\omega}} \frac{\omega^{n}}{n!}\right)^{2}\right).$$

To define our family of Kähler structures, we fix a smooth volume form μ on X. For any $\omega \in \Omega_{>0}^{1,1}$, we define the *dilaton function* f_{ω} by

$$\omega^n = n! e^{2f_\omega} \mu$$

Definition: Given $\ell \in \mathbb{R}$, the ℓ -dilaton functional on $T\Omega_{>0}^{1,1}$ is

$$M_\ell(\omega, b) := \int_X e^{-\ell f_\omega} rac{\omega^n}{n!}.$$

For any $\ell \neq 2$, there is a pseudo-Kähler structure $\Omega_{\ell} := -d \mathbf{J} d \log M_{\ell}$. The associated metric is (the subscript 0 means primitive):

$$g_{\ell} = \frac{2-\ell}{2M_{\ell}} \int_{X} (|\dot{\omega}_{0}|^{2} + |\dot{b}_{0}|^{2}) e^{-\ell f_{\omega}} \frac{\omega^{n}}{n!} + \frac{2-\ell}{2M_{\ell}} \left(\frac{\ell}{2} - \frac{n-1}{n}\right) \int_{X} (|\Lambda_{\omega}\dot{b}|^{2} + |\Lambda_{\omega}\dot{\omega}|^{2}) e^{-\ell f_{\omega}} \frac{\omega^{n}}{n!} + \left(\frac{2-\ell}{2M_{\ell}}\right)^{2} \left(\left(\int_{X} \Lambda_{\omega}\dot{\omega} e^{-\ell f_{\omega}} \frac{\omega^{n}}{n!}\right)^{2} + \left(\int_{X} \Lambda_{\omega}\dot{b} e^{-\ell f_{\omega}} \frac{\omega^{n}}{n!}\right)^{2}\right).$$

Proposition (GF, Rubio, Tipler)

The $i\Omega^2$ -action on $(T\Omega_{>0}^{1,1}, \Omega_\ell)$ is Hamiltonian, with equivariant moment map μ_ℓ .

$$\langle \mu_{\ell}(\omega, b), iB \rangle = \frac{2-\ell}{2M_{\ell}} \int_{X} B \wedge e^{-\ell f_{\omega}} \frac{\omega^{n-1}}{(n-1)!}$$

Upon restriction to the subgroup $i\Omega_{ex}^2 \subset i\Omega^2$ of imaginary exact 2-forms, zeros of the moment map are given by conformally balanced metrics $d(e^{-\ell f_\omega}\omega^{n-1}) = 0$.

Proposition (GF, Rubio, Tipler)

The $i\Omega^2$ -action on $(T\Omega_{>0}^{1,1}, \Omega_\ell)$ is Hamiltonian, with equivariant moment map μ_ℓ .

$$\langle \mu_{\ell}(\omega, b), iB \rangle = rac{2-\ell}{2M_{\ell}} \int_{X} B \wedge e^{-\ell f_{\omega}} rac{\omega^{n-1}}{(n-1)!}$$

Upon restriction to the subgroup $i\Omega_{ex}^2 \subset i\Omega^2$ of imaginary exact 2-forms, zeros of the moment map are given by conformally balanced metrics $d(e^{-\ell f_{\omega}}\omega^{n-1}) = 0$.

An interesting upshot of our picture is that the <u>balanced</u> property for a compact complex manifold arises as a balancing condition, analogue to the *zero center of mass*.

Assume X pluriclosed. Fix a real closed three-form $H_{\mathbb{R}} \in \Omega^3$ (~ NS flux in string theory), $dH_{\mathbb{R}} = 0$, and consider the complex subspace

$$\mathcal{W} = \{(\omega, b) \mid d^{c}\omega - db = H_{\mathbb{R}}\} \subset T\Omega^{1,1}_{>0}.$$

Observe: $i\Omega_{ex}^2$ are symmetries for $H_{\mathbb{R}}$.

Proposition (GF, Rubio, Tipler)

The $i\Omega_{ex}^2$ -action on $(\mathcal{W}, \Omega_\ell)$ is Hamiltonian. Zeros of μ_ℓ are given by solutions of $d(e^{-\ell f_\omega}\omega^{n-1}) = 0, \qquad dd^c(\omega + ib) = 0.$ (2)

Observe: Equation (2) implies ω Kähler, $d\omega = 0$, and $f_{\omega} = const$.

Thus, the symplectic reduction $\mathcal{M}_{\ell} = \mu_{\ell}^{-1}(0)/i\Omega_{ex}^2$ can be identified with the moduli space of (complexified) solutions of the Calabi problem on X (for varying $c \in \mathbb{R}$)

$$\omega^n = n! c \mu, \qquad d\omega = 0.$$

Assume X pluriclosed. Fix a real closed three-form $H_{\mathbb{R}} \in \Omega^3$ (~ NS flux in string theory), $dH_{\mathbb{R}} = 0$, and consider the complex subspace

$$\mathcal{W} = \{(\omega, b) \mid d^{c}\omega - db = H_{\mathbb{R}}\} \subset T\Omega^{1,1}_{>0}.$$

Observe: $i\Omega_{ex}^2$ are symmetries for $H_{\mathbb{R}}$.

Proposition (GF, Rubio, Tipler)

The $i\Omega_{ex}^2$ -action on $(\mathcal{W}, \Omega_\ell)$ is Hamiltonian. Zeros of μ_ℓ are given by solutions of $d(e^{-\ell f_\omega} \omega^{n-1}) = 0, \qquad dd^c(\omega + ib) = 0.$ (2)

Observe: Equation (2) implies ω Kähler, $d\omega = 0$, and $f_{\omega} = const$.

Thus, the symplectic reduction $\mathcal{M}_{\ell} = \mu_{\ell}^{-1}(0)/i\Omega_{ex}^2$ can be identified with the moduli space of (complexified) solutions of the Calabi problem on X (for varying $c \in \mathbb{R}$)

$$\omega^n = n! c \mu, \qquad d\omega = 0.$$

Assume X pluriclosed. Fix a real closed three-form $H_{\mathbb{R}} \in \Omega^3$ (~ NS flux in string theory), $dH_{\mathbb{R}} = 0$, and consider the complex subspace

$$\mathcal{W} = \{(\omega, b) \mid d^{c}\omega - db = H_{\mathbb{R}}\} \subset T\Omega^{1,1}_{>0}.$$

Observe: $i\Omega_{ex}^2$ are symmetries for $H_{\mathbb{R}}$.

Proposition (GF, Rubio, Tipler)

The $i\Omega_{ex}^2$ -action on $(\mathcal{W}, \Omega_\ell)$ is Hamiltonian. Zeros of μ_ℓ are given by solutions of $d(e^{-\ell f_\omega} \omega^{n-1}) = 0, \qquad dd^c(\omega + ib) = 0.$ (2)

Observe: Equation (2) implies ω Kähler, $d\omega = 0$, and $f_{\omega} = const$.

Thus, the symplectic reduction $\mathcal{M}_{\ell} = \mu_{\ell}^{-1}(0)/i\Omega_{ex}^2$ can be identified with the moduli space of (complexified) solutions of the Calabi problem on X (for varying $c \in \mathbb{R}$)

$$\omega^n = n! c\mu, \qquad d\omega = 0.$$

Assume for a moment that we do not know ' $\mu_\ell = 0 \Rightarrow$ Kähler': then, any solution of our moment map equations

$$\mu_{\ell} = 0 \qquad \Leftrightarrow \qquad d(e^{-\ell f_{\omega}} \omega^{n-1}) = 0 \qquad dd^{c}(\omega + ib) = 0 \qquad (3)$$

has attached natural Bott-Chern and Aeppli classes:

$$\mathfrak{b}:=[e^{-\ell f_{\omega}}\omega^{n-1}]\in H^{n-1,n-1}_{BC}(X,\mathbb{R}),\qquad \mathfrak{a}:=[\omega+ib]\in H^{1,1}_{A}(X).$$

Recall:

$$H^{p,q}_{BC}(X) = \frac{\ker d}{\operatorname{Im} \partial \bar{\partial}} \qquad H^{p,q}_{A}(X) = \frac{\ker \partial \bar{\partial}}{\operatorname{Im} \partial \oplus \bar{\partial}}$$

and there is a duality pairing

$$H^{1,1}_A(X)\otimes H^{n-1,n-1}_{BC}(X)\to \mathbb{C}$$

Theorem (GF, Rubio, Tipler)

The moduli space $\mathcal{M}_{\ell} := \mu_{\ell}^{-1}(0)/i\Omega_{ex}^2$ of (complexified) solutions of the Calabi problem on X inherits a Kähler structure with metric

$$g_{\ell} = \frac{2-\ell}{2M_{\ell}} \left(\frac{2-\ell}{2M_{\ell}} (\operatorname{Re} \dot{\mathfrak{a}} \cdot \mathfrak{b})^2 - \operatorname{Re} \dot{\mathfrak{a}} \cdot \operatorname{Re} \dot{\mathfrak{b}} + \frac{2-\ell}{2M_{\ell}} (\operatorname{Im} \dot{\mathfrak{a}} \cdot \mathfrak{b})^2 - \operatorname{Im} \dot{\mathfrak{a}} \cdot \operatorname{Im} \dot{\mathfrak{b}} \right)$$

and Kähler potential $-\log M_{\ell}$. Here, $\dot{\mathfrak{b}} \in H^{n-1,n-1}_{BC}(X)$ and $\dot{\mathfrak{a}} \in H^{1,1}_A(X)$ are 'complexified variations' of $\mathfrak{a}, \mathfrak{b}$ obtained via gauge fixing and \cdot is the pairing

 $H^{1,1}_A(X)\otimes H^{n-1,n-1}_{BC}(X)\to \mathbb{C}.$

Remark: by Yau's Theorem $\mathcal{M}_{\ell} \subset H^{1,1}_{\mathcal{A}}(X) \cong H^{1,1}(X)$.

Remark: When (X, Ω) is a Calabi-Yau three-fold and we take

$$\mu = (-1)^{\frac{n(n-1)}{2}} i^n \Omega \wedge \overline{\Omega}$$

we recover the Weil-Petersson metric on the complexified Kähler moduli of X. • Candelas, De la Ossa, Moduli space of Calabi-Yau manifolds, Nuclear Phys. **B 355** (1991)

String algebroids, moment maps, and the Hull-Strominger system

M smooth manifold. *K* compact Lie group.

Definition: A string algebroid with structure group K is given by data (plus axioms):

- a principal K-bundle $P_K \rightarrow M$,
- a sequence $0 \to T^*M \to E_K \to A_{P_K} \to 0$ of smooth vector bundles, where $A_{P_K} := TP_K/K$ is the Atiyah algebroid,
- smooth metric $\langle \cdot, \cdot \rangle$ on E_K ,
- bracket $[\cdot, \cdot]$ on E_K .

Remark: special class of Courant algebroids \sim Generalized geometry (à *la Hitchin*).

Motivation: for K = Spin(r), a string algebroid can be understood as the Atiyah Lie algebroid of a String(r)-principal bundle $String(r) \longrightarrow Spin(r) \longrightarrow SO(r) \longrightarrow O(r)$ *M* smooth manifold. *K* compact Lie group.

Definition: A string algebroid with structure group K is given by data (plus axioms):

- a principal K-bundle $P_K \rightarrow M$,
- a sequence $0 \to T^*M \to E_K \to A_{P_K} \to 0$ of smooth vector bundles, where $A_{P_K} := TP_K/K$ is the Atiyah algebroid,
- smooth metric $\langle \cdot, \cdot \rangle$ on E_K ,
- bracket $[\cdot, \cdot]$ on E_K .

Remark: special class of Courant algebroids \sim Generalized geometry (à *la Hitchin*).

Motivation: for K = Spin(r), a string algebroid can be understood as the Atiyah Lie algebroid of a String(r)-principal bundle

 $String(r) \longrightarrow Spin(r) \longrightarrow SO(r) \longrightarrow O(r),$

<u>Idea:</u> string algebroids are constructed via a gluing procedure using gauge transformations of 'string principal bundles'.

M smooth manifold, *K* compact Lie group with quadratic Lie algebra $(\mathfrak{k}, \langle, \rangle_{\mathfrak{k}})$, and Cartan 3-form on *K*

 $\sigma = -\frac{1}{6} \langle \cdot, [\cdot, \cdot] \rangle_{\mathfrak{k}}.$

Consider the smooth sheaf $\mathcal{S}_{\mathcal{K}}$ of non-abelian groups ($U \subset M$ open)

 $\mathcal{S}_{\mathcal{K}}(U) = \{(B,g) \in \Omega^{2}(U) \times C^{\infty}(U,\mathcal{K}) \text{ satisfying } dB = g^{*}\sigma\}.$

• Sēvera, Letters to Alan Weinstein, 1998-2000, arXiv:1707.00265

A 1-cocycle for the sheaf S_K defines a string algebroid E_K by gluing, via its action on $TU \oplus \mathfrak{k} \oplus T^*U$ with Courant structure

> $\langle X + r + \xi, Y + r + \xi \rangle = i_X \xi + \langle r, r \rangle_{\mathfrak{k}}$ $[X + r + \xi, Y + t + \eta] = [X, Y] + i_X dt - i_Y dr + [r, t]_{\mathfrak{k}}$ $+ L_X \eta - i_Y d\xi + 2\langle dr, t \rangle_{\mathfrak{k}}.$

Example: (~ Hull-Strominger) $K = SU(3) \times SU(k)$, and

 $\langle,\rangle_{\mathfrak{k}} = \mathrm{tr}_{\mathfrak{su}(3)} - \mathrm{tr}_{\mathfrak{su}(k)}$

<u>Idea:</u> string algebroids are constructed via a gluing procedure using gauge transformations of 'string principal bundles'.

M smooth manifold, *K* compact Lie group with quadratic Lie algebra $(\mathfrak{k}, \langle, \rangle_{\mathfrak{k}})$, and Cartan 3-form on *K*

 $\sigma = -\frac{1}{6} \langle \cdot, [\cdot, \cdot] \rangle_{\mathfrak{k}}.$

Consider the smooth sheaf $\mathcal{S}_{\mathcal{K}}$ of non-abelian groups ($U \subset M$ open)

 $\mathcal{S}_{\mathcal{K}}(U) = \{(B,g) \in \Omega^{2}(U) \times C^{\infty}(U,\mathcal{K}) \text{ satisfying } dB = g^{*}\sigma\}.$

• Sēvera, Letters to Alan Weinstein, 1998-2000, arXiv:1707.00265

A 1-cocycle for the sheaf S_K defines a string algebroid E_K by gluing, via its action on $TU \oplus \mathfrak{k} \oplus T^*U$ with Courant structure

$$\langle X + r + \xi, Y + r + \xi \rangle = i_X \xi + \langle r, r \rangle_{\mathfrak{k}} [X + r + \xi, Y + t + \eta] = [X, Y] + i_X dt - i_Y dr + [r, t]_{\mathfrak{k}} + L_X \eta - i_Y d\xi + 2\langle dr, t \rangle_{\mathfrak{k}}.$$

Example: (~ Hull-Strominger) $K = SU(3) \times SU(k)$, and

 $\langle,\rangle_{\mathfrak{k}} = \mathrm{tr}_{\mathfrak{su}(3)} - \mathrm{tr}_{\mathfrak{su}(k)}.$

We aim for an Atiyah-Bott-Donaldson moment map picture for string algebroids ... look for *Chern correspondence*.

Let X be a compact complex manifold with underlying smooth manifold \underline{X} and let E_K a string algebroid over X.

 $E_{\mathcal{K}} \cong T\underline{X} \oplus \operatorname{ad} P_{\mathcal{K}} \oplus T^*\underline{X}.$

There is a *complexification* $E := E_K \otimes \mathbb{C}$.

Definition: A lifting $L \subset E$ of $T^{0,1}X$ is an isotropic, involutive subbundle $[L, L] \subset L$, mapping isomorphically to $T^{0,1}X$ under $\pi \colon E \to T\underline{X} \otimes \mathbb{C}$.

Remark: *L* is the analogue of a *Dolbeault operator*.

Lemma (GF-Rubio-Tipler): A lifting $L \subset E$ of $T^{0,1}X$ determines a holomorphic string algebroid $Q_L = L^{\perp}/L$, where L^{\perp} is the orthogonal complement of $L \subset E$.

Remark: Q_L is the analogue of a holomorphic bundle.

We aim for an Atiyah-Bott-Donaldson moment map picture for string algebroids ... look for *Chern correspondence*.

Let X be a compact complex manifold with underlying smooth manifold \underline{X} and let E_{K} a string algebroid over X.

 $E_{\mathcal{K}} \cong T\underline{X} \oplus \operatorname{ad} P_{\mathcal{K}} \oplus T^*\underline{X}.$

There is a *complexification* $E := E_K \otimes \mathbb{C}$.

Definition: A lifting $L \subset E$ of $T^{0,1}X$ is an isotropic, involutive subbundle $[L, L] \subset L$, mapping isomorphically to $T^{0,1}X$ under $\pi \colon E \to T\underline{X} \otimes \mathbb{C}$.

Remark: *L* is the analogue of a *Dolbeault operator*.

Lemma (GF-Rubio-Tipler): A lifting $L \subset E$ of $T^{0,1}X$ determines a holomorphic string algebroid $Q_L = L^{\perp}/L$, where L^{\perp} is the orthogonal complement of $L \subset E$.

Remark: Q_L is the analogue of a holomorphic bundle.

X complex manifold of dimension n, E_K string algebroid.

Proposition (Chern correspondence) (GF-Rubio-Tipler)

Given a lifting $L \subset E = E_K \otimes \mathbb{C}$, there exists a unique rank 2n (real) subbundle $W \subset E_K$ such that

$$L_W := \{e \in W \otimes \mathbb{C} \mid \pi(e) \in T^{0,1}X\} = L.$$

W determines $\omega \in \Omega^{1,1}_{\mathbb{R}}$ and a classical Chern connection $heta^h$, such that

 $dd^{c}\omega + \langle F_{h} \wedge F_{h} \rangle = 0.$

Remark: W is the analogue of the Chern connection in our context.

Motivation: the data (ω, θ^h) seems to be in agreement with structural properties of connections in *higher gauge theory*.

• Sämann, Wolf, Lett. Math. Phys. 104 (2014)

X complex manifold of dimension n, E_K string algebroid.

Proposition (Chern correspondence) (GF-Rubio-Tipler)

Given a lifting $L \subset E = E_K \otimes \mathbb{C}$, there exists a unique rank 2n (real) subbundle $W \subset E_K$ such that

$$L_W := \{e \in W \otimes \mathbb{C} \mid \pi(e) \in T^{0,1}X\} = L.$$

W determines $\omega \in \Omega^{1,1}_{\mathbb{R}}$ and a classical Chern connection $heta^h$, such that

 $dd^{c}\omega + \langle F_{h} \wedge F_{h} \rangle = 0.$

Remark: W is the analogue of the Chern connection in our context.

Motivation: the data (ω, θ^h) seems to be in agreement with structural properties of connections in *higher gauge theory*.

• Sämann, Wolf, Lett. Math. Phys. 104 (2014)

X compact complex manifold of dimension *n*, possibly non-Kähler. E_K string algebroid over X. Define

$$\mathcal{W} = \{ W \subset E_{\mathcal{K}} \mid [L_W, L_W] \subset L_W, \quad \omega(, J) > 0 \}.$$

Remark: Upon fixing $W \in W$, we can regard $W \subset \Omega^2_{\mathbb{C}} \times A$ and there is a fibration structure

 $\mathcal{W} \to \mathcal{A}^0 = \{ \theta \text{ connection on } P_K \mid F_{\theta}^{0,2} = 0 \}.$

From the *Chern correspondence*, W inherits a natural complex structure preserved by an action of Aut(E_K)

$$\operatorname{Aut}(E_{\mathcal{K}}) \times \mathcal{W} \to \mathcal{W}.$$
 (4)

We study a Hamiltonian action of a subgroup of $\mathcal{H} \subset \operatorname{Aut}(E_{\mathcal{K}})$ for a natural family of Kähler structures on \mathcal{W} .

X compact complex manifold of dimension *n*, possibly non-Kähler. E_K string algebroid over X. Define

$$\mathcal{W} = \{ W \subset E_{\mathcal{K}} \mid [L_W, L_W] \subset L_W, \quad \omega(, J) > 0 \}.$$

Remark: Upon fixing $W \in W$, we can regard $W \subset \Omega^2_{\mathbb{C}} \times A$ and there is a fibration structure

 $\mathcal{W} \to \mathcal{A}^0 = \{ \theta \text{ connection on } P_K \mid F_{\theta}^{0,2} = 0 \}.$

From the *Chern correspondence*, W inherits a natural complex structure preserved by an action of Aut(E_K)

$$\operatorname{Aut}(E_{\mathcal{K}}) \times \mathcal{W} \to \mathcal{W}.$$
 (4)

We study a Hamiltonian action of a subgroup of $\mathcal{H} \subset Aut(E_{\mathcal{K}})$ for a natural family of Kähler structures on \mathcal{W} .

Fix a smooth volume form μ on X. For any $\omega \in \Omega^{1,1}_{>0}$, define the *dilaton* function f_{ω} by $\omega^n = n! e^{2f_{\omega}} \mu$.

Definition: Given $\ell \in \mathbb{R}$, the ℓ -dilaton functional on \mathcal{W} is

$$M_{\ell}(W) := \int_{X} e^{-\ell f_{\omega}} \frac{\omega^{n}}{n!}.$$

For any $\ell \neq 2$, there is a pseudo-Kähler structure $\Omega_{\ell} := -d J d \log M_{\ell}$. The associated metric is (the subscript 0 means primitive):

$$g_{\ell} = \frac{\ell - 2}{M_{\ell}} \int_{X} \langle \dot{\theta} \wedge J \dot{\theta} \rangle \wedge e^{-\ell f_{\omega}} \frac{\omega^{n-1}}{(n-1)!} \\ + \frac{2 - \ell}{2M_{\ell}} \int_{X} (|\dot{\omega}_{0}|^{2} + |\dot{b}_{0}|^{2}) e^{-\ell f_{\omega}} \frac{\omega^{n}}{n!} \\ + \frac{2 - \ell}{2M_{\ell}} \left(\frac{\ell}{2} - \frac{n-1}{n} \right) \int_{X} (|\Lambda_{\omega}\dot{b}|^{2} + |\Lambda_{\omega}\dot{\omega}|^{2}) e^{-\ell f_{\omega}} \frac{\omega^{n}}{n!} \\ + \left(\frac{2 - \ell}{2M_{\ell}} \right)^{2} \left(\left(\int_{X} \Lambda_{\omega} \dot{\omega} e^{-\ell f_{\omega}} \frac{\omega^{n}}{n!} \right)^{2} + \left(\int_{X} \Lambda_{\omega} \dot{b} e^{-\ell f_{\omega}} \frac{\omega^{n}}{n!} \right)^{2} \right).$$

Fix a smooth volume form μ on X. For any $\omega \in \Omega^{1,1}_{>0}$, define the *dilaton* function f_{ω} by $\omega^n = n! e^{2f_{\omega}} \mu$.

Definition: Given $\ell \in \mathbb{R}$, the ℓ -dilaton functional on \mathcal{W} is

$$M_{\ell}(W) := \int_{X} e^{-\ell f_{\omega}} \frac{\omega^n}{n!}.$$

For any $\ell \neq 2$, there is a pseudo-Kähler structure $\Omega_{\ell} := -d \mathbf{J} d \log M_{\ell}$. The associated metric is (the subscript 0 means primitive):

$$g_{\ell} = \frac{\ell - 2}{M_{\ell}} \int_{X} \langle \dot{\theta} \wedge J\dot{\theta} \rangle \wedge e^{-\ell f_{\omega}} \frac{\omega^{n-1}}{(n-1)!} \\ + \frac{2 - \ell}{2M_{\ell}} \int_{X} (|\dot{\omega}_{0}|^{2} + |\dot{b}_{0}|^{2}) e^{-\ell f_{\omega}} \frac{\omega^{n}}{n!} \\ + \frac{2 - \ell}{2M_{\ell}} \left(\frac{\ell}{2} - \frac{n-1}{n} \right) \int_{X} (|\Lambda_{\omega}\dot{b}|^{2} + |\Lambda_{\omega}\dot{\omega}|^{2}) e^{-\ell f_{\omega}} \frac{\omega^{n}}{n!} \\ + \left(\frac{2 - \ell}{2M_{\ell}} \right)^{2} \left(\left(\int_{X} \Lambda_{\omega} \dot{\omega} e^{-\ell f_{\omega}} \frac{\omega^{n}}{n!} \right)^{2} + \left(\int_{X} \Lambda_{\omega} \dot{b} e^{-\ell f_{\omega}} \frac{\omega^{n}}{n!} \right)^{2} \right).$$

Proposition (GF, Rubio, Tipler)

The Aut(E_{κ})-action on $(\mathcal{W}, \Omega_{\ell})$ is Hamiltonian. Upon restriction to a normal subgroup $\mathcal{H} \subset Aut(E_{\kappa})$, zeros of the moment map μ_{ℓ} are given by solutions of the *Calabi system*

$$egin{aligned} &\mathcal{F}_{ heta} \wedge \omega^{n-1} = 0, &\mathcal{F}_{ heta}^{0,2} = 0, \ &d(e^{-\ell f_{\omega}} \omega^{n-1}) = 0, ⅆ^c \omega + \langle \mathcal{F}_{ heta} \wedge \mathcal{F}_{ heta}
angle = 0. \end{aligned}$$

(5)

Observe: $W \in \mathcal{W}$ determines an isomorphism

 $\mathsf{Lie}\,\mathsf{Aut}(E_{\mathcal{K}}) = \{(u,B) \mid d(B-2\langle u,F_{\theta}\rangle) = 0\} \subset \Omega^{0}(\mathsf{ad}\,P_{\mathcal{K}}) \times \Omega^{2}.$

The normal Lie subalgebra Lie \mathcal{H} is given by $B^{1,1} - 2\langle u, F_{\theta} \rangle \in Im \ \partial \oplus \overline{\partial}$.

Remark: When (X, Ω) is a Calabi-Yau three-fold and we take $\ell = 1$ and

 $\mu = i\Omega \wedge \overline{\Omega},$

we have $e^{-f_{\omega}} = \|\Omega\|_{\omega}$ and we recover the Hull-Strominger system.

Proposition (GF, Rubio, Tipler)

The Aut(E_{κ})-action on $(\mathcal{W}, \Omega_{\ell})$ is Hamiltonian. Upon restriction to a normal subgroup $\mathcal{H} \subset Aut(E_{\kappa})$, zeros of the moment map μ_{ℓ} are given by solutions of the *Calabi system*

$$egin{aligned} & F_{ heta} \wedge \omega^{n-1} = 0, & F_{ heta}^{0,2} = 0, \ & d(e^{-\ell f_{\omega}} \omega^{n-1}) = 0, & dd^c \omega + \langle F_{ heta} \wedge F_{ heta}
angle = 0. \end{aligned}$$

5)

Observe: $W \in \mathcal{W}$ determines an isomorphism

 $\mathsf{Lie}\,\mathsf{Aut}(E_{\mathcal{K}}) = \{(u,B) \mid d(B-2\langle u,F_{\theta}\rangle) = 0\} \subset \Omega^{0}(\mathsf{ad}\,P_{\mathcal{K}}) \times \Omega^{2}.$

The normal Lie subalgebra Lie \mathcal{H} is given by $B^{1,1} - 2\langle u, F_{\theta} \rangle \in Im \ \partial \oplus \overline{\partial}$.

Remark: When (X, Ω) is a Calabi-Yau three-fold and we take $\ell = 1$ and

 $\mu = i\Omega \wedge \overline{\Omega},$

we have $e^{-f_{\omega}} = \|\Omega\|_{\omega}$ and we recover the Hull-Strominger system.

An interesting upshot of our *gauge theory picture* is that the Hull-Strominger system is characterized as a moment map condition.

• GF, Rubio, Tipler, Gauge theory for string algebroids, arXiv:2004.11399

 $F \wedge \omega^2 = 0 \qquad \qquad F^{2,0} = F^{0,2} = 0$ $d(\|\Omega\|\omega^2) = 0 \qquad \qquad dd^c \omega - \operatorname{tr} R \wedge R + \operatorname{tr} F \wedge F = 0$

Remark: An alternative moment map construction 'moving the complex structure' on X has been provided very recently in the physics literature.

• A. Ashmore, C. Strickland-Constable, D. Tennyson, D. Waldram, arXiv:1912.09981.

The moduli space metric

X compact complex manifold of dimension *n*, possibly non-Kähler, with fixed volume form μ . E_K string algebroid over X.

The symplectic reduction $\mathcal{M}_{\ell} := \mu_{\ell}^{-1}(0)/\mathcal{H}$ of the space of horizontal subbundles $W \subset E_{\mathcal{K}}$ is the moduli space of solutions of the Calabi system:

$$egin{aligned} & \mathcal{F}_{ heta} \wedge \omega^{n-1} = 0, & \mathcal{F}_{ heta}^{0,2} = 0, \ & d(e^{-\ell f_{\omega}} \omega^{n-1}) = 0, & dd^c \omega + \langle \mathcal{F}_{ heta} \wedge \mathcal{F}_{ heta}
angle = 0. \end{aligned}$$

(6)

Definition: We say that $[W] \in \mathcal{M}_{\ell}$ satisfies **Condition A** if the linearization of (6) at W along the 'Aeppli class' has kernel Lie Aut Q_{L_W} .

Observe: fixing the holomorphic string algebroid Q_{L_W} , Aeppli classes for solutions of the Bianchi identity are defined via Bott-Chern secondary classes BCh_2

$$\mathfrak{a}_1 - \mathfrak{a}_0 = [\omega_1 - \omega_0 - BCh_2] \in H^{1,1}_A(X,\mathbb{R}).$$

Kähler analogue of Condition A: solutions of the linearized cscK equation in a fixed Kähler class are Hamiltonian Killing vector fields.

X compact complex manifold of dimension *n*, possibly non-Kähler, with fixed volume form μ . E_K string algebroid over X.

The symplectic reduction $\mathcal{M}_{\ell} := \mu_{\ell}^{-1}(0)/\mathcal{H}$ of the space of horizontal subbundles $W \subset E_{\kappa}$ is the moduli space of solutions of the Calabi system:

$$F_{\theta} \wedge \omega^{n-1} = 0, \qquad F_{\theta}^{0,2} = 0, d(e^{-\ell f_{\omega}} \omega^{n-1}) = 0, \qquad dd^{c} \omega + \langle F_{\theta} \wedge F_{\theta} \rangle = 0.$$
(6)

Definition: We say that $[W] \in \mathcal{M}_{\ell}$ satisfies **Condition A** if the linearization of (6) at W along the 'Aeppli class' has kernel Lie Aut Q_{L_W} .

Observe: fixing the holomorphic string algebroid Q_{L_W} , Aeppli classes for solutions of the Bianchi identity are defined via Bott-Chern secondary classes BCh_2

$$\mathfrak{a}_1 - \mathfrak{a}_0 = [\omega_1 - \omega_0 - BCh_2] \in H^{1,1}_A(X,\mathbb{R}).$$

Kähler analogue of Condition A: solutions of the linearized cscK equation in a fixed Kähler class are Hamiltonian Killing vector fields.

X compact complex manifold of dimension *n*, possibly non-Kähler, with fixed volume form μ . E_{κ} string algebroid over X.

The symplectic reduction $\mathcal{M}_{\ell} := \mu_{\ell}^{-1}(0)/\mathcal{H}$ of the space of horizontal subbundles $W \subset E_{\kappa}$ is the moduli space of solutions of the Calabi system:

$$F_{\theta} \wedge \omega^{n-1} = 0, \qquad F_{\theta}^{0,2} = 0, d(e^{-\ell f_{\omega}} \omega^{n-1}) = 0, \qquad dd^{c} \omega + \langle F_{\theta} \wedge F_{\theta} \rangle = 0.$$
(6)

Definition: We say that $[W] \in \mathcal{M}_{\ell}$ satisfies **Condition A** if the linearization of (6) at W along the 'Aeppli class' has kernel Lie Aut Q_{L_W} .

Observe: fixing the *holomorphic string algebroid* Q_{L_W} , Aeppli classes for solutions of the Bianchi identity are defined via Bott-Chern secondary classes BCh_2

$$\mathfrak{a}_1 - \mathfrak{a}_0 = [\omega_1 - \omega_0 - BCh_2] \in H^{1,1}_A(X, \mathbb{R}).$$

Kähler analogue of Condition A: solutions of the linearized cscK equation in a fixed Kähler class are Hamiltonian Killing vector fields.

Theorem (GF, Rubio, Tipler)

Assume $h_A^{0,1}(X) = 0$, $h_{\overline{\partial}}^{0,2}(X) = 0$, and **Condition A**. The moduli space of solutions of the *Calabi system* on X inherits a pseudo-Kähler structure with metric g_ℓ and Kähler potential $-\log M_\ell$

$$g_{\ell} = \frac{\ell - 2}{M_{\ell}} \int_{X} \langle \dot{\theta} \wedge J \dot{\theta} \rangle \wedge e^{-\ell f_{\omega}} \frac{\omega^{n-1}}{(n-1)!} \\ + \frac{2 - \ell}{2M_{\ell}} \int_{X} (|\dot{\omega}_{0}|^{2} + |\dot{b}_{0}|^{2}) e^{-\ell f_{\omega}} \frac{\omega^{n}}{n!} \\ + \frac{2 - \ell}{2M_{\ell}} \left(\frac{\ell}{2} - \frac{n-1}{n} \right) \int_{X} (|\Lambda_{\omega} \dot{b}|^{2} + |\Lambda_{\omega} \dot{\omega}|^{2}) e^{-\ell f_{\omega}} \frac{\omega^{n}}{n!} \\ + \left(\frac{2 - \ell}{2M_{\ell}} \right)^{2} \left(\left(\int_{X} \Lambda_{\omega} \dot{\omega} e^{-\ell f_{\omega}} \frac{\omega^{n}}{n!} \right)^{2} + \left(\int_{X} \Lambda_{\omega} \dot{b} e^{-\ell f_{\omega}} \frac{\omega^{n}}{n!} \right)^{2} \right).$$

When (X, Ω) is a Calabi-Yau three-fold and we take $\ell = 1$ and $\mu = i\Omega \wedge \overline{\Omega}$, we obtain the moduli space metric for Hull-Strominger, with Kähler potential

$$-\log \int_X \|\Omega\|_\omega \omega^3.$$

Theorem (GF, Rubio, Tipler)

Assume $h_A^{0,1}(X) = 0$, $h_{\overline{\partial}}^{0,2}(X) = 0$, and **Condition A**. The moduli space of solutions of the *Calabi system* on X inherits a pseudo-Kähler structure with metric g_ℓ and Kähler potential $-\log M_\ell$

$$g_{\ell} = \frac{\ell - 2}{M_{\ell}} \int_{X} \langle \dot{\theta} \wedge J \dot{\theta} \rangle \wedge e^{-\ell f_{\omega}} \frac{\omega^{n-1}}{(n-1)!} \\ + \frac{2 - \ell}{2M_{\ell}} \int_{X} (|\dot{\omega}_{0}|^{2} + |\dot{b}_{0}|^{2}) e^{-\ell f_{\omega}} \frac{\omega^{n}}{n!} \\ + \frac{2 - \ell}{2M_{\ell}} \left(\frac{\ell}{2} - \frac{n-1}{n} \right) \int_{X} (|\Lambda_{\omega}\dot{b}|^{2} + |\Lambda_{\omega}\dot{\omega}|^{2}) e^{-\ell f_{\omega}} \frac{\omega^{n}}{n!} \\ + \left(\frac{2 - \ell}{2M_{\ell}} \right)^{2} \left(\left(\int_{X} \Lambda_{\omega} \dot{\omega} e^{-\ell f_{\omega}} \frac{\omega^{n}}{n!} \right)^{2} + \left(\int_{X} \Lambda_{\omega} \dot{b} e^{-\ell f_{\omega}} \frac{\omega^{n}}{n!} \right)^{2} \right).$$

When (X, Ω) is a Calabi-Yau three-fold and we take $\ell = 1$ and $\mu = i\Omega \wedge \overline{\Omega}$, we obtain the moduli space metric for Hull-Strominger, with Kähler potential

$$-\log \int_X \|\Omega\|_\omega \omega^3.$$

As a consequence of our result, the Kähler potential on the moduli space of solutions of the Hull-Strominger system is given by

$$-\log \int_X \|\Omega\|_\omega \omega^3$$

where $\int_{X} \|\Omega\|_{\omega} \omega^{3}$ is the <u>dilaton functional</u> as introduced in

• GF, Rubio, Shahbazi, Tipler, Canonical metrics on holomorphic Courant algebroids, arXiv:1803.01873

Our formula for the Kähler potential shall be compared with Candelas-De la Ossa-McOrist formula, given by $K_{CDM} = -\log \int_X i\Omega \wedge \overline{\Omega} - \frac{4}{3}\log \int_X \omega^3$.

• Candelas, De la Ossa, McOrist, A Metric for Heterotic Moduli, Comm. Math. Phys. 356 (2017)

Observation (McOrist): both formulas agree to order 0 in α' expansion.

$$K_{CDM} \sim -\log\left(\frac{2}{9}\int_X \|\Omega\|^2 \omega^3 \cdot \int_X \omega^3\right) \sim -2\log\left(\int_X \|\Omega\|\omega^3\right) + O(\alpha').$$

As a consequence of our result, the Kähler potential on the moduli space of solutions of the Hull-Strominger system is given by

$$-\log \int_X \|\Omega\|_\omega \omega^3$$

where $\int_{\mathbf{X}} \|\Omega\|_{\omega} \omega^3$ is the <u>dilaton functional</u> as introduced in

• GF, Rubio, Shahbazi, Tipler, Canonical metrics on holomorphic Courant algebroids, arXiv:1803.01873

Our formula for the Kähler potential shall be compared with Candelas-De la Ossa-McOrist formula, given by $\mathcal{K}_{CDM} = -\log \int_X i\Omega \wedge \overline{\Omega} - \frac{4}{3}\log \int_X \omega^3$. • Candelas, De la Ossa, McDrist, A Metric for Heterotic Moduli, Comm. Math. Phys. **356** (2017)

Observation (McOrist): both formulas agree to order 0 in α' expansion.

$$\mathcal{K}_{CDM} \sim -\log\left(\frac{2}{9}\int_X \|\Omega\|^2 \omega^3 \cdot \int_X \omega^3\right) \sim -2\log\left(\int_X \|\Omega\|\omega^3\right) + O(\alpha').$$

By construction, the moduli space \mathcal{M}_{ℓ} has a natural map to the classical moduli space of holomorphic principal *G*-bundles $\mathcal{M}_{bundles}$, with $G = K^c$,

 $\mathcal{M}_\ell \to \mathcal{M}_{\textit{bundles}}.$

Morally, a 'conformal submersion' for the Atiyah-Bott-Donaldson metric.

$$g_{\ell} = \frac{\ell - 2}{M_{\ell}} \int_{X} \langle \dot{\theta} \wedge J \dot{\theta} \rangle \wedge e^{-\ell f_{\omega}} \frac{\omega^{n-1}}{(n-1)!} \\ + \frac{2 - \ell}{2M_{\ell}} \int_{X} (|\dot{\omega}_{0}|^{2} + |\dot{b}_{0}|^{2}) e^{-\ell f_{\omega}} \frac{\omega^{n}}{n!} \\ + \frac{2 - \ell}{2M_{\ell}} \left(\frac{\ell}{2} - \frac{n-1}{n} \right) \int_{X} (|\Lambda_{\omega}\dot{b}|^{2} + |\Lambda_{\omega}\dot{\omega}|^{2}) e^{-\ell f_{\omega}} \frac{\omega^{n}}{n!} \\ + \left(\frac{2 - \ell}{2M_{\ell}} \right)^{2} \left(\left(\int_{X} \Lambda_{\omega} \dot{\omega} e^{-\ell f_{\omega}} \frac{\omega^{n}}{n!} \right)^{2} + \left(\int_{X} \Lambda_{\omega} \dot{b} e^{-\ell f_{\omega}} \frac{\omega^{n}}{n!} \right)^{2} \right).$$

Observe: in our picture, ω varies in moduli.

By construction, the moduli space \mathcal{M}_{ℓ} has a natural map to the classical moduli space of holomorphic principal G-bundles $\mathcal{M}_{bundles}$, with $G = K^c$,

$$\mathcal{M}_{\ell} \to \mathcal{M}_{bundles}.$$
 (7)

Theorem (GF, Rubio, Tipler)

Assume $h_A^{0,1}(X) = 0$, $h_{\bar{a}}^{0,2}(X) = 0$, and **Condition A**. Then, the metric g_{ℓ} along the fibres of (7) is given by

$$g_{\ell} = \frac{2-\ell}{2M_{\ell}} \left(\frac{2-\ell}{2M_{\ell}} (\text{Re}\ \dot{\mathfrak{a}} \cdot \mathfrak{b})^2 - \text{Re}\ \dot{\mathfrak{a}} \cdot \text{Re}\ \dot{\mathfrak{b}} + \frac{2-\ell}{2M_{\ell}} (\text{Im}\ \dot{\mathfrak{a}} \cdot \mathfrak{b})^2 - \text{Im}\ \dot{\mathfrak{a}} \cdot \text{Im}\ \dot{\mathfrak{b}} \right)$$

Here, $\dot{\mathfrak{b}} \in H^{n-1,n-1}_{BC}(X)$, $\dot{\mathfrak{a}} \in H^{1,1}_{A}(X)$ are 'complexified variations'-obtained via gauge fixing-of the balanced class b and the Aeppli class a of a solution and \cdot is

 $H^{1,1}_{A}(X) \otimes H^{n-1,n-1}_{PC}(X) \to \mathbb{C}.$

Note: Bott-Chern and Aeppli classes of solutions are defined by

 $\mathfrak{b} := [e^{-\ell f_{\omega}} \omega^{n-1}] \in H^{n-1,n-1}_{PC}(X,\mathbb{R}), \quad \mathfrak{a}_1 - \mathfrak{a}_0 := [\omega_1 - \omega_0 + BC_2] \in H^{1,1}_{A}(X,\mathbb{R})$

Our formula for the moduli metric along the fibres of $\mathcal{M}_{\ell} \to \mathcal{M}_{bundles}$, given by

$$g_{\ell} = \frac{2-\ell}{2M_{\ell}} \left(\frac{2-\ell}{2M_{\ell}} (\operatorname{Re} \dot{\mathfrak{a}} \cdot \mathfrak{b})^2 - \operatorname{Re} \dot{\mathfrak{a}} \cdot \operatorname{Re} \dot{\mathfrak{b}} + \frac{2-\ell}{2M_{\ell}} (\operatorname{Im} \dot{\mathfrak{a}} \cdot \mathfrak{b})^2 - \operatorname{Im} \dot{\mathfrak{a}} \cdot \operatorname{Im} \dot{\mathfrak{b}} \right)^2$$

shows that g_{ℓ} is 'semi-topological', in the sense that fibre-wise it can be expressed in terms of classical cohomological quantities.

• GF, Rubio, Tipler, arXiv:2004.11399

When (X, Ω) is a Calabi-Yau three-fold and we take $\mu = i\Omega \wedge \overline{\Omega}$ we recover Strominger's formula for the metric on the complexified Kähler moduli of X.

• Strominger, Phys. Rev. Lett. 55 (1985)

Observe: the formula for the holomorphic prepotential on the complexified Kähler moduli of X, given by the natural cubic form

$$H^{1,1}(X) \to \mathbb{C} \colon [\alpha] \mapsto \int_X \alpha^3 + quantum \ corrections \ (\sim GW),$$

seems to break as soon as we split the Kähler class into the Aeppli and Bott-Chern parameters \mathfrak{a} and \mathfrak{b} .

Our formula for the moduli metric along the fibres of $\mathcal{M}_{\ell} \to \mathcal{M}_{bundles}$, given by

$$g_{\ell} = \frac{2-\ell}{2M_{\ell}} \left(\frac{2-\ell}{2M_{\ell}} (\text{Re}\ \dot{\mathfrak{a}} \cdot \mathfrak{b})^2 - \text{Re}\ \dot{\mathfrak{a}} \cdot \text{Re}\ \dot{\mathfrak{b}} + \frac{2-\ell}{2M_{\ell}} (\text{Im}\ \dot{\mathfrak{a}} \cdot \mathfrak{b})^2 - \text{Im}\ \dot{\mathfrak{a}} \cdot \text{Im}\ \dot{\mathfrak{b}} \right)^2$$

shows that g_{ℓ} is 'semi-topological', in the sense that fibre-wise it can be expressed in terms of classical cohomological quantities.

GF, Rubio, Tipler, arXiv:2004.11399

When (X, Ω) is a Calabi-Yau three-fold and we take $\mu = i\Omega \wedge \overline{\Omega}$ we recover *Strominger's formula* for the metric on the *complexified Kähler moduli* of X.

• Strominger, Phys. Rev. Lett. 55 (1985)

Observe: the formula for the holomorphic prepotential on the complexified Kähler moduli of X, given by the natural cubic form

$$H^{1,1}(X) \to \mathbb{C} \colon [\alpha] \mapsto \int_X \alpha^3 + quantum \ corrections \ (\sim GW),$$

seems to break as soon as we split the Kähler class into the Aeppli and Bott-Chern parameters \mathfrak{a} and \mathfrak{b} .

Infinitesimal Donaldson-Uhlenbeck-Yau

To finish, we discuss the relation between \mathcal{M}_{ℓ} and the moduli space of holomorphic string algebroids over X. This is suggested by the correspondence between solutions of the Hermite-Yang-Mills equations and polystable bundles, given by the <u>Donaldson-Uhlenbeck-Yau</u> Theorem

$$F \wedge \omega^{n-1} = 0, \qquad F^{2,0} = F^{0,2} = 0.$$

Let X be a compact complex manifold with underlying smooth manifold \underline{X} and let E_K a string algebroid over X with *complexification* $E := E_K \otimes \mathbb{C}$. By the *Chern correspondence*, there is a diagram of moduli spaces:

where \mathcal{G}_{P_G} is the (smooth) complex gauge group, $\mathcal{L}/\operatorname{Aut}(E)$ is the moduli space of holomorphic string algebroids and $\mathcal{L}/\mathcal{H}^c$ is a Teichmüller space.

To finish, we discuss the relation between \mathcal{M}_{ℓ} and the moduli space of holomorphic string algebroids over X. This is suggested by the correspondence between solutions of the Hermite-Yang-Mills equations and polystable bundles, given by the <u>Donaldson-Uhlenbeck-Yau</u> Theorem

$$F \wedge \omega^{n-1} = 0, \qquad F^{2,0} = F^{0,2} = 0.$$

Let X be a compact complex manifold with underlying smooth manifold \underline{X} and let E_K a string algebroid over X with *complexification* $E := E_K \otimes \mathbb{C}$. By the *Chern correspondence*, there is a diagram of moduli spaces:

where \mathcal{G}_{P_G} is the (smooth) complex gauge group, $\mathcal{L}/\operatorname{Aut}(E)$ is the moduli space of holomorphic string algebroids and $\mathcal{L}/\mathcal{H}^c$ is a Teichmüller space.

Consider the map which associates to a solution W of the Calabi system the holomorphic string algebroid $Q := Q_{L_W}$:

$$\mathcal{M}_\ell := \mu_\ell^{-1}(0)/\mathcal{H} \longleftrightarrow \mathcal{L}/\mathcal{H}^c \colon [W] \mapsto [Q].$$

Theorem (GF, Rubio, Tipler)

Assume $h_A^{0,1}(X) = 0$, $h_{\bar{\partial}}^{0,2}(X) = 0$, and **Condition A**. Then, the tangent to the moduli space \mathcal{M}_{ℓ} at [W] is canonically isomorphic to the tangent to the Teichmüller space $\mathcal{L}/\mathcal{H}^c$ for holomorphic string algebroids at [Q].

This strongly suggests that the existence of solutions should be related to a <u>stability condition</u> for <u>holomorphic string algebroids</u> Q. The precise relation is still unclear, as the balanced class $\mathfrak{b} \in H^{n-1,n-1}_{BC}(X,\mathbb{R})$ of solutions in our setup varies in moduli. • The conjectural stability condition should be related to properties of the *integral of the moment map* along the 'Aeppli class', given by the dilaton functional M_{ℓ} .

• GF, Rubio, Shahbazi, Tipler, Canonical metrics on holomorphic Courant algebroids, arXiv:1803.01873

• Complex gauge symmetries for string algebroids can be regarded as (isomorphism classes) of Morita equivalences. This points towards a 2-category, which may play an important role in the stability condition

• GF, Rubio, Tipler, Gauge theory for string algebroids, arXiv:2004.11399

• We speculate that there is a relation between this new form of stability and the following conjectural inequality, motivated by a *Gukov's type formula* for the four-dimensional *gravitino mass*

$$M_{3/2} = c_0 e^{K/2} W \qquad \qquad M_{3/2} = \frac{\sqrt{8} e^{\phi_4} W}{4 \int_X \|\Omega\|_{\omega} \frac{\omega^3}{6}}.$$

• Gurrieri, Lukas, Micu, Heterotic on half-flat, Phys. Rev. D70 (2004)

Conjecture (GF, Rubio, Tipler)

Let (X, Ω) be a Calabi-Yau three-fold with bundle *P*. If (X, Ω, P) admits a solution of the Hull-Strominger system, then the variations of the Aeppli and balanced classes of nearby solutions with fixed bundle must satisfy

$$Re \dot{\mathfrak{a}} \cdot Re \dot{\mathfrak{b}} < \frac{1}{2\int_{X} \|\Omega\|_{\omega} \frac{\omega^{3}}{6}} (Re \dot{\mathfrak{a}} \cdot \mathfrak{b})^{2}.$$
(9)

Thank you!