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Motivation

Hofer 1990, . . . : The group Ham(W ,!) of compactly supported
Hamiltonian di↵eomorphisms carries a natural bi-invariant metric
(Hofer’s metric) for every symplectic manifold (W ,!).

Eliashberg–Polterovich 1999, Eliashberg–Kim–Polterovich

2006: The (universal cover of the) group Cont(M, ⇠) of
compactly supported contactomorphisms carries a natural
bi-invariant partial order for some contact manifolds (M, ⇠),
e.g. for RP2n�1 but not for its 2-1 cover S2n�1.

Goal of this talk: Study the remnants of this partial order on the
Lie algebra of Cont(M, ⇠) modulo the adjoint action.



Setup

(M2n�1, ⇠ = ker↵) contact manifold (not necessarily
compact) with contact 1-form ↵ (↵ ^ (d↵)n�1 > 0) and Reeb
vector field R (↵(R) = 1 and iRd↵ = 0)

G := Cont0(M, ⇠) identity component of the group of
compactly supported contactomorphisms g (i.e. g⇤⇠ = ⇠)

g its Lie algebra, consisting of compactly supported contact
vector fields Y (i.e. LY ⇠ = 0)

We will use the canonical identification

g ⇠= C
1
0 (M)

Y 7! KY := ↵(Y )

YK := KR + ZK  [ K ,

where YK 2 ⇠ is defined by (dK + iZK
d↵)|⇠ = 0.
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Setup

The convex cone

g�0 := {K 2 g | K (x) � 0 8x 2 M}

defines a natural partial order on g by

H  K :() K � H 2 g�0 () H(x)  K (x) 8x 2 M

From here 2 ways to proceed:

1) The partial order on g gives rise to a preorder on G by
g  h :() 9 smooth path (gt)t2[0,1] in G with g0 = g , g1 = h,

and g
�1
t ġt 2 g�0 8t.

When is this preorder nondegenerate (i.e., g  h and h  g implies
g = h) and thus defines a partial order on G (or on its univeral
cover eG )? ; not today
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Setup

2) g 2 G acts on Y 2 g by the adjoint action

AdgY = g⇤Y .

On K 2 C
1
0 (M) such that Y = YK this becomes

AdgK = ↵(g⇤YK )

= (g⇤↵)| {z }
=cg↵

(YK ) � g�1

=
�
cg ↵(YK )| {z }

=K

�
� g�1

with a smooth function cg : M ! R>0, so

AdgK = (cgK ) � g�1

The multiplication by the positive function cg (which is not present
in the symplectic case) might change the order on g a lot.



Setup

Question. What is left of the partial order on g up to the adjoint
action? More precisely:

The adjoint action does not change signs of K , so it preserves
g�0 and

H  K =) AdgH  AdgK 8g 2 G

If K 2 g�0 and H(x) < 0 for some x 2 M, then AdgK 6 H

for any g 2 G . So we will restrict to K ,H 2 g�0.

More precise question. Given K ,H 2 g�0 \ {0}, does there exist
g 2 G such that AdgK � H?

Remark. The motivation for this came from Borman–Eliashberg–
Murphy’s existence proof for contact structures in higher
dimensions, which could be considerably simplified if this question
had a positive answer for suitable (M, ⇠) (which it does not).



Example 1

⇣
M = R2n�1, ↵ = dz �

n�1X

i=1

yidxi

⌘

 s(x , y , z) := (sx , sy , s2z), s > 0,  ⇤
s↵ = s

2↵

K 2 g�0 \ {0} ; K (p) > 0 for some p 2 R2n�1, w.g.o.g. p = 0
; K � " > 0 on ball B" around 0 for some " > 0.

Then Ks := Ad s
K = s

2
K �  �1

s satisfies

Ks � s
2" on  s(B") �

s�1
Bs"

=) 8H 2 g�0 9 s � 1 : Ad s
K � H.

So the partial order becomes a totally degenerate preorder
(a  b 8a, b) modulo the adjoint action (flexibility)!
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Example 2

(M2n�1, ⇠ = ker↵) with M closed

g>0 := {K 2 C
1(M) | K (x) > 0 8x 2 M}

Consider K ,H 2 g>0 with K  H  AdgK for some g 2 G . Then:

vol := ↵ ^ (d↵)n�1, g
⇤↵ = cg↵ =) g

⇤
vol = c

n

gvol ,

H  AdgK = (cgK ) � g�1 , cgK � H � g , H
�n � g · cng � K

�n

=)
Z

M

K
�n

vol 
Z

M

H
�n � g · cngvol| {z }

=g⇤vol

=

Z

M

H
�n

vol |{z}
KH

Z

M

K
�n

vol

=) K = H

So the partial order remains nondegenerate modulo the adjoint
action (rigidity)!
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Main class of examples

Cn, � := 1
2

P
n

j=1(xjdyj � yjdxj)

S
2n�1 ⇢ Cn unit sphere, ↵ := �|S2n�1 contact form

@x1 , . . . , @xn , @y1 , . . . , @yn standard basis of Cn

⇧k < Cn spanned by last k basis vectors, 1  k  2n � 1

⇧?
k
< Cn spanned by first 2n � k basis vectors

(Mk := S
2n�1 \ ⇧k , ⇠ = ker↵) contact manifold (noncompact

but convex at infinity)

g+
k
:= {K 2 g�0

�� K |
g(⌃?

k
) > 0 for some g 2 G} Ad-invariant

cone

Note. ⇧k is isotropic for 1  k  n, and coisotropic for
n + 1  k  2n � 1.
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The main theorem

Main Theorem. (a) For k � n the partial order on g+
k
becomes

totally degenerate modulo the adjoint action, i.e.

8H,K 2 g+
k
9 g 2 G : AdgH  K . (flexibility)

(b) For k < n the partial order on g+
k
does not become totally

degenerate modulo the adjoint action, i.e.

9H,K 2 g+
k
: 6 9 g 2 G : AdgH  K . (rigidity)
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Special cases

n = 2, k = 3: M3 = S
3 \ ⇧3

⇠= R3 q R3 is flexible by Example 1.

n = 2, k = 2: M3 = S
3 \ ⇧2

⇠= S
1 ⇥ R3 ⇠= J

1
S
1 (1-jet space)

n = 2, k = 2: M3 = S
3 \ ⇧2

⇠= S
1 ⇥R3 ⇠= J

1
S
1 (1-jet space of S1)

is flexible

general n  k : Mk = S
2n�1 \ ⇧k

⇠= J
1(S2n�k�1)⇥ R2k�2n is

flexible

n = 2, k = 1: M1 = S
3 \ ⇧1

⇠= S
2 ⇥ R is rigid

The last case appears in Borman–Eliashberg–Murphy’s existence
proof for contact structures in dimension 3.
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Proof of (a)

For k � n consider the vector field on Cn

bY :=
2n�kX

j=1

(xj@xj � yj@yj )

Explicit computations show:

L bY� = 0 and [ bY ,Z ] = 0 for the Liouville vector field

Z = 1
2

P
n

j=1(xj@xj + yj@yj );

bY induces a contact vector field Y = bY � fZ on Mk ;

the flow gt of Y contracts Mk into arbitrarily small
neighbourhoods of ⌃?

k
as t !1;

for H,K 2 g+
k
, AdgtH becomes arbitrarily small (both its

support and its values) as t !1, so eventually AdgtH  K .
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Proof of (b)

Idea (following Eliashberg–Kim–Polterovich): Translate the
question into symplectic non-squeezing for certain unbounded
domains in Cn.

We will identify

(Cn \ {0},�) ⇠= (R+
r

⇥ S
2n�1

x
, r↵) symplectization of (S2n�1, ⇠).

Main construction: To H 2 g+
k
we associate the unbounded

domain

V (H) := {0} [ {(r , x) 2 R+ ⇥ S
2n�1 | rH(x) < 1} ⇢ Cn.
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Proof of (b)

Properties of V (H)

(i) g 2 G gives rise to bg 2 Symp(R+ ⇥ S
2n�1, r↵) via

bg(r , x) :=
⇣

r

cg (x)
, g(x)

�
.

Proof: bg⇤(r↵) = r

cg (x)
g
⇤↵ = r↵.

(ii)

V (AdgH) = {(r , x) | r · (cgH) � g�1(x) < 1}

=
n⇣

r

cg (x)
, g(x)

⌘
)
���

r

cg (x)
· (cgH)(x)

| {z }
=rH(x)

< 1
o

= bg
�
V (H)

�

(iii) H  K () rH(x)  rK (x)8(r , x)() V (K ) ⇢ V (H)
(iv) V (sH) = 1

s
V (H) Ks >o



Proof of (b)

Properties (iii) and (iv) translate the relation AdgH  K into the
symplectic embedding V (K ) ⇢ bg

�
V (H)

�
. An obstruction to such

an embedding is provided by

Proposition. There exists a “symplectic capacity”

c : Ck ! [0,1],

defined on a suitable class of unbounded open subsets of Cn

containing the domains V (H) for H 2 g+
k
, with the following

properties:

1 U ⇢ V =) c(U)  c(V );

2 c
�
bg(U)

�
= c(U) 8g 2 G ;

3 c(sU) = s
2
c(U) 8s > 0;

4 0 < c
�
V (H)

�
<1 8H 2 g+

k
.



Proof of (b)

Proof of the Main Theorem assuming the Proposition.

This follows directly with K := sH from the following

Claim: For H 2 g+
k
and 0 < s < 1 6 9g 2 G : AdgH  sH.

Proof of Claim:

AdgH  sH

=) 1

s
V (H) = V (sH) ⇢ V (AdgH) = bg

�
V (H)

�

=) 1

s2
c
�
V (H)

�
= c

⇣1
s
V (H)

⌘
 c

⇣
bg
�
V (H)

�⌘
= c

�
V (H)

�

=) s � 1.

This proves the Claim and thus the Main Theorem ⇤

IVC .)
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Proof of (b)

Construction of the symplectic capacity c

u
2 :=

nX

i=1

x
2
i +

n�kX

i=1

y
2
i , v

2 :=
nX

i=n�k+1

y
2
i

(Recall k < n). For a, b > 0 consider the hyperboloids

V
a,b
k

:= {z 2 Cn | u
2

a2
� v

2

b2
< 1}

Their symplectic homology in Conley-Zehnder index n � k is

SH
(0,c)
n�k

(V a,b
k

) =

(
Z2 c > ⇡a2,

0 c  ⇡a2.



Proof of (b)

For an open subset U ⇢ Cn with V
a,b
k
⇢ U for some a, b set

c(U) := inf{c > 0 | SH(0,c)
n�k

(U)
surj�! SH

(0,c)
n�k

(V a,b
k

) = Z2},

where a > is chosen very small. This definition does not depend on
a, b and defines a symplectic capacity satisfying

0 < ⇡a2 = c(V a,b
k

)  c
�
V (H)

�
 c(V a

0,b0

k
) = ⇡a02 <1,

where a, b, a0, b0 are chosen such that V a,b
k
⇢ V (H) ⇢ V

a
0,b0

k
.
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