Partial orders on contactomorphism groups and their Lie algebras joint work with Y. Eliashberg and L. Polterovich

Kai Cieliebak

University of Augsburg

Kai Cieliebak

Hofer 1990, ...: The group $Ham(W, \omega)$ of compactly supported Hamiltonian diffeomorphisms carries a natural bi-invariant metric (Hofer's metric) for every symplectic manifold (W, ω) .

Eliashberg–Polterovich 1999, Eliashberg–Kim–Polterovich 2006: The (universal cover of the) group $Cont(M, \xi)$ of compactly supported contactomorphisms carries a natural bi-invariant partial order for some contact manifolds (M, ξ) , e.g. for $\mathbb{R}P^{2n-1}$ but **not** for its 2-1 cover S^{2n-1} .

Goal of this talk: Study the remnants of this partial order on the Lie algebra of $Cont(M, \xi)$ modulo the adjoint action.

Setup

• $(M^{2n-1}, \xi = \ker \alpha)$ contact manifold (not necessarily

• $(M^{2n-1}, \xi = \ker \alpha)$ contact manifold (not necessarily compact) with contact 1-form α ($\alpha \wedge (d\alpha)^{n-1} > 0$) and Reeb vector field R ($\alpha(R) = 1$ and $i_R d\alpha = 0$)

- G := Cont₀(M, ξ) identity component of the group of compactly supported contactomorphisms g (i.e. g^{*}ξ = ξ)
- g its Lie algebra, consisting of compactly supported contact vector fields Y (i.e. $L_Y \xi = 0$)

《曰》 《聞》 《理》 《理》 三世

We will use the canonical identification

$$\mathfrak{g} \cong C_0^{\infty}(M)$$
$$Y \mapsto K_Y := \alpha(Y)$$
$$Y_K := KR + Z_K \leftrightarrow K,$$
where $\mathfrak{F}_K \in \xi$ is defined by $(dK + i_{Z_K} d\alpha)|_{\xi} = 0.$

Setup

The convex cone

$$\mathfrak{g}^{\geq 0} := \{ K \in \mathfrak{g} \mid K(x) \geq 0 \ \forall x \in M \}$$

defines a natural partial order on g by

$$H \leq K : \iff K - H \in \mathfrak{g}^{\geq 0} \iff H(x) \leq K(x) \ \forall x \in M$$

From here 2 ways to proceed:

1 se v 1) The partial order on g gives rise to a preorder on G by $g \leq h : \iff \exists$ smooth path $(g_t)_{t \in [0,1]}$ in G with $g_0 = g$, $g_1 = h$, and $g_t^{-1}\dot{g}_t \in \mathfrak{g}^{\geq 0} \ \forall t$. When is this preorder nondegenerate (i.e., $g \leq h$ and $h \leq g$ implies g = h) and thus defines a partial order on G (or on its univeral cover G? \rightarrow not today

2) $g \in G$ acts on $Y \in \mathfrak{g}$ by the adjoint action

$$\operatorname{Ad}_g Y = g_* Y.$$

On $K \in C_0^\infty(M)$ such that $Y = Y_K$ this becomes

$$\operatorname{Ad}_{g} \mathcal{K} = \alpha(g_* Y_{\mathcal{K}})$$
$$= \underbrace{(g^* \alpha)(Y_{\mathcal{K}}) \circ g^{-1}}_{=c_g \alpha}$$
$$= (c_g \underbrace{\alpha(Y_{\mathcal{K}})}_{=\mathcal{K}}) \circ g^{-1}$$

with a smooth function $c_g: M
ightarrow \mathbb{R}_{>0}$, so

$$\mathrm{Ad}_g K = (\underline{c_g} K) \circ g^{-1}$$

The multiplication by the positive function c_g (which is not present in the symplectic case) might change the order on \mathfrak{g} a lot.

Setup

Question. What is left of the partial order on \mathfrak{g} up to the adjoint action? More precisely:

 $\bullet\,$ The adjoint action does not change signs of ${\cal K},$ so it preserves $\mathfrak{g}^{\geq 0}$ and

$$H \leq K \Longrightarrow \mathrm{Ad}_g H \leq \mathrm{Ad}_g K \; \forall g \in G$$

• If $K \in \mathfrak{g}^{\geq 0}$ and H(x) < 0 for some $x \in M$, then $\operatorname{Ad}_g K \not\leq H$ for any $g \in G$. So we will restrict to $K, H \in \mathfrak{g}^{\geq 0}$.

More precise question. Given $K, H \in \mathfrak{g}^{\geq 0} \setminus \{0\}$, does there exist $g \in G$ such that $\operatorname{Ad}_g K \geq H$?

Remark. The motivation for this came from Borman–Eliashberg– Murphy's existence proof for contact structures in higher dimensions, which could be considerably simplified if this question had a positive answer for suitable (M, ξ) (which it does not).

Example 1

$$\begin{pmatrix} M = \mathbb{R}^{2n-1}, \ \alpha = dz - \sum_{i=1}^{n-1} y_i dx_i \end{pmatrix}$$

$$\psi_s(x, y, z) := (sx, sy, s^2 z), \quad s > 0, \qquad \psi_s^* \alpha = s^2 \alpha$$

$$K \in \mathfrak{g}^{\geq 0} \setminus \{0\} \rightsquigarrow K(p) > 0 \text{ for some } p \in \mathbb{R}^{2n-1}, \text{ w.g.o.g. } p = 0$$

$$\rightsquigarrow K \geq \varepsilon > 0 \text{ on ball } B_\varepsilon \text{ around } 0 \text{ for some } \varepsilon > 0.$$

Then $K_s := \operatorname{Ad}_{\psi_s} K = s^2 K \circ \psi_s^{-1} \text{ satisfies}$

$$K_s \geq s^2 \varepsilon \text{ on } \psi_s(B_\varepsilon) \underset{s \geq 1}{\supset} B_{s\varepsilon}$$

$$\Longrightarrow \forall H \in \mathfrak{g}^{\geq 0} \exists s > 1 : \operatorname{Ad}_{\psi_s} K > H.$$

So the partial order becomes a totally degenerate preorder $(a \le b \forall a, b)$ modulo the adjoint action (flexibility)!

Example 2

$$(M^{2n-1}, \xi = \ker \alpha) \text{ with } M \text{ closed}$$
$$\mathfrak{g}^{>0} := \{ K \in C^{\infty}(M) \mid K(x) > 0 \quad \forall x \in M \}$$

Consider $K, H \in \mathfrak{g}^{>0}$ with $K \leq H \leq \operatorname{Ad}_g K$ for some $g \in G$. Then:

So the partial order remains nondegenerate modulo the adjoint action (rigidity)!

Main class of examples

•
$$\mathbb{C}^n$$
, $\lambda := \frac{1}{2} \sum_{j=1}^n (x_j dy_j - y_j dx_j)$
• $S^{2n-1} \subset \mathbb{C}^n$ unit sphere, $\alpha := \lambda|_{S^{2n-1}}$ contact form
• $\partial_{x_1}, \dots, \partial_{x_n}, \partial_{y_1}, \dots, \partial_{y_n}$ standard basis of \mathbb{C}^n
• $\Pi_k < \mathbb{C}^n$ spanned by last k basis vectors, $1 \le k \le 2n - 1$
• $\Pi_k^\perp < \mathbb{C}^n$ spanned by first $2n - k$ basis vectors
• $(M_k := S^{2n-1} \setminus \Pi_k, \xi = \ker \alpha)$ contact manifold (noncompact but convex at infinity)
• $\mathfrak{g}_k^+ := \{K \in \mathfrak{g}^{\ge 0} \mid K|_{\mathfrak{g}(\Sigma_k^\perp)} > 0 \text{ for some } \mathfrak{g} \in G\}$ Ad-invariant cone
 $\Sigma_k^\perp = \Pi_k^\perp \cap S^{n-1}$

2-1

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへで

Note. Π_k is isotropic for $1 \le k \le n$, and coisotropic for $n+1 \le k \le 2n-1$.

Main Theorem. (a) For $k \ge n$ the partial order on \mathfrak{g}_k^+ becomes totally degenerate modulo the adjoint action, i.e.

 $\forall H, K \in \mathfrak{g}_k^+ \exists g \in G : \mathrm{Ad}_g H \leq K.$ (flexibility)

(b) For k < n the partial order on \mathfrak{g}_k^+ does **not** become totally degenerate modulo the adjoint action, i.e.

 $\exists H, K \in \mathfrak{g}_k^+ : \nexists g \in G : \operatorname{Ad}_g H \leq K.$ (rigidity)

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

Special cases

 $\begin{array}{l} \underline{n=2, k=3:} & M_3=S^3 \setminus \Pi_3 \cong \mathbb{R}^3 \amalg \mathbb{R}^3 \text{ is flexible by Example 1.} \\ \underline{n=2, k=2:} & M_3=S^3 \setminus \Pi_2 \cong S^1 \times \mathbb{R}^3 \cong J^1 S^1 \text{ (1-jet space)} \\ \underline{n=2, k=2:} & M_3=S^3 \setminus \Pi_2 \cong S^1 \times \mathbb{R}^3 \cong J^1 S^1 \text{ (1-jet space of } S^1) \\ \underline{is \text{ flexible}} \end{array}$

general $n \leq k$: $M_k = S^{2n-1} \setminus \prod_k \cong J^1(S^{2n-k-1}) \times \mathbb{R}^{2k-2n}$ is flexible

n = 2, k = 1: $M_1 = S^3 \setminus \Pi_1 \cong S^2 \times \mathbb{R}$ is rigid

The last case appears in Borman–Eliashberg–Murphy's existence proof for contact structures in dimension 3.

◆□▶ ◆□▶ ◆注▶ ◆注▶ 注 のへで

For $k \geq n$ consider the vector field on \mathbb{C}^n

$$\widehat{Y} := \sum_{j=1}^{2n-k} (x_j \partial_{x_j} - y_j \partial_{y_j})$$

Explicit computations show:

- $L_{\widehat{Y}}\lambda = 0$ and $[\widehat{Y}, Z] = 0$ for the Liouville vector field $Z = \frac{1}{2} \sum_{j=1}^{n} (x_j \partial_{x_j} + y_j \partial_{y_j});$
- \widehat{Y} induces a contact vector field $Y = \widehat{Y} fZ$ on M_k ;
- the flow gt of Y contracts Mk into arbitrarily small neighbourhoods of Σk as t → ∞;
- for H, K ∈ g⁺_k, Ad_{gt} H becomes arbitrarily small (both its support and its values) as t → ∞, so eventually Ad_{gt} H ≤ K.

Idea (following Eliashberg–Kim–Polterovich): Translate the question into symplectic non-squeezing for certain unbounded domains in \mathbb{C}^n .

We will identify

$$(\mathbb{C}^n \setminus \{0\}, \lambda) \cong (\mathbb{R}_+ \times S^{2n-1}_x, r\alpha)$$
 symplectization of (S^{2n-1}, ξ) .

Main construction: To $H \in \mathfrak{g}_k^+$ we associate the unbounded domain

$$V(H) := \{0\} \cup \{(r,x) \in \mathbb{R}_+ \times S^{2n-1} \mid rH(x) < 1\} \subset \mathbb{C}^n.$$

◆□▶ ◆□▶ ◆注▶ ◆注▶ 注 のへで

▲□▶ ▲圖▶ ▲≣▶ ▲≣▶ 三三 のへで

Proof of (b)

Properties of V(H)

0 $g \in G$ gives rise to $\widehat{g} \in \operatorname{Symp}(\mathbb{R}_+ imes S^{2n-1}, rlpha)$ via

$$\widehat{g}(r,x) := \left(\frac{r}{c_g(x)}, g(x)\right).$$

Proof:
$$\hat{g}^*(r\alpha) = \frac{r}{c_g(x)}g^*\alpha = r\alpha.$$

$$V(\operatorname{Ad}_{g}H) = \{(r,x) \mid r \cdot (c_{g}H) \circ g^{-1}(x) < 1\}$$
$$= \left\{ \left(\frac{r}{c_{g}(x)}, g(x)\right) \right) \mid \underbrace{\frac{r}{c_{g}(x)} \cdot (c_{g}H)(x)}_{=rH(x)} < 1 \right\}$$
$$= \widehat{g}(V(H))$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへで

 $\begin{array}{ll} \textcircled{0} & H \leq K \iff rH(x) \leq rK(x) \forall (r,x) \iff V(K) \subset V(H) \\ \textcircled{0} & V(sH) = \frac{1}{s}V(H) \end{array}$

Proof of (b)

Properties (iii) and (iv) translate the relation $\operatorname{Ad}_g H \leq K$ into the symplectic embedding $V(K) \subset \widehat{g}(V(H))$. An obstruction to such an embedding is provided by

Proposition. There exists a "symplectic capacity"

 $c: \mathcal{C}_k \to [0,\infty],$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

defined on a suitable class of unbounded open subsets of \mathbb{C}^n containing the domains V(H) for $H \in \mathfrak{g}_k^+$, with the following properties:

$$\begin{array}{l} \bullet \quad U \subset V \Longrightarrow c(U) \leq c(V); \\ \bullet \quad c(\widehat{g}(U)) = c(U) \; \forall g \in G; \\ \bullet \quad c(sU) = s^2 c(U) \; \forall s > 0; \\ \bullet \quad 0 < c(V(H)) < \infty \; \forall H \in \mathfrak{g}_k^+ \end{array}$$

Proof of the Main Theorem assuming the Proposition. This follows directly with K := sH from the following Claim: For $H \in \mathfrak{g}_k^+$ and $0 < s < 1 \not\exists g \in G : \operatorname{Ad}_g H \leq sH$. Proof of Claim:

$$\begin{aligned} Ad_{g}H &\leq sH \qquad \bigvee(\cdot) \\ & \Longrightarrow \frac{1}{s}V(H) = V(sH) \subset V(\mathrm{Ad}_{g}H) = \widehat{g}(V(H)) \qquad \mathcal{L}(\cdot) \\ & \Longrightarrow \frac{1}{s^{2}}c(V(H)) = c\left(\frac{1}{s}V(H)\right) \leq c\left(\widehat{g}(V(H))\right) = c(V(H)) \\ & \Longrightarrow s \geq 1. \end{aligned}$$

(日) (四) (문) (문) (문)

This proves the Claim and thus the Main Theorem

Proof of (b)

Construction of the symplectic capacity *c*

$$u^{2} := \sum_{i=1}^{n} x_{i}^{2} + \sum_{i=1}^{n-k} y_{i}^{2}, \qquad v^{2} := \sum_{i=n-k+1}^{n} y_{i}^{2}$$

(Recall k < n). For a, b > 0 consider the hyperboloids

$$V_k^{a,b} := \{ z \in \mathbb{C}^n \mid \frac{u^2}{a^2} - \frac{v^2}{b^2} < 1 \}$$

Their **symplectic homology** in Conley-Zehnder index n - k is

$$SH_{n-k}^{(0,c)}(V_k^{a,b}) = egin{cases} \mathbb{Z}_2 & c > \pi a^2, \ 0 & c \leq \pi a^2. \end{cases}$$

(日) (四) (문) (문) (문)

For an open subset $U \subset \mathbb{C}^n$ with $V^{a,b}_k \subset U$ for some a,b set

$$c(U) := \inf\{c > 0 \mid SH_{n-k}^{(0,c)}(U) \xrightarrow{surj} SH_{n-k}^{(0,c)}(V_k^{a,b}) = \mathbb{Z}_2\},$$

where a > is chosen very small. This definition does not depend on a, b and defines a symplectic capacity satisfying

$$0 < \pi a^2 = c(V_k^{a,b}) \leq c(V(H)) \leq c(V_k^{a',b'}) = \pi a'^2 < \infty,$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

where a, b, a', b' are chosen such that $V_k^{a,b} \subset V(H) \subset V_k^{a',b'}$.