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Hofer 1990, ...: The group Ham(W,w) of compactly supported
Hamiltonian diffeomorphisms carries a natural bi-invariant metric
(Hofer's metric) for every symplectic manifold (W, w).

Eliashberg—Polterovich 1999, Eliashberg—Kim—Polterovich
2006: The (universal cover of the) group Cont(M, &) of
compactly supported contactomorphisms carries a natural
bi-invariant partial order for some contact manifolds (M, &),
e.g. for RP?"~1 but not for its 2-1 cover 271,

Goal of this talk: Study the remnants of this partial order on the
Lie algebra of Cont(M, &) modulo the adjoint action.



_ cote vt S (4 Lt

o (M2l ¢ = kera) contact manifold (not necessarily
compact) with contact 1-form a (a A (da)™! > 0) and Reeb
vector field R (a(R) =1 and irda = 0)

e G := Conto(M, &) identity component of the group of
compactly supported contactomorphisms g (i.e. g*¢ = &)

@ g its Lie algebra, consisting of compactly supported contact
vector fields Y (i.e. Ly& =0)

AR
We will use the canonical identification /,/,75 "‘; "55

9= G (M)
Y = Ky = oY)
Yk = KR+ Zx +i K,

€
where X € ¢ is defined by (dK + iz da)le = 0.



Setup

The convex cone
g2 :={Kecg|K(x)>0Vxe M}

defines a natural partial order on g by

H<K:i=K-Hecg2® < H(x) < K(x)VxeM

From here 2 ways to proceed:

1) The partial order on g gives rise to a preorder on G by=
g < h :<= 3 smooth path (g¢):c[o,1] in G with go = g, g1 = h,
and g;lgt € g0 vt.

When is this preorder nondegenerate (i.e., g < h and h < g implies
g = h) and thus defines a partial order on G (or on its univeral
cover G)? ~» not today



2) g € G acts on Y € g by the adjoint action
AdgY =g.Y.
On K € C§°(M) such that Y = Y this becomes

AdgK = a(g. Yk)
=(g*)(Yk)og™
~——

=cgu

with a smooth function ¢ : M — R, so

AdgK = (c;K)og™?

The multiplication by the positive function ¢, (which is not present
in the symplectic case) might change the order on g a lot.



Question. What is left of the partial order on g up to the adjoint
action? More precisely:

@ The adjoint action does not change signs of K, so it preserves
>0
g=" and
H< K= Ad;H < Ad;KVgeG

o If K € g=% and H(x) < 0 for some x € M, then Ad,K £ H
for any g € G. So we will restrict to K, H € g=°.

More precise question. Given K, H € g=0\ {0}, does there exist
g € G such that AdgK > H?

Remark. The motivation for this came from Borman—Eliashberg—
Murphy's existence proof for contact structures in higher
dimensions, which could be considerably simplified if this question
had a positive answer for suitable (M, ) (which it does not).



Example 1

n—1
(I\/I =R a=dz— Z}/idxi>
i=1

¢s(X;%Z) = (va Sy,SZZ), s >0, w:a = Sza AMNcK

K € g=°\ {0} ~ K(p) > 0 for some p € R?""1, w.g.0g
~» K > e > 0 on ball B; around 0 for some ¢ > 0.

Then K := Ady K = 2K o¢;1 satisfies m

S Q2 O
Ks > s% on v¢s(B:) sgl Bs. w

>0 B
== VHecg="3ds>1:AdyK > H.

s€
So the partial order becomes a totally degenerate preorder
(a < bVa, b) modulo the adjoint action (flexibility)!



(M2 ¢ = ker o) with M closed
g% :={K € C®(M) | K(x) >0Vx € M}

Consider K, H € g”% with K < H < AdgK for some g € G. Then:

vol :i= a A (da)™ !, g*a = cga = g*vol = cgvol,
HSAdgK:(ch)ogfl(:)chz Hog< H "og-cg > K™"
= / K™ "vol < / H "og- cgvol = / H "vol < / K~ "vol
M M —— M ~~Jm
=g*vol K<H

— K=H

So the partial order remains nondegenerate modulo the adjoint
action (rigidity)!



Main class of examples

(]

C", A= 5 271 (xidy; — yidx;) F
§2n=1 C C" unit sphere, a := A|g2n-1 contact forni
Oxys -+ 0xy5 Oy - . ., Oy, standard basis of C”

My < C" spanned by last k basis vectors, 1 < k <2n—1
My < C" spanned by first 2n — k basis vectors

(M := S?"~1\ My, & = ker ) contact manifold (noncompact
but convex at infinity)

gf ={Keg>| Kig(zi) > 0 for some g € G} Ad-invariant

cone - ”i: ng&'(

Note. [y is isotropic for 1 < k < n, and coisotropic for
n+1<k<2n-1.



The main theorem

Main Theorem. (a) For k > n the partial order on g/ becomes
totally degenerate modulo the adjoint action, i.e.

VH,K € g{3g € G: AdgH < K. (flexibility)

(b) For k < n the partial order on gj does not become totally
degenerate modulo the adjoint action, i.e.

weak
JH.K €g) :Ag€ G:AdgH < K. (rigidity)



Special cases

n=2k=3: My=53\MN3=R3IIR3 is flexible by Example 1.

=2h=2 My =S\ Gl H”i’: AL {1jetspace)
n=2 k=2 M3= 53\, St xR}~ JIS (1-jet space of S*)
is flexible

general n < k: My = S?M=1\ My = JH(S27K=1) x R2k—2n js
flexible

n=2k=1 My =53\ M = S5? xR is rigid
The last case appears in Borman—Eliashberg—Murphy's existence
proof for contact structures in dimension 3.



Proof of (a)

For k > n consider the vector field on C”

b
R 2n—k &L
Vo= 3 (0 - yi0y)

Jj=1
Explicit computations show:

e LoA=0and [\A/, Z] = 0 for the Liouville vector field
Z = % f:l(xjaxj' +-)/ja}’j);
o Y induces a contact vector field Y = Y — fZ on My;

@ the flow g of Y contracts My into arbitrarily small
neighbourhoods of ¥ as t — oo;

o for H,K € g, Adg, H becomes arbitrarily small (both its
support and its values) as t — 0o, so eventually Adg,H < K.



Proof of (b)

Idea (following Eliashberg—Kim—Polterovich): Translate the
question into symplectic non-squeezing for certain unbounded
domains in C".

We will identify
(C"\ {0}, )) = (Ry x $?™7 1 ra) symplectization of (52771, ¢€).

Main construction: To H € g;r we associate the unbounded
domain

V(H) := {0} U{(r,x) € Ry x S>" 1| rH(x) <1} c C".






Proof of (b)
Properties of V(H)

@ g < G gives rise to g € Symp(R, x 5271 ra) via
. r
g(r,x) = (*@(X))-

cg(x)

Proof: g*(ra) = ﬁg*a = ra.

@
V(AdgH) = {(r,x) | r (cgH) o g7 H(x) < 1}
- {(ngx),g(x))) (X) (egM)(x) < 1}
=rH(x)

g(V(H))

Q@ H< K< rH(x) < rK(x)¥(r,x) <= V(K) C V(H)
Q@ V(sH)=1v(H) Vs»2



Proof of (b)

Properties (iii) and (iv) translate the relation AdgH < K into the
symplectic embedding V/(K) C g(V/(H)). An obstruction to such
an embedding is provided by

Proposition. There exists a “symplectic capacity”
c:Cx — [0, 0],

defined on a suitable class of unbounded open subsets of C”
containing the domains V(H) for H € gf{“, with the following
properties:

QO UCV = c(U)<c(V),

@ c(g(U)) =c(U) Vg € G;

Q c(sU) = s%c(U) Vs > 0;

Q@ 0<c(V(H)) <o VH € gj.



Proof of (b)

Proof of the Main Theorem assuming the Proposition.
This follows directly with K := sH from the following
Claim: For He gf and 0 <s <1 Ag € G: AdgH < sH.
Proof of Claim:

Adngg sH ] V()

= _V(H)=V(sH) C V(AdgH) = g(V(H)) \ c(-)

— Sizc(V(H)) - CGV(H)) < c(g(V(H))) = c(V(H))
— s>1. ¢(g o)

This proves the Claim and thus the Main Theorem O



Proof of (b)

Construction of the symplectic capacity ¢

n n—k n
2. 2 2 2. 2
U-—E Xi"‘EYiv v = E Yi
i=1 i=1

i=n—k+1
(Recall k < n). For a, b > 0 consider the hyperboloids

2 2
b . u "4
Vka :{ZECH‘?—

§<1}

Their symplectic homology in Conley-Zehnder index n — k is

2
Zyp ¢ > mac,

SH(O,C) Va,b _
e (Vi) 0 c<mnas



Proof of (b)

For an open subset U C C" with V,f’b C U for some a, b set

c(U) :=inf{c > 0| SHO)(U) 24 sH®) vty = 7,3},

where a >Ois chosen very small. This definition does not depend on
a, b and defines a symplectic capacity satisfying

0 < ma® = c(VP) < c(V(H)) < (V') = ma”? < o,

where a, b, a’, b’ are chosen such that Vka’b c V(H)c V} b



